Sentiment and speculation in a market with heterogeneous beliefs

Ian Martin Dimitris Papadimitriou*

March, 2019

Abstract

We present a dynamic model featuring risk-averse investors with heterogeneous beliefs. Individual investors have stable beliefs and risk aversion, but agents who were correct in hindsight become relatively wealthy; their beliefs are overrepresented in market sentiment, so “the market” is bullish following good news and bearish following bad news. Extreme states are far more important than in a homogeneous economy. Investors understand that sentiment drives volatility up, and demand high risk premia in compensation. Moderate investors supply liquidity: they trade against market sentiment in the hope of capturing a variance risk premium created by the presence of extremists.

*Both authors are at the London School of Economics. We thank Brandon Han, Nobu Kiyotaki, John Moore, and seminar participants at LSE for comments. Ian Martin is grateful to the ERC for support under Starting Grant 639744.
In the short run, the market is a voting machine but in the long run it is a weighing machine.

—Attributed to Benjamin Graham by Warren Buffett.

In this paper, we study the effect of heterogeneity in beliefs on asset prices. We work with a frictionless dynamically complete market in which uncertainty evolves along a binomial tree. The model is populated by a continuum of risk-averse agents who differ in their beliefs about the probability of good news (i.e., of an “up move” in the binomial tree).

As a result, agents position themselves differently in the market. Optimistic investors make leveraged bets on the market; pessimists go short. If the market rallies, the wealth distribution shifts in favor of the optimists, whose beliefs become overrepresented in prices. If there is bad news, money flows to pessimists and prices more strongly reflect their pessimism going forward. At any point in time, one can define a representative agent who chooses to invest fully in the risky asset, with no borrowing or lending—our analog of Benjamin Graham’s “Mr. Market”—but the identity (that is, the level of optimism) of the representative agent changes every period, with his or her beliefs becoming more optimistic following good news and more pessimistic following bad news. Thus market sentiment shifts constantly despite the stability of individual beliefs.

As all agents understand the importance of sentiment and take it into account in pricing, even moderate agents demand higher risk premia than they would in a homogeneous economy: they correctly foresee that either good or bad news will be amplified by a shift in sentiment. The presence of sentiment induces speculation: agents take temporary positions, at prices they believe to be fundamentally incorrect, in anticipation of adjusting their positions in the future. In our model, speculation can act in either direction, driving prices up in some states and down in others. This feature is emphasized by Keynes (1936, Chapter 12); in Harrison and Kreps (1978), by contrast, speculation only drives prices above their fundamental value. In our setting it can also happen that an agent—even the representative agent—trades in one direction this period, in certain anticipation of reversing his or her position next period.
Extreme states are much more important than they are in a homogeneous-belief economy. Consider a stylized example. The riskless rate is 0%. A risky bond matures in 50 days, and will default (paying $30 rather than the par value of $100) only in the “bottom” state of the world, that is, only if there are 50 consecutive pieces of bad news. Investors’ beliefs about the probability, h, of an up-move are uniformly distributed between 0 and 1. Optimists therefore think default is almost impossible; a pessimistic agent with $h = 0.25$ thinks the default probability is less than 10^{-6}. Even an agent in the 95th percentile of pessimism, $h = 0.05$, thinks the default probability is less than 8%. Initially, the representative investor is the median agent, $h = 0.5$, who thinks the default probability is less than 10^{-15}. And yet we show that the bond trades at what might seem a remarkably low price: $95.63. Moreover, almost half the agents—all agents with beliefs h below 0.478—initially go short at this price, though most will reverse their position within two periods. The low price arises because all agents understand that if there is bad news next period, pessimists’ trades will have been profitable: their views will become overrepresented in the market, so the bond’s price will decline sharply in the short run. Only agents with $h < 0.006$ plan to stay short to the bitter end.

It is interesting to contemplate how an econometrician who experiences multiple repetitions of this economy would think about pricing. Suppose for the sake of argument that the median agent is right, so that the true probability of an up-move is 50%. Econometric tests of short-run return behavior would make pricing look reasonable. Half the time the bond’s price increases to $100 and half the time the price declines to $91.62, and these facts justify the initial price of $95.63. But at some point the econometrician might notice a puzzle: measures of long-run value would seem to suggest that a “riskless” bond that “always” pays off nonetheless trades at a substantial discount to par value. With an objective default probability below 10^{-15}, this conundrum would outlast several econometric careers.

We start by solving the model in discrete time. Terminal payoffs are exogenously specified, and can be arbitrary, subject to being positive at every node so that expected utility is finite. We find the wealth distribution, prices,

1 Assuming there are two periods of bad news; if at any stage there is good news, the bond becomes riskless and disagreement vanishes.
all agents’ investment decisions, and gross leverage at every node. We also characterize the cross-section of subjective perceptions of expected returns, volatilities, and Sharpe ratios. In general we do not take a stance on what the objectively correct beliefs are, nor even on whether there are objectively correct beliefs. But we can relate the equity premium perceived by the representative agent to an objectively measurable quantity, risk-neutral variance, that was proposed as a measure of the equity premium by Martin (2017).

After providing a formula for pricing in the general discrete-time case, we solve the model in a natural continuous-time limit in which the risky asset’s terminal payoffs are lognormally distributed. In this limit, the underlying asset price agrees with the corresponding price in the continuous-time model of Atmaz and Basak (2018). As our framework is more tractable, we are able to study various issues that they do not (though, unlike us, they also price the underlying asset in the more general power utility case). We solve for agents’ subjective beliefs about expected returns and true (“P”) volatility at all horizons; and for option prices at all maturities. Implied (“Q”) volatility is higher at short horizons, due to the effect of sentiment; and lower at long horizons, due to the moderating influence of the terminal date at which pricing is dictated entirely by fundamentals. “In the short run, the market is a voting machine but in the long run it is a weighing machine.”

High implied volatility in the short run is also reflected in high physical measures of volatility (on which, in this continuous-time limit, all agents agree): there is no short-run variance risk premium. But physical measures of volatility decline more rapidly with horizon, so that there is a long-run variance risk premium.

As different investors have different beliefs but agree on asset prices, they have different stochastic discount factors (SDFs) whose properties help to reveal the interplay of beliefs, expected returns, and volatility. The volatility of any investor’s SDF equals the maximum Sharpe ratio that the investor perceives as achievable by trading dynamically in the market (Hansen and Jagannathan, 1991). By comparing this to the Sharpe ratio the investor perceives on the asset if it is statically held—or shorted—to maturity, we can measure the perceived benefit of dynamic trade (i.e., of speculation, as in our setting the only reason to trade dynamically is to exploit differences in beliefs:}
without belief heterogeneity, agents would hold a static position). We also solve for the entropies of investors’ SDFs (Alvarez and Jermann, 2005), which in our setting reveal the dollar value that different agents attach to being able to speculate.

All agents in our economy—and particularly investors with extreme beliefs—perceive speculation as attractive. Extremists undertake conditional strategies that are increasingly aggressive as the market moves in their direction; in this sense, they are “long volatility.” We show that each investor can be thought of as having an investor-specific target price—the ideal outcome for the investor, given his or her beliefs and hence trading strategy—that can usefully be compared to what the investor expects to happen. The best possible outcome for an extremist is that the market moves by even more than he or she expected.

Conversely, investors with more moderate beliefs are short volatility. Among moderates, there is a particularly interesting gloomy investor, whose perception about the maximum attainable Sharpe ratio is most pessimistic among all investors. The gloomy investor is slightly more pessimistic than the median investor, so does not even perceive the market itself as earning a positive risk premium. Among all agents in our economy, the gloomy investor attaches the lowest dollar value to being able to participate in the market, relative to investing at the riskless rate; the (small) maximal Sharpe ratio he perceives can be attained either via a short volatility position or, equivalently, via a contrarian market-timing strategy that exploits what he perceives as irrational exuberance on the up side and irrational pessimism on the down side. The gloomy investor can therefore be thought of as supplying liquidity to the extremists. He hopes to be proved right: in a sense that we make precise, the best outcome for him is the one that he expects.

We make four key modelling choices. The first three are adopted from the model of Geanakoplos (2010) which inspired this paper. First, we assume that agents are dogmatic in their beliefs so that individuals do not experience changes in sentiment as time passes. If we allowed investors to learn over time, we believe that our mechanism would be amplified: that following good news, for example, optimistic agents would become relatively wealthier, as in our model, but all agents would also update their beliefs in an optimistic direction.
Second, we model uncertainty as evolving on a binomial tree so that the market is complete and agents can fully express their disagreement through trading. With an incomplete market, by contrast, agents may have strong differences in beliefs that are not revealed in prices. Market completeness also permits a clean interpretation of some of our results, as it generates a perfect correspondence between the cross-section and the time series. We exploit this fact to interpret our investors’ trading behavior both in terms of conditional market-timing strategies and in terms of static positions in derivative securities.

Third, we allow for a continuum of beliefs, unlike papers including Harrison and Kreps (1978), Scheinkman and Xiong (2003), Basak (2005), Banerjee and Kremer (2010), and Bhamra and Uppal (2014). Aside from being realistic, this implies that the identities of the representative investor, and of the investor who chooses to sit out of the market entirely, are smoothly varying equilibrium objects that are determined endogenously in an intuitive and tractable way.

Fourth, and finally, our agents are risk-averse. In this respect we depart from several papers in the heterogeneous beliefs literature—including Harrison and Kreps (1978), Scheinkman and Xiong (2003) and Geanakoplos (2010)—that assume that agents are risk-neutral. Risk-neutrality simplifies matters in some respects, but complicates it in others. For example, short sales must be ruled out for equilibrium to exist. This is natural in some settings, but not if one thinks of the risky asset as representing, say, a broad stock market index. Moreover, the aggressive behavior of risk-neutral investors leads to extreme predictions: every time there is a down-move in the Geanakoplos model, all agents who are invested in the risky asset go bankrupt. From a technical point of view, short-sales constraints and risk-neutrality combine to give agents kinked indirect utility functions. Our agents have smooth indirect utility functions, and ultimately this is responsible for the tractability of our model and for our ability to study the dynamics described above.
1 Setup

We work in discrete time, with periods running from 0 to time T. Uncertainty evolves on a binomial tree, so that whatever the current state of the world, there are two possible successor states next period: “up” and “down.” There is a risky asset, whose payoffs at the terminal date T are specified exogenously. We normalize the net interest rate to 0%.

There is a unit mass of agents indexed by $h \in (0, 1)$. All agents have log utility and zero time-preference rate, and are initially endowed with one unit of the risky asset, which we will think of as representing “the market.” Agent h believes that the probability of an up-move is h; we often refer to h as the agent’s belief, for short. By working with the open interval $(0, 1)$, as opposed to the closed interval $[0, 1]$, we ensure that the investors’ beliefs are all absolutely continuous with respect to each other: that is, they all agree on what events can possibly happen. This means in particular that no investor will allow his wealth to go to zero in any state of the world.

The mass of agents with belief h follows a beta distribution governed by two parameters, α and β, such that the PDF is\footnote{The beta function $B(\cdot, \cdot)$ is defined by
\begin{equation}
B(x, y) = \int_{h=0}^{1} h^{x-1} (1-h)^{y-1} \, dh.
\end{equation}
If x and y are integers, then
\begin{align*}
B(x, y) &= \frac{(x-1)!(y-1)!}{(x+y-1)!},
\end{align*}
and more generally the beta function is related to the gamma function as follows:
\begin{equation}
B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.
\end{equation}
We will repeatedly use basic facts about the beta function, such as that $B(x, y) = B(y, x)$, and that $B(x+1, y) = B(x, y) \cdot \frac{x}{x+y}$.
}

\begin{equation}
f(h) = \frac{h^{\alpha-1}(1-h)^{\beta-1}}{B(\alpha, \beta)}.
\end{equation}

The parameters α and β must be positive, but can otherwise be set arbitrarily.
If $\alpha = \beta$ then the distribution of beliefs is symmetric with mean $1/2$. If $\alpha = \beta = 1$ then $f(h) = 1$, so that beliefs are uniformly distributed over $(0, 1)$; this is a useful case to keep in mind as one works through the algebra. The case $\alpha \neq \beta$ allows for asymmetric distributions with mean $\alpha/(\alpha + \beta)$ and variance $\alpha\beta/[(\alpha + \beta)^2(\alpha + \beta + 1)]$. Thus the distribution shifts toward 1 if $\alpha > \beta$ and toward 0 if $\alpha < \beta$, and beliefs are highly concentrated around the mean when α and β are large: if, say, $\alpha = 90$ and $\beta = 10$ then beliefs are concentrated around a mean of 0.9, with standard deviation 0.030. Figure 1 plots the distribution of beliefs, h, for a range of choices of α and β.

2 Equilibrium

Suppose that the price of the risky asset at the current node is p, and that it will be either p_d or p_u next period, where we assume that $p_d \neq p_u$ so that the pricing problem is nontrivial. Suppose also that agent h has wealth w_h at the current node. If he chooses to hold x_h units of the asset, then his wealth next period is $w_h - x_h p_x + x_h p_u$ in the up-state and $w_h - x_h p_x + x_h p_d$ in the down-state. So the portfolio problem is to solve

$$\max_{x_h} h \log \left[w_h - x_h p_x + x_h p_u\right] + (1 - h) \log \left[w_h - x_h p_x + x_h p_d\right].$$
The agent’s first-order condition is therefore

\[x_h = wh \left(\frac{h}{p - p_d} - \frac{1 - h}{p_u - p} \right). \] (1)

The sign of \(x_h \) is that of \(p - p_u \) for \(h = 0 \) and that of \(p - p_d \) for \(h = 1 \). These must have opposite signs to avoid an arbitrage opportunity, so there will always be some agents who are short and others who are long. The most optimistic agent\(^3\) levers up as much as possible without risking default, and correspondingly the most pessimistic agent takes on the largest short position possible that does not risk default if the good state occurs. For, the first-order condition (1) implies that as \(h \to 1 \), agent \(h \) holds \(w_h/(p - p_d) \) units of stock. This is the largest possible position that does not risk default: to acquire it, the agent must borrow \(w_h p/(p - p_d) - w_h = w_h p_d/(p - p_d) \). If the unthinkable (to this most optimistic agent!) occurs and the down state materialises, the agent’s holdings are worth \(w_h p_d/(p - p_d) \), which is precisely what the agent owes to his creditors.

It will often be convenient to think in terms of the risk-neutral probability of an up-move, \(p^* \), defined by the property that the price can be interpreted as a risk-neutral expected payoff, \(p = p^* p_u + (1 - p^*) p_d \). (There is no discounting, as the riskless rate is zero.) Hence

\[p^* = \frac{p - p_d}{p_u - p_d}. \]

In these terms, the first-order condition (1) becomes

\[x_h = \frac{w_h}{p_u - p_d} \frac{h - p^*}{p^*(1 - p^*)}. \]

for example. An agent whose \(h \) equals \(p^* \) will have zero position in the risky asset: by the defining property of the risk-neutral probability, such an agent perceives that the risky asset has zero expected excess return.

\(^3\)This is an abuse of terminology: there is no ‘most optimistic agent’ since \(h \) lies in the open set \((0, 1)\). More formally, this discussion relates to the behavior of agents in the limit as \(h \to 1 \). An agent for whom \(h = 1 \) would want to take arbitrarily large levered positions in the risky asset, so there is a behavioral discontinuity at \(h = 1 \) (and similarly at \(h = 0 \).
Agent h’s wealth next period is therefore
\begin{equation}
wh + x_h(p_u - p) = wh(p_u - p_d) \frac{h}{p - p_d} = wh \frac{h}{p^*}
\end{equation}
(2)
in the up-state, and
\begin{equation}
wh - x_h(p - p_d) = wh(p_u - p_d) \frac{1 - h}{p_u - p} = wh \frac{1 - h}{1 - p^*}
\end{equation}
(3)
in the down-state. In either case, all agents’ returns on wealth are linear in their beliefs. Moreover, this relationship (which is critical for the tractability of our model) applies at every node. It follows that person h’s wealth at the current node must equal
\begin{equation}
\lambda_{path} h^m (1 - h)^n
\end{equation}
where λ_{path} is a constant that is independent of h but which can depend on the path travelled to get to the current node, which we have assumed has m up and n down steps.

As aggregate wealth is equal to the value of the risky asset—which is in unit supply—we must have
\begin{equation}
\int_0^1 \lambda_{path} h^m (1 - h)^n f(h) dh = p.
\end{equation}

This enables us to solve for the value of λ_{path}:
\begin{equation}
\lambda_{path} = \frac{B(\alpha, \beta)}{B(\alpha + m, \beta + n)} p.
\end{equation}

(This expression can be written in terms of factorials if α and β are integers: for example, if $\alpha = \beta = 1$ then $\lambda_{path} = \frac{(m+n+1)!}{m!n!} p$. See footnote 2.)

Substituting back, agent h’s wealth equals
\begin{equation}
wh = \frac{B(\alpha, \beta)}{B(\alpha + m, \beta + n)} h^m (1 - h)^n p.
\end{equation}
(4)

This is maximized by $h \equiv m/(m + n)$: the agent whose beliefs turned out to be most accurate ex post ends up richest.
The wealth distribution—that is, the fraction of aggregate wealth held by type-h agents—is a probability distribution over h. Specifically, it is the beta distribution with parameters $\alpha + m$ and $\beta + n$,

\[
\frac{w_h f(h)}{p} = \frac{h^{\alpha+m-1}(1-h)^{\beta+n-1}}{B(\alpha + m, \beta + n)}.
\]

(5)

We can now revisit Figure 1 in light of this fact. For the sake of argument, suppose that $\alpha = \beta = 1$ so that wealth is initially distributed uniformly across investors of all types $h \in (0,1)$. If, by time 4, there have been $m = 1$ up- and $n = 3$ down-moves, then equation (5) implies that the new wealth distribution follows the line denoted $\alpha = 2, \beta = 4$. (Investors with h close to 0 or to 1 have been almost wiped out by their aggressive trades; the best performers are moderate pessimists with $h = 1/4$, whose beliefs happen to have been vindicated ex post.) At time 8, following three more up-moves and one down-move, the new wealth distribution is marked by $\alpha = \beta = 5$. And if by time 12 there have been a further four up-moves then the wealth distribution is marked by $\alpha = 9, \beta = 5$. The changing wealth distribution in this example illustrates a key feature of our model: at any point in time, wealth is concentrated in the hands of investors whose beliefs appear correct in hindsight.

Now we solve for the equilibrium price using the first-order condition

\[
x_h = \frac{B(\alpha, \beta)}{B(\alpha + m, \beta + n)} h^m (1-h)^n p \left(\frac{h}{p - p_d} - \frac{1-h}{p_u - p} \right).
\]

The price p adjusts to clear the market, so that in aggregate the agents hold one unit of the asset:

\[
\int_0^1 x_h f(h) \, dh = \frac{p [(m + \alpha)(p_u - p) - (n + \beta)(p - p_d)]}{(m + n + \alpha + \beta)(p_u - p)(p - p_d)} = 1.
\]

It follows that

\[
p = \frac{(m + \alpha)p_d p_u + (n + \beta)p_u p_d}{(m + \alpha)p_d + (n + \beta)p_u}.
\]

(6)
Equivalently, the risk-neutral probability of an up-move must satisfy

\[p^* = \frac{(m + \alpha)p_d}{(m + \alpha)p_d + (n + \beta)p_u} \]

in equilibrium.

These results can usefully be interpreted in terms of wealth-weighted beliefs. For example, at time \(t \), after \(m \) up-moves and \(n = t - m \) down-moves, the wealth-weighted cross-sectional average belief, \(H_{m,t} \), can be computed with reference to the wealth distribution (5):

\[H_{m,t} = \int_0^1 h \frac{w_h f(h)}{p} dh = \frac{m + \alpha}{t + \alpha + \beta}. \]

In these terms we can write

\[p^* = \frac{H_{m,t}p_d}{H_{m,t}p_d + (1 - H_{m,t})p_u}. \]

It follows that

\[\frac{p_u}{p} = \frac{H_{m,t}}{p^*} \quad \text{and} \quad \frac{p_d}{p} = \frac{1 - H_{m,t}}{1 - p^*}. \]

Hence \(p^* \) is smaller than \(H_{m,t} \) if \(p_u > p_d \) and larger than \(H_{m,t} \) if \(p_u < p_d \); in either case, risk-neutral beliefs are more pessimistic than the wealth-weighted average belief.

The share of wealth an agent of type \(h \) invests in the risky asset is

\[\frac{x_{hp}}{w_h} = p \left(\frac{h}{p - p_d} - \frac{1 - h}{p_u - p} \right) = \frac{h}{1 - \frac{p_d}{p}} - \frac{1 - h}{\frac{p_u}{p} - 1}. \]

This can be rewritten in a more compact form using (9):

\[\frac{x_{hp}}{w_h} \overset{(9)}{=} \frac{h}{1 - \frac{1 - H_{m,t}}{1 - p^*}} - \frac{1 - h}{H_{m,t} - p^*} = \frac{h - p^*}{H_{m,t} - p^*}. \]

So the agent with \(h = H_{m,t} \) can be thought of as the representative agent: by
equation (10), this is the agent who chooses to invest her wealth fully in the market, with no borrowing or lending.

The identity of the representative investor therefore moves around over time, as does the identity of the investor with \(h = p^* \) who chooses to hold his or her wealth fully in the bond. Figure 2 illustrates in the case \(p_u > p_d \), so that \(p^* < H_{m,t} \). Pessimistic investors with \(h < p^* \) choose to short the risky asset; moderate investors with \(p^* < h < H_{m,t} \) hold a balanced portfolio with long positions in both the bond and the risky asset; and optimistic investors with \(h > H_{m,t} \) take on leverage, shorting the bond to go long the risky asset.

In a homogeneous economy in which all agents agree on the up-probability, \(h = H \), it is easy to check that

\[
p^* = \frac{H p_d}{H p_d + (1 - H) p_u}.
\]

(11)

Comparing equations (8) and (11), we see that for short-run pricing purposes our heterogeneous economy looks the same as a homogeneous economy featuring a representative agent with belief \(H_{m,t} \). But as the identity of the representative agent changes over time, the similarity will disappear when we study the pricing of multi-period claims.

For future reference, the risk-neutral variance of the asset is

\[
p^* \left(\frac{p_u}{p} \right)^2 + (1 - p^*) \left(\frac{p_d}{p} \right)^2 - 1 = \frac{(H_{m,t} - p^*)^2}{p^*(1 - p^*)}.
\]

(12)

(The risk-neutral expectation of the asset’s return is uninteresting: it must, by
definition, equal the gross riskless rate.) Below, we will compare this quantity with subjective expected returns, motivated by the results of Martin (2017).

We can also use equation (10) to calculate the leverage ratio of investor \(h \), which we define as the ratio of funds borrowed, \(x_h p - w_h \), to wealth, \(w_h \):

\[
\frac{x_h p - w_h}{w_h} = \frac{h - H_{m,t}}{H_{m,t} - p^*}.
\]

(13)

If \(p_u > p_d \) then \(p^* < H_{m,t} \), by (9); in this case equation (13) shows that people who are optimistic relative to the representative investor borrow from pessimists. We can define gross leverage as the total dollar amount these optimists borrow, \(^4\) scaled by aggregate wealth:

\[
\int_{H_{m,t}}^{1} \frac{(x_h p - w_h) f(h) dh}{p} = \int_{H_{m,t}}^{1} \frac{w_h f(h)}{p} \frac{x_h p - w_h}{w_h} dh = \int_{H_{m,t}}^{1} \frac{w_h f(h)}{p} \frac{h - H_{m,t}}{H_{m,t} - p^*} dh = \frac{H_{m,t}^{m+\alpha} (1 - H_{m,t})^{n+\beta}}{(m + \alpha + n + \beta) B(\alpha + m, \beta + n) |H_{m,t} - p^*|}.
\]

(14)

Conversely, if \(p_u < p_d \) then optimists are lenders and pessimists borrowers. In either case, we can define gross leverage as the absolute value of the above expression,

\[
\frac{H_{m,t}^{m+\alpha} (1 - H_{m,t})^{n+\beta}}{(m + \alpha + n + \beta) B(\alpha + m, \beta + n) |H_{m,t} - p^*|}.
\]

(15)

Alternatively, scaling by the wealth of the borrowers and assuming that \(p_u > p_d \) for simplicity, we define borrower fragility

\[
\int_{H_{m,t}}^{1} \frac{(x_h p - w_h) f(h) dh}{w_h f(h) dh} = \frac{\int_{H_{m,t}}^{1} \frac{w_h f(h)}{p} \frac{x_h p - w_h}{w_h} dh}{\int_{H_{m,t}}^{1} \frac{w_h f(h)}{p} dh},
\]

which equals gross leverage divided by the fraction of wealth held by borrowers.

Figure 3 gives a numerical example with uniformly distributed beliefs
Figure 3: At each node, \bar{p} denotes the price in a homogeneous economy with $H = 1/2$; p is the price in a heterogeneous economy with $\alpha = \beta = 1$; and p^* and $H_{m,t}$ indicate the risk-neutral probability of an up-move and the identity of the representative agent in the heterogeneous economy. In the homogeneous economy, the risk-neutral probability of an up-move is $1/3$ at every node. (i.e., $\alpha = \beta = 1$) and $T = 3$. Terminal payoffs are chosen so that (i) $p_u/p_d = 2$ at the penultimate nodes and (ii) the asset would initially trade at a price of 1 in a homogeneous economy with $H = 1/2$. Initially, sentiment in the heterogeneous belief economy is the same—$H_{0,0} = 1/2$—but the price is lower, at 0.90, because of the anticipated effect of future sentiment. If bad news arrives, money flows to pessimists, the identity of the representative agent and risk-neutral beliefs become more pessimistic, and the price declines. Figure 4 shows the evolution of gross leverage and borrower fragility in the same numerical example.

2.1 Subjective beliefs

Investors disagree on the properties of the asset. Consider first moments. Agent h’s subjectively perceived expected excess return on the market is

$$
\frac{h p_u + (1 - h) p_d}{p} - 1 = \frac{(h - p^*)(p_u - p_d)}{p} = \frac{(h - p^*)(H_{m,t} - p^*)}{p^*(1 - p^*)}.
$$

(16)
Figure 4: Gross leverage (GL) and borrower fragility (BF) at each node of the numerical example shown in Figure 3.

Hence the share of wealth invested by agent h in the market (10) equals the ratio of the subjectively perceived expected excess return on the market (16) to (objectively defined) risk-neutral variance (12). In particular, risk-neutral variance reveals the expected excess return perceived by the representative agent, which is given by equation (16) with $h = H_{m,t}$.

The cross-sectional average expected excess return is

$$\frac{\left(\frac{\alpha}{\alpha+\beta} - p^*\right) (H_{m,t} - p^*)}{p^*(1 - p^*)}, \quad (17)$$

which may be positive or negative. But the wealth-weighted cross-sectional average expected excess return must be positive: by (7), it equals

$$\int_0^1 \frac{w_h (h - p^*) (H_{m,t} - p^*)}{p^*(1 - p^*)} f(h) \, dh = \frac{(H_{m,t} - p^*)^2}{p^*(1 - p^*)}. \quad (18)$$

Note that this quantity can also be interpreted as the expected excess return perceived by the representative agent $h = H_{m,t}$. The cross-sectional standard
Figure 5: Mean subjective expected excess returns (17), the expected excess return perceived by the representative agent (18), and cross-sectional standard deviation of subjective expected excess returns (19) in the example shown in Figure 3. In a homogeneous economy with $H = 1/2$, all agents perceive an expected excess return of 12.5% at every node.

The standard deviation of return expectations is

$$\sqrt{\frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}} |H_{m,t} - p^*|,$$

using the formula for the standard deviation of the beta distributed random variable h in equation (16). Figure 5 shows the evolution of these quantities in the example of Figure 3.

Next we consider second moments. Person h’s subjectively perceived variance of the asset’s return is

$$h \left(\frac{p_u}{p}\right)^2 + (1-h) \left(\frac{p_d}{p}\right)^2 - \left(\frac{hp_u + (1-h)p_d}{p}\right)^2 = \frac{h(1-h) (H_{m,t} - p^*)^2}{p^2(1-p^*)^2},$$

and person h’s perceived Sharpe ratio is therefore

$$\frac{h - p^*}{\sqrt{h(1-h)}}.$$
which is increasing in h for all p^\ast.

The variance risk premium perceived by investor h (that is, subjective minus risk-neutral variance) is equal to

$$\frac{(H_{m,t} - p^\ast)^2}{p^\ast(1 - p^\ast)} \left[\frac{h(1 - h)}{p^\ast(1 - p^\ast)} - 1 \right].$$

This is maximized—and weakly positive—for investor $h = 1/2$, and negative for agents with beliefs h that are further from $1/2$ than p^\ast is.

The wealth return for agent h is h/p^\ast in the up state and $(1 - h)/(1 - p^\ast)$ in the down state, as shown in equations (2) and (3). So agent h’s subjective expected excess return on own wealth is

$$\frac{h^2}{p^\ast} + \frac{(1 - h)^2}{1 - p^\ast} - 1 = \frac{(h - p^\ast)^2}{p^\ast(1 - p^\ast)}.$$

All agents expect to earn a nonnegative excess return on wealth, though they have very different positions. Only agent $h = p^\ast$ chooses to take no risk, fully invests in the bond, and so correctly anticipates zero excess return.

2.2 A risky bond

The dynamic that drives our model is particularly stark in the “risky bond” example outlined in the introduction. Suppose that the terminal payoff is 1 in all states apart from the very bottom one, in which the payoff is ε; the price of the asset is therefore 1 as soon as an up-move occurs. Writing p_t for the price at time t following t consecutive down-moves we have, from equation (6),

$$p_t = \frac{\alpha p_{t+1} + (t + \beta)p_{t+1}}{\alpha p_{t+1} + t + \beta}.$$

Defining $y_t \equiv 1/p_t - 1$, this can be rearranged as

$$y_t = \frac{\beta + t}{\alpha + \beta + t}y_{t+1}.$$

We can interpret y_t as the inducement to invest in the risky asset at time t, following t consecutive down-moves: it is the realized excess return on the
asset if there is an up-move from \(t \) to \(t + 1 \). Equation (20) determines the rate at which this inducement must rise in equilibrium.

Solving equation (20) forward,

\[
y_t = \frac{(\beta + t)(\beta + t + 1) \cdots (\beta + T - 1)}{(\alpha + \beta + t)(\alpha + \beta + t + 1) \cdots (\alpha + \beta + T - 1)} y_T,
\]

and the terminal condition dictates that \(y_T = (1 - \varepsilon)/\varepsilon \). Thus, finally,

\[
p_t = \frac{1}{1 + \frac{\Gamma(\beta + T)\Gamma(\alpha + \beta + t)}{\Gamma(\beta + t)\Gamma(\alpha + \beta + T)} \left(\frac{1 - \varepsilon}{\varepsilon}\right)}.
\]

If \(\alpha = \beta = 1 \), we can simplify further, to

\[
p_t = \frac{1}{1 + \frac{1 + t}{1 + T} \frac{1 - \varepsilon}{\varepsilon}}.
\]

(21)

We can calculate the risk-neutral probability of an up-move at time \(t \), which we (temporarily) denote by \(p^*_t \), by applying (9) with \(p = p_t \), \(p_u = 1 \), and \(p_d = p_{t+1} \) to find that

\[
p^*_t = H_{0,t} p_t = \frac{\alpha p_t}{\alpha + \beta + t}.
\]

(22)

Figure 6 illustrates these calculations in the example described in the introduction, with \(T = 50 \) periods to go, and a recovery value of \(\varepsilon = 0.30 \). The panels show how the price and risk-neutral probability evolve if bad news arrives each period. Initially, the bond trades at what might seem a remarkably low price of 0.9563.

By contrast, in a homogeneous economy with \(H = 1/2 \) the price, \(p_t \), and risk-neutral probability, \(p^*_t \), following \(t \) down-moves would be

\[
p_t = \frac{1}{1 + \frac{1 - \varepsilon}{0.5^{T-t}}} \quad \text{and} \quad p^*_t = \frac{p_t}{2},
\]

respectively. Thus with homogeneous beliefs the bond price is approximately 1, and the risk-neutral probability of an up-move is approximately 1/2, until shortly before the bond’s maturity.

From the perspective of time 0, the risk-neutral probability of default—call
Figure 6: Left: The risky bond’s price over time in the heterogeneous and homogeneous economies following consistently bad news. Right: $H_{0,t}$ reveals the identity of the representative agent at time t following consistently bad news. Investors who are more optimistic, $h > H_{0,t}$, have leveraged long positions in the risky bond. The risk-neutral probability reveals the identity of the investor who is fully invested in the riskless bond at time t, with zero position in the risky bond. Investors who are more pessimistic, $h < p^*_{t}$, are short the risky bond. Investors with $p^*_{t} < h < H_{0,t}$ (shaded) are long both the risky and the riskless bond.

It δ^* satisfies

$$p_0 = 1 - \delta^* + \delta^* \varepsilon, \quad \text{so} \quad \delta^* = \frac{1 - p_0}{1 - \varepsilon}.$$

In the homogeneous case, therefore,

$$\delta^* = \frac{1}{1 + \varepsilon (2^{-T} - 1)} = O(2^{-T});$$

and in the heterogeneous case with $\alpha = 1$,

$$\delta^* = \frac{1}{1 + \varepsilon T} = O(1/T).$$

There is a qualitative difference between the homogeneous economy, in which default is exponentially unlikely, and the heterogeneous economy, in which default is only polynomially unlikely.\(^5\)

\(^5\)This holds more generally for any $\alpha = \beta > 1$: it is easy to show that $\delta^* = O(T^{-\alpha})$ by Stirling’s formula. It is also true if $\varepsilon > 1$, i.e. in the ‘lottery ticket’ case. Then, δ^* is interpreted as the probability of the lottery ticket paying off, which is exponentially small in the homogeneous economy but only polynomially small in the heterogeneous belief economy.
To understand pricing in the heterogeneous economy, it is helpful to think through the portfolio choices of individual investors. We use equations (5), (7), and (10), together with the prices and risk-neutral probabilities given in (21) and (22) above, to find investors’ holdings of the risky asset at each node.

The median investor, $h = 0.5$, thinks the probability that the bond will default—i.e., that the price will follow the path shown in Figure 6 all the way to the end—is $2^{-50} < 10^{-15}$. Even so, he believes the price is right at time zero (in the sense that he is the representative agent) because of the short-run impact of sentiment. Meanwhile, a modestly pessimistic agent with $h = 0.25$ will choose to short the bond at the price of 0.9563—and will remain short at time $t = 1$ before reversing her position at $t = 2$—despite believing that the bond’s default probability is less than 10^{-6}. (Recall from equation (10) that p^*_t is the belief of the agent who is neither long nor short the asset. More optimistic agents, $h > p^*$, are long, and more pessimistic agents, $h < p^*$, are short.) Following a few periods of bad news, almost all investors are long, but the most pessimistic investors have become extraordinarily wealthy.

The left panel of Figure 7 shows the holdings of the risky asset for a range of investors with different beliefs, along the trajectory in which bad news keeps on coming. The optimistic investor $h = 0.75$ starts out highly leveraged so rapidly loses almost all his money. The median investor, $h = 0.5$, initially invests fully in the risky bond without taking on leverage. If bad news arrives, this
investor takes on leverage in order to be able to increase the size of her position despite her losses; after about 10 periods, the investor is almost completely wiped out. Moderately bearish investors start out short. For example, investor $h = 0.25$ starts out short about 10 units of the bond, despite believing that the probability it defaults is less than one in a million, but reverses her position after two down-moves. Investor $h = 0.01$, who thinks that there is more than a 60% chance of default, is initially extremely short but eventually reverses position as still more bearish investors come to dominate the market.

The right panel of Figure 7 shows how the median investor’s leverage changes over time if he follows the optimal dynamic and static strategies. If forced to trade statically, his leverage ratio is initially 0.457. This seemingly modest number is dictated by the requirement that the investor avoid bankruptcy at the bottom node (and in fact the leverage of all investors with $h \geq 0.2$ is visually indistinguishable at the scale of the figure). If the median investor can trade dynamically, by contrast, the optimal strategy is, initially, to invest fully in the risky bond without leverage. Subsequently, however, optimal leverage rises fast. Thus the dynamic investor keeps his powder dry by investing cautiously at first but then aggressively exploiting further selloffs.

All investors perceive themselves as better off if able to trade dynamically, of course. In Appendix B we analytically characterize the perceived advantage of dynamic versus static trade as a function of each investor’s belief h.

The volume of trade (in terms of the number of units of the risky asset transacted) in the transition from time t to time $t+1$ is

$$
\frac{1}{2} \int_{0}^{1} \left| \frac{(1-h)^t}{1+t} \frac{h-p_t^*}{H_0,t-p_t} - \frac{(1-h)^{t+1}}{1+t} \frac{h-p_{t+1}^*}{H_{0,t+1}-p_{t+1}} \right| \, dh = \frac{4(1+t)^{1+t}}{(3+t)^{3+t}} \left(1 + t + \frac{1+\varepsilon T}{1-\varepsilon} \right),
$$

while gross leverage and borrower fragility, calculated from (14) and (15), equal

$$
\left(\frac{1+t}{2+t} \right)^{2+t} \left(1 + \frac{1+T \varepsilon}{1+t \left(1-\varepsilon \right)} \right) \quad \text{and} \quad \left(\frac{1+t}{2+t} \right) \left(1 + \frac{1+T \varepsilon}{1+t \left(1-\varepsilon \right)} \right)
$$

respectively.

The left panel of Figure 8 shows the time series of volume, gross leverage,

\footnote{We include the factor of $1/2$ to avoid double-counting.}
and borrower fragility. In this stylized example there is a burst of trade at first: volume substantially exceeds the total supply of the asset initially, as agents with extreme views undertake highly leveraged trades, but declines rapidly over time as wealth becomes concentrated in the hands of investors with similar beliefs. The right panel shows the corresponding series if $\varepsilon = 0.9$. In this case disagreement generates more aggressive trading, and more volume, because the relative safety of the asset permits agents to take on more leverage: extremists on both sides of the market are “picking up nickels in front of a steamroller.”

2.3 An example with late resolution of uncertainty

Consider an example with an odd number of periods, T, and $\alpha = \beta = 1$; and let $0 < \varepsilon < 1$. If there have been an even number of up-moves at time T, the asset pays off $\frac{1}{1+\varepsilon}$; if there have been an odd number of up-moves, the asset pays $\frac{1}{1-\varepsilon}$.

In the homogeneous economy with $H = 1/2$, the asset trades at a price of 1 in every node, and at every period, until the terminal payoff: it is therefore riskless until the final period.

In the heterogeneous economy it follows immediately from Result 1, below, that the asset also trades at 1 initially. (See Figure 9 for an example with $T = 3$ and $\varepsilon = 1/2$.) But the asset is now volatile: although the payoff of the asset is
up in the air until the very last period, the effect of sentiment ripples back so that the asset is volatile throughout its lifetime, and its price therefore embeds a risk premium.\footnote{There is also an equilibrium in which the asset’s price is 1 until time $T-1$, as in the homogeneous economy. Then the market is incomplete, and agents have no means of betting against one another. But this equilibrium is not robust to vanishingly small perturbations of the terminal payoffs, which would restore market completeness.}

2.4 The general case

Write $z_{m,t} = 1/p_{m,t}$, where m is the number of up moves that have taken place by time t. Equation (6) implies that the following recurrence relation holds at each node:

$$z_{m,t} = H_{m,t}z_{m+1,t+1} + (1 - H_{m,t})z_{m,t+1}.$$ \hspace{1cm} (23)

That is, the price at each node is the weighted average harmonic mean of the next-period prices, with weights given by the beliefs of the representative agent at the relevant node. By backward induction, $z_{0,0}$ is a linear combination of $z_{i,T}$, for $i = 0, 1, \ldots, T$:

$$z_{0,0} = \sum_{m=0}^{T} c_m z_{m,T}.$$ \hspace{1cm} (24)
Pricing is not path-dependent in our economy. Indeed, we have

\[
\frac{m + \alpha}{t + \alpha + \beta} \frac{t - m + \beta}{1 - H_{m,t}} = \frac{t - m + \beta}{1 - H_{m,t}} \frac{m + \alpha}{t + 1 + \alpha + \beta} \cdot
\]

Equivalently, given (9), the risk-neutral probability of going up and then down (from any starting node) equals the risk-neutral probability of going down and then up. That is,

\[p_{m,t}^*(1 - p_{m+1,t+1}^*) = (1 - p_{m,t}^*)p_{m,t+1}^*.
\]

These observations allow us to find a general pricing formula that applies for arbitrary terminal payoffs \(p_{m,T}\). (The payoffs must be positive so that the expected utility of any agent is well defined.) The proof of the result, and all subsequent results, is in the Appendix.

Result 1. If the risky asset has terminal payoffs \(p_{m,T}\) at time \(T\) (for \(m = 0, \ldots, T\)), then its initial price is

\[
p_0 = \frac{1}{\sum_{m=0}^T \frac{c_m}{p_{m,T}}}, \tag{25}
\]

where

\[
c_m = \binom{T}{m} \frac{B(\alpha + m, \beta + T - m)}{B(\alpha, \beta)}.
\]

The time 0 price of the Arrow–Debreu security that pays off if there have been \(m\) up-moves by time \(T\) is

\[
q_m^* = c_m \frac{p_0}{p_{m,T}}.
\]

The coefficients \(c_m\) have a so-called beta-binomial distribution, \(BB(T, \alpha, \beta)\). This is a binomial distribution with a random probability of success in each trial given by a \(Beta(\alpha, \beta)\) distribution.\(^8\) In the Appendix, we generalize equa-

\(^8\)In fact, \(c_m\) can be interpreted as the **cross-sectional average** (among investors) perceived
tion (24) and Result 1 to price the risky asset at any node.

As a corollary of Result 1, we can find the effect of belief heterogeneity on prices for a broad class of assets.

Result 2. If beliefs are symmetric, and the risky asset has terminal payoffs such that $\frac{1}{p_{m,T}}$ is convex in m, then the asset’s time 0 price is decreasing in the degree of belief heterogeneity.

Result 2 applies, in particular, to the “lognormal” case in which the asset’s payoffs are geometrically increasing or decreasing. We now provide a more extensive analysis of this case.

3 A diffusion limit

We now consider a natural continuous time limit. We allow the number of periods to tend to infinity and specify geometrically increasing terminal payoffs. This is the setting of Cox, Ross and Rubinstein (1979), in which the Black–Scholes formula emerges in the limiting *homogeneous* economy. We are able to solve for the asset price, risk-neutral probabilities, the volatility term structure, individuals’ trading strategies, and other quantities of interest.

Denote by $2N$ the total number of periods (corresponding to time T).\(^9\) We assume that

$$p_{m,T} = e^{2\sigma\sqrt{\frac{T}{N}}(m-N)}$$

where σ is the volatility in the Black–Scholes model. If we set $\lambda = e^{\sigma\sqrt{\frac{T}{N}}}$, then we see that $p_{m,2N} = \lambda^m \left(\frac{1}{\lambda}\right)^{2N-m}$, where $\lambda = u = d^{-1}$ and u, d are the up and down percentage movements of the stock price in the Cox–Ross–Rubinstein model. If we now set $\psi = \frac{m-N}{\sqrt{N}}$ then $p_{m,T} = e^{\sigma\sqrt{2T}\psi}$. From the perspective of each agent, m has a binomial distribution; hence we show, in the Appendix, that in the limit as $N \to \infty$, ψ has an asymptotic normal distribution from the perspective of each investor.

We use Result 1 to price the asset at each node of the tree, then take the limit as N tends to infinity. As the number of up/down steps increases with N, the probability of reaching node (m,T).

\(^9\)The choice of an even number of periods is unimportant, but it simplifies the notation in some of our proofs.
the extent of disagreement over any individual step must decline to generate sensible limiting results—that is, we allow the parameters α, β, which control the belief dispersion in the market, to tend to infinity with N. In particular we will write $\alpha = \theta N + \eta \sqrt{N}$ and $\beta = \theta N - \eta \sqrt{N}$. Small values of θ correspond to a high belief heterogeneity, while the limit $\theta \to \infty$ corresponds to the homogeneous case; we will refer to 1θ as capturing the degree of heterogeneity in the market. The level of optimism in the market is captured by η.

To be more precise, we will introduce a cross-sectional expectation operator \tilde{E}. So, for example, the cross-sectional mean of h satisfies $\tilde{E}[h] = \frac{\alpha}{\alpha + \beta} = \frac{1}{2} + \frac{\eta}{2 \theta \sqrt{N}}$ and $\tilde{\text{var}}[h] = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)} = \frac{1}{8 \theta N + 1} + O(\frac{1}{N^2})$. As $\tilde{E}[E(h)[\psi]] = \frac{\eta}{\theta}$, we can interpret η as controlling the cross-sectional mean expected terminal payoff.

In the work of Cox, Ross, and Rubinstein, the central limit theorem is used to approximate a binomial distribution with a normal random variable. A similar, though slightly more convoluted, situation arises in our setting. The argument starts by rewriting equation (24) as

$$p_{0,0}^{-1} = \tilde{E}_m \left[e^{-\sigma \sqrt{2T} \frac{m - N}{\sqrt{N}}} \right] = M_\psi \left(-\sigma \sqrt{2T} \psi \right).$$

where we write \tilde{E}_m to indicate that the expectation is taken over m which, by Result 1, can be viewed as a random variable following the beta-binomial distribution with parameters $2N, \alpha, \beta$; and $M_\psi(\cdot)$ denotes the moment generating function (MGF) of $\psi = \frac{m - N}{\sqrt{N}}$. As ψ is asymptotically normal by a result of Paul and Plackett (1978), $M_\psi(\cdot)$ converges to the MGF of a Normal distribution—a known, and simple, function. We provide full details in the Appendix.

Result 3. The price of the asset at time 0 is given by:

$$p_{0,0} = \exp \left(\frac{\eta}{\theta} \sigma \sqrt{2T} - \frac{\theta + 1}{2\theta} \sigma^2 T \right). \quad (28)$$

If the cross-sectional distribution of beliefs is symmetric around $h = 1/2$ then $\eta = 0$ and the price at time 0 is decreasing in the degree of heterogeneity, θ^{-1}. But if the cross-sectional average belief is sufficiently optimistic—that is,
if η is sufficiently positive—then the price may be increasing in the heterogeneity of beliefs.

We now study what this price implies for different agents’ expectations about returns. We parametrize an agent by the number of standard deviations, z, by which his or her belief deviates from the mean: $h = \tilde{E}[h] + z\sqrt{\text{var}[h]} \approx \frac{1}{2} + \frac{\eta}{2\theta \sqrt{N}} + \frac{z}{\sqrt{8\theta N}}$. Thus an agent with $z = 2$ is two standard deviations more optimistic than the mean agent.

Result 4. The return of the asset from time 0 to time t, from the perspective of agent $h = \tilde{E}[h] + z\sqrt{\text{var}[h]}$ has a lognormal distribution with

$$E^{(h)} \log R_{0\to t} = \frac{\theta + 1}{\theta + \frac{t}{T}} \left(\frac{z\sigma}{\sqrt{\theta t}} + \frac{\theta + 1}{2\theta} \sigma^2 \right) t$$

$$\text{var}^{(h)} \log R_{0\to t} = \left(\frac{\theta + 1}{\theta + \frac{t}{T}} \right)^2 \sigma^2 t.$$

The proof uses the fact that from the perspective of h the probability of ending up in any node follows a binomial distribution, which converges to a Normal distribution as $N \to \infty$.

The expected return on the asset follows immediately:

Result 5. The (annualized) expected return of the asset from 0 to t from the perspective of a trader with belief $h = E[h] + z\sqrt{\text{var}[h]}$ is

$$\frac{1}{t} \log E^{(h)} R_{0\to t} = \frac{\theta + 1}{\theta + \frac{t}{T}} \left[\frac{z\sigma}{\sqrt{\theta T}} + \frac{\theta + 1}{2\theta} \frac{2\theta + \frac{t}{T}}{\theta + \frac{t}{T}} \sigma^2 \right].$$

In particular, the instantaneous expected return is

$$\lim_{t \to 0} \frac{1}{t} \log E^{(h)} R_{0\to t} = \frac{\theta + 1}{\theta} \frac{z\sigma}{\sqrt{\theta T}} + \left(\frac{\theta + 1}{\theta} \right)^2 \sigma^2$$

and the expected return to maturity is

$$\frac{1}{T} \log E^{(h)} R_{0\to T} = \frac{z\sigma}{\sqrt{\theta T}} + \frac{2\theta + 1}{2\theta} \sigma^2. \quad (29)$$

\(^{10}\text{Note that } \tilde{E}[h] = \frac{\alpha}{\alpha + \beta} = \frac{1}{2} + \frac{\eta}{2\theta \sqrt{N}} \text{ and } \tilde{\text{var}}[h] = \frac{\alpha^2}{(\alpha + \beta)^2(\alpha + \beta + 1)} = \frac{1}{8\theta N + 1} + O(1/N^2). \text{ The lower order terms, } O(1/N^2), \text{ will not play any role as } N \text{ approaches infinity.}\)
Results 4 and 5 show that although different agents perceive different expected returns, all agents agree on the (true) volatility of returns.

Result 6. Recall that \bar{E} is the cross-sectional expectation operator. The cross-sectional mean (or median) expected return is 11

$$\bar{E} \left[\frac{1}{t} \log E^{(h)} R_{0 \rightarrow t} \right] = \frac{(\theta + 1)^2}{\theta (\theta + \frac{1}{T})^2} \sigma^2.$$

Disagreement is the standard deviation of expected returns $\frac{1}{t} \log E^{(h)} R_{0 \rightarrow t}$:

$$\sqrt{\text{var} \left[\frac{1}{t} \log E^{(h)} R_{0 \rightarrow t} \right]} = \frac{\theta + 1}{\theta + \frac{1}{T}} \sigma \sqrt{\theta T}.$$

Our next result characterizes option prices at all maturities $t \leq T$ and all strikes K. As always, options can be quoted in terms of the Black–Scholes formula. What is more unusual is that in our setting, implied volatilities can be expressed in a simple (but non-trivial) closed form.

Result 7. The time 0 price of an option with maturity t and strike price K is

$$C(t, K) = po_0 \Phi(d_1) - K \Phi(d_1 - \bar{\sigma} \sqrt{t}), \quad (30)$$

where

$$d_1 = \frac{\log (p_0/ K) + \frac{1}{2} \bar{\sigma}^2 t}{\bar{\sigma} \sqrt{t}} \quad \text{and} \quad \bar{\sigma} = \frac{\theta + 1}{\sqrt{\theta (\theta + \frac{1}{T})}} \sigma.$$

In particular, short-dated options (with $t/T \to 0$) have $\bar{\sigma} = \frac{\theta + 1}{\theta} \sigma$, and long-dated options (with $t = T$) have $\bar{\sigma} = \sqrt{\frac{\theta + 1}{\theta}} \sigma$.

11One could also measure the cross-sectional average expected return as

$$\frac{1}{t} \log \bar{E} E^{(h)} R_{0 \rightarrow t} = \frac{(\theta + 1)^2}{\theta (\theta + \frac{1}{T})} \sigma^2 = \bar{\sigma}^2.$$

It follows from this that $\bar{E} E^{(h)} R_{0 \rightarrow t} = \text{SVIX}^2$. However, if $t = 10$ years, as in Cam Harvey’s data set, it is somewhat implausible that investors are directly reporting $E^{(h)} R_{0 \rightarrow t}$.

29
Implied volatility is increasing in the degree of heterogeneity θ^{-1}; as the degree of heterogeneity θ^{-1} goes to 0, we recover the conventional Black–Scholes formula with an implied volatility of σ. Assuming $\theta^{-1} > 0$, the term structure of implied volatility is downward-sloping. For comparison, recall from Result 4 that all agents agree on physical volatility, which is

$$\frac{1}{\sqrt{t}} \sigma^{(h)} (\log R_{0 \rightarrow t}) = \frac{\theta + 1}{\theta + \frac{t}{T}} \sigma = \sqrt{\frac{\theta}{\theta + \frac{t}{T}}} \bar{\sigma}.$$

In a homogeneous belief economy, both implied and physical volatilities would be constant, at σ, at all maturities. The sentiment and speculation induced by heterogeneous beliefs boosts both implied and physical volatility at short horizons, and generates a variance risk premium at long horizons, as shown in Figure 10.

3.1 The perceived value of speculation

An agent’s stochastic discount factor (SDF) links his or her perceived true probabilities of events to the associated risk-neutral probabilities. As individuals disagree on true probabilities but agree on risk-neutral probabilities—equivalently, on asset prices, which are directly observable—they have different stochastic discount factors.

We now analyze the properties of individuals’ SDFs, and hence explore
agents’ attitudes to speculation.

Result 8. The variance of the SDF of investor h (parametrized by z such that $h = \hat{E}[h] + z\sqrt{\text{var}[h]}$) is finite for $\theta > 1$ and is equal to

$$\text{var}^{(h)} M_{0 \to t}^{(h)} = \frac{\theta}{\sqrt{\theta^2 - (\frac{t}{T})^2}} \exp \left\{ \frac{\left[z\sqrt{\frac{\theta t}{T}} + (\theta + 1)\sigma\sqrt{t} \right]^2}{\theta (\theta - \frac{t}{T})} \right\} - 1. \quad (31)$$

By the Hansen and Jagannathan (1991) bound, this result supplies the maximum Sharpe ratio as perceived by agent h, $\text{MSR}^{(h)}$. Writing $R_{0 \to t}^e$ for the excess return on an asset or trading strategy, we have

$$\text{MSR}^{(h)}_{0 \to t} = \max_{R_{0 \to t}^e} \frac{\mathbb{E}^{(h)} R_{0 \to t}^e}{\sigma^{(h)} (R_{0 \to t}^e)} = \frac{\sigma^{(h)} (M_{0 \to t}^{(h)})}{\mathbb{E}^{(h)} M_{0 \to t}^{(h)}} = \sigma^{(h)} \left(M_{0 \to t}^{(h)} \right),$$

where we write $\sigma^{(h)} (\cdot) = \sqrt{\text{var}^{(h)} (\cdot)}$ for the standard deviation perceived by investor h (and the final equality follows because we have normalized the interest rate to zero, so $\mathbb{E}^{(h)} M_{0 \to t}^{(h)} = \frac{1}{R_{f,0 \to t}} = 1$). As the market is complete, there is a strategy that attains the maximal Sharpe ratio (MSR) implied by the Hansen–Jagannathan bound for any agent—and of course different agents will perceive different maximal Sharpe ratios, and different associated trading strategies.

Minimizing (31) with respect to z, we find that the investor who perceives the smallest MSR (at all horizons t) has $z = z_0$, where

$$z_0\sqrt{\theta} + (\theta + 1)\sigma\sqrt{T} = 0. \quad (32)$$

Definition 1. We refer to investor $z = z_0$, where

$$z_0 = -\frac{\theta + 1}{\sqrt{\theta}} \sigma\sqrt{T},$$

as the gloomy investor. The gloomy investor perceives that the instantaneous risk premium on the risky asset is exactly zero, by Result 5.

There are, of course, more pessimistic investors ($z < z_0$), but we think
of them as being less gloomy in the sense they perceive attractive trading opportunities associated with shorting the risky asset. The MSR perceived by the gloomy investor satisfies

\[
\text{MSR}_{0 \to t}^{(z_0)} = \sqrt{\frac{\theta}{\theta^2 - \left(\frac{1}{T}\right)^2}} - 1.
\]

The dashed line in the left panel of Figure 11 plots the subjective Sharpe ratio of a static position in the risky asset (calculated from Results 4 and 5) against investor type, \(z\). The solid line in the figure plots the maximum attainable Sharpe ratio against investor type, \(z\). The line lies strictly above the dashed line, indicating that all investors must trade dynamically to achieve their perceived MSR. In this example, the MSR perceived by the gloomy investor \(z_0\), is \(\sqrt{\frac{4}{15}} - 1 \approx 18.1\%\). All investors perceive attainable Sharpe ratios at least as large as this. Loosely speaking, the gloomy investor’s maximal-Sharpe-ratio strategy is to go long if the market sells off, and short if the market rallies, thereby exploiting what he views as irrational exuberance on the upside and irrational pessimism on the downside. This is a contrarian, “short vol” strategy. We will expand on this interpretation shortly.
While Sharpe ratios are a simple and intuitive measure, our investors are not mean-variance optimizers so they do not maximize Sharpe ratios. How valuable do our investors find it to be able to trade dynamically? We define a measure, \(\phi(h) \), of the (perceived) value of being allowed to trade dynamically via the equation

\[
\log \left(1 + \phi(h) \right) W_0^{(h)} R_{f,0\to t} = \max_{R_{0\to t}^{(h)}} \mathbb{E}^{(h)} \log \left[W_0^{(h)} R_{0\to t}^{(h)} \right].
\] (33)

The left-hand side is the expected utility of agent \(h \) if he starts with wealth \((1 + \phi(h)) W_0^{(h)} \) and is forced to hold the riskless asset; the right-hand side is the attainable utility if he starts with wealth \(W_0^{(h)} \) and is allowed to trade optimally, achieving the return \(R_{0\to t}^{(h)} \).

Similarly, we can define \(\xi(h) \) via

\[
\mathbb{E}^{(h)} \log \left(1 + \xi(h) \right) W_0^{(h)} R_{0\to t} = \max_{R_{0\to t}^{(h)}} \mathbb{E}^{(h)} \log \left[W_0^{(h)} R_{0\to t}^{(h)} \right],
\] (34)

where \(R_{0\to t} \) is the return on the risky asset. This quantity measures the value of being able to trade dynamically as opposed to having to invest fully—and statically—in the risky asset.

To calculate expected utility, which appears on the right-hand sides of equations (33) and (34), we can exploit the Alvarez and Jermann (2005) bound, which states that

\[
\max_{R_{0\to t}^{(h)}} \mathbb{E}^{(h)} \log R_{0\to t}^{(h)} = L^{(h)} \left[M_{0\to t}^{(h)} \right],
\] (35)

where the right-hand side of equation (35) is the subjective entropy of the SDF, defined as \(L^{(h)} \left[M_{0\to t}^{(h)} \right] = \log \mathbb{E}^{(h)} M_{0\to t}^{(h)} - \mathbb{E}^{(h)} \log M_{0\to t}^{(h)} \). (Again, the bound is attained because the market is complete, and we have exploited the fact that \(\log R_{f,0\to t} = 0 \) to streamline the result.)

Equations (33)–(35) imply that

\[
\log \left(1 + \phi(h) \right) = L^{(h)} \left[M_{0\to t}^{(h)} \right]
\] (36)
and
\[\log (1 + \xi^{(h)}) = L^{(h)} [M_{0 \rightarrow t}^{(h)}] - \mathbb{E}^{(h)} \log R_{0 \rightarrow t}. \]

(37)

Our next result supplies the final ingredient required to calculate \(\phi^{(h)} \) and \(\xi^{(h)} \).

Result 9. The subjective entropy of the SDF (parametrized by \(z \), where \(h = E[h] + z\sqrt{\text{var}[h]} \)) is

\[L^{(h)} [M_{0 \rightarrow t}^{(h)}] = \frac{z \sqrt{\theta T} + (\theta + 1) \sigma \sqrt{t}}{2\theta (\theta + \frac{t}{T})} + \frac{1}{2} \left(\log \frac{\theta + \frac{t}{T}}{\theta} - \frac{\frac{t}{T}}{\theta} \right). \]

(38)

The gloomy investor perceives the minimal SDF entropy and hence \(\phi^{(h)} \); and the minimized entropy is

\[\min_h L^{(h)} [M_{0 \rightarrow t}^{(h)}] = \frac{1}{2} \left(\log \frac{\theta + \frac{t}{T}}{\theta} - \frac{\frac{t}{T}}{\theta} \right) > 0. \]

Equation (38) can also be written

\[L^{(h)} [M_{0 \rightarrow t}^{(h)}] = \frac{\theta + 1}{\theta + \frac{t}{T}} \left(\frac{z\sigma}{\sqrt{\theta T}} + \frac{\theta + 1}{2\theta} \sigma^2 \right) t + \frac{z^2 T}{2 (\theta + \frac{t}{T})^2} + \frac{1}{2} \left(\log \frac{\theta + \frac{t}{T}}{\theta} - \frac{\frac{t}{T}}{\theta} \right) > 0. \]

It follows that

\[\xi^{(h)} = \exp \left\{ \frac{z^2 T}{2 (\theta + \frac{t}{T})} + \frac{1}{2} \left(\log \frac{\theta + \frac{t}{T}}{\theta} - \frac{\frac{t}{T}}{\theta} \right) \right\} - 1. \]

The median investor perceives the minimal \(\xi^{(h)} \).

The right panel of Figure 11 plots \(\phi^{(h)} \) and \(\xi^{(h)} \). Each attains a minimum of \(\frac{1}{2} \left(\log \frac{5}{4} - \frac{1}{5} \right) \approx 1.2\% \). The median agent \(z = 0 \) would require an increase in wealth of 1.2% in order to hold the market statically rather than dynamically. The gloomy agent \(z = z_0 \) would require the same increase in order to hold the riskless asset rather than being allowed to trade dynamically.
3.2 The distribution of wealth

We now compute the distribution of terminal wealth $W_T^{(h)} = W_0 R_{h,T}$, where $R_{h,T}$ is the growth optimal return from the perspective of agent h and $W_0 = p_{0,0}$ as all agents are initially endowed with one unit of the risky asset. This return is equal to the inverse of the SDF from each agent’s perspective; that is, $R_{h,T} = \frac{1}{M(h)}$. We obtain the following result:

Result 10. The wealth of each agent $h = \tilde{E}[h] + z \sqrt{\text{var}[h]}$ at time T can be expressed as a function of p_T:

$$W^{(h)}(p_T) = p_{0,0} \sqrt{\frac{\theta + 1}{\theta}} \exp \left\{ \frac{1}{2} (z - z_0)^2 - \frac{1}{2(1 + \theta)} \left[\log p_T - \tilde{E}^{(h)} \log p_T \right] \sqrt{\text{var}^{(h)} \log p_T} - \sqrt{\theta} (z - z_0) \right\}.$$

(39)

Thus an investor’s terminal wealth depends on the (log) terminal price standardized by subtracting the investor’s subjective expectation and scaling by subjective standard deviation.

If we define investor h’s target price $K_0^{(h)}$ via

$$\log K_0^{(h)} = \tilde{E}^{(h)} \log p_T + \sqrt{\theta \text{var}^{(h)} \log p_T} (z - z_0),$$

(40)

then equation (39) shows that $K_0^{(h)}$ can be interpreted as investor z’s ideal outcome, the value of p_T that maximizes utility ex post. The gloomy investor, for example, would like to be proved right: the best possible outcome for investor $z = z_0$ is that $\log p_T = \tilde{E}^{(h)} \log p_T$, so that the gloomy investor’s target log price equals his expected log price. More optimistic investors, $z > z_0$, have a target price that exceeds their expectations, i.e., are best off if the risky asset modestly outperforms their expectations; more pessimistic investors are best off if the risky asset modestly underperforms their expectations. (Any investor does very poorly if the asset performs far better or worse than anticipated.)

Differentiating the expression (39) twice with respect to p_T, we find

$$W''^{(h)}(p_T) = \frac{W^{(h)}(p_T)}{p_T^2} \left\{ \left(\frac{\log \left(p_T/K_0^{(h)} \right)}{1 + \theta} \right) \frac{1}{\text{var}^{(h)} \log p_T} + \frac{1}{2} \right\}^2 - \frac{1}{4} - \frac{1}{(1 + \theta) \text{var}^{(h)} \log p_T}.$$

(41)
Figure 12: Gross return on wealth against the gross return on the risky asset, for a range of investors $z = -2, -1, \ldots, 2$. Left panel: Logarithmic scales. Right panel: Linear scales. Parameters are as in Figure 11. The expected return on the risky asset perceived by each investor is indicated with a dot.

For any investor, wealth is concave for p_T close to that investor’s target price, $K_0^{(h)}$, and convex in p_T for p_T far from $K_0^{(h)}$. There is an interesting distinction near an investor’s expected—as opposed to target—price, however. If $\log p_T = \mathbb{E}^{(h)} \log p_T$ then we have

$$
\text{sign} \left[W^{(h)''}(p_T) \right] = \text{sign} \left[\theta (z - z_0)^2 - (1 + \theta) \sqrt{\theta \text{var}^{(h)} \log p_T} (z - z_0) - 1 - \theta \right].
$$

Thus, for extreme investors with z far from z_0, wealth is convex near the expected log price; while for z close to z_0 it is concave near both the expected and the target log price.

Figure 12 shows how different investors’ outcomes depend on the risky asset outcome for $z = -2, -1, \ldots, 2$. The only difference between the two panels is that the left has logarithmic scales and the right linear scales. Dots in each panel indicate the expected gross return on the risky asset perceived by each of the investors. The median ($z = 0$) investor’s wealth is a concave function of the risky asset return in the neighbourhood of the investor’s expected outcome (indicated in the figure by a dot), while more extreme ($z = \pm 2$) investors have wealth that is convex in the risky asset return in the neighbourhood of their expected outcome.
Equation (39) can be rewritten as

\[
W^{(h)}(p_T) = p_0 \sqrt{\frac{\theta + 1}{\theta}} \exp \left\{ -\frac{1}{2} \left[\frac{\log p_T - \mathbb{E}^{(h)} \log p_T}{\sqrt{\text{var}^{(h)} \log p_T}} \right]^2 + \frac{1}{2(1 + \theta)} \left[\frac{\sqrt{\theta} \log p_T - \mathbb{E}^{(h)} \log p_T}{\sqrt{\text{var}^{(h)} \log p_T}} + z - z_0 \right]^2 \right\}.
\]

This characterization shows that you get richer if you are an extremist (large \(|z|\)) whose expectations are realized than you do if you have conventional beliefs (\(z\) close to zero) that are realized: it is cheap to purchase claims to states of the world that extremists consider likely because relatively few people are extremists. As a result, there is substantially more wealth inequality in states in which the asset has an extreme positive or negative realized return.

Informally, extreme investors are “long volatility” near the outcome that they expect, while moderate investors are “short volatility” in their corresponding region. To formalize this intuition, we introduce a general result that holds in any frictionless arbitrage-free model in which options are traded. It is in the spirit of the famous result of Breeden and Litzenberger (1978), but the logic operates at the level of payoffs rather than of prices.

Result 11. Let \(W(\cdot)\) be such that \(W(0) = 0\). Then choosing terminal wealth \(W(p_T)\) is equivalent to holding the following portfolio:

1. Long \(W'(K_0)\) units of the underlying asset (whose price is \(p_T\) at time \(T\))
2. Long bonds with face value \(W(K_0) - K_0 W'(K_0)\)
3. Long \(W''(K)\) \(dK\) put options with strike \(K\), for every \(K < K_0\)
4. Long \(W''(K)\) \(dK\) call options with strike \(K\), for every \(K > K_0\)

The constant \(K_0 > 0\) can be chosen arbitrarily.

Proof. Start from \(W(p_T) = \int_0^{p_T} W'(K) \, dK = \int_0^{\infty} W'(K) 1_{\{p_T > K\}} \, dK\) and integrate by parts.

We now use Result 11 to provide a sharper characterization inside our model.
Result 12. Investor h’s investment strategy is equivalent to the following:

- a long position in bonds with face value \(W_h(K_0) = p_0 e^{\frac{\theta + 1}{\theta} (z - z_0)^2} \);
- short positions in options with strikes at and near her target level \(K_0^{(h)} \);
- long positions in options with strikes far from \(K_0^{(h)} \).

More precisely, the investor holds \(W_h''(K) dK \) put options with strike \(K \) for all \(K < K_0^{(h)} \), and \(W_h''(K) dK \) call options with strike \(K \), for all \(K \geq K_0^{(h)} \), where \(W_h''(K) \) is as defined in (41). (Note that \(W_h''(K_0^{(h)}) < 0 \), and that \(W_h''(K) > 0 \) if \(K \) is sufficiently far from \(K_0^{(h)} \).)

The best possible payoff is \(W_h(K_0^{(h)}) \). This occurs if the asset hits its target price, \(p_T = K_0^{(h)} \), in which case all the options expire worthless. Conversely, the investor’s wealth approaches zero as \(p_T \to 0 \) or \(p_T \to \infty \).

Proof. It follows from the definition (40) of \(K_0^{(h)} \), and a direct calculation, that \(W_h'(K_0^{(h)}) = 0 \). The claims in the first paragraph then follow on setting \(K_0 = K_0^{(h)} \) in Result 11. The fact that the best possible payoff is \(W_h(K_0^{(h)}) \) follows from equation (39). The payoff on the option portfolio must therefore be nonpositive. \(\square \)

4 Conclusions

We have presented a frictionless model in which individuals have stable beliefs and risk aversion. All investors are risk-averse; short sales are allowed; all agents avoid bankruptcy; and all agents are on their first-order conditions at all times.

Even so, the model generates a rich set of predictions. Heterogeneity in beliefs gives rise to sentiment, which induces speculation and drives up realized and implied volatility, particularly in the short run. All agents understand these facts, so expected returns are higher than in an otherwise identical homogeneous economy, and securities with payoffs in extreme states of the world are far more highly valued than in otherwise similar economies with homogeneous
beliefs. Moderate investors are suppliers of liquidity: they trade in a contrarian manner—they are “short vol”—and capture a variance risk premium created by the presence of extremists.
References

Appendix A

Proof of Result 1:

Proof. Observe from the recurrence relation (23) that a pricing formula in the form (24) holds. Each constant c_m is a sum of products of terms of the form $H_{j,s}$ and $1 - H_{j,s}$ over appropriate j and s. We noted in the text that $H_{m,t}(1 - H_{m+1,t+1}) = (1 - H_{m,t})H_{m,t+1}$; that is, pricing is path-independent.

Fix m between 0 and T. By path independence, all the possible ways of getting from the initial node to node m at time T make an equal contribution to c_m. By considering the path that travels down for $T - m$ periods and then up for m periods, and then multiplying by the number of paths, $\binom{T}{m}$, we find that

$$c_m = \binom{T}{m} (1 - H_{0,0}) \cdots (1 - H_{0,T-m-1}) H_{0,T-m} H_{1,T-m+1} \cdots H_{m-1,T-1}$$

$$= \binom{T}{m} \frac{\beta}{\alpha + \beta} \cdot \frac{\beta + 1}{\alpha + \beta + 1} \cdots \frac{\beta + T - m - 1}{\alpha + \beta + T - m - 1} \cdot \frac{\alpha}{\alpha + \beta + T - m} \cdots \frac{\alpha + m - 1}{\alpha + \beta + T - 1}$$

$$= \binom{T}{m} B(\alpha + m, \beta + T - m) B(\alpha, \beta).$$

The risk-neutral probability q^*_m can be determined using the facts that $p^*_m = H_{m,t} p_{m,t}/p_{m+1,t+1}$ and $1 - p^*_m = (1 - H_{m,t}) p_{m,t}/p_{m+1,t+1}$. (We are restating (9) with subscripts to keep track of the current node.) Thus—using again path-independence in the first line—

$$q^*_m = \binom{T}{m} (1 - p^*_{0,0}) \cdots (1 - p^*_{0,T-m-1}) \cdot p^*_{0,T-m} p^*_{1,T-m+1} \cdots p^*_{m-1,T-1}$$

$$= \binom{T}{m} (1 - H_{0,0}) \frac{p_{0,0}}{p_{0,1}} \cdots (1 - H_{0,T-m-1}) \frac{p_{0,T-m-1}}{p_{0,T-m}} \cdot H_{0,T-m} \frac{p_{0,T-m}}{p_{1,T-m+1}} \cdots H_{m-1,T-1} \frac{p_{m-1,T-1}}{p_{m,T}}$$

$$= c_m \frac{p_{0,0}}{p_{m,T}}.$$

We also have the following generalization of Result 1. We omit the proof, which is essentially identical to the above.
Lemma 1. For any node m, t:

$$z_{m,t} = \sum_{j=0}^{T-t} c_{m,t,j} z_{m+j,T}$$

where j represents the number of further up-moves after time t, and

$$c_{m,t,j} = \binom{T-t}{j} \frac{B(m + \alpha + j, T - m + \beta - j)}{B(m + \alpha, T - m + \beta)}.$$

Moreover, the risk neutral probability of ending up at j,T starting from node m, t is given by

$$q^*_{m,t,j} = c_{m,t,j} \frac{p_{m,t}}{p_{m+j,T}}.$$

Proof of Result 2:

Proof. We will start by proving the following Lemma.

Lemma 2. If $Y_1 \sim BB(\alpha, \alpha, T)$ and $Y_2 \sim BB(\alpha, \alpha, T)$, for $\alpha > \alpha$ then Y_1 second order stochastically dominates Y_2.

Proof. A sufficient condition for second order stochastic dominance, for variables with the same expectation, is the single crossing dominance. That is, it is sufficient to prove that:

$$F_\alpha(s) \geq F_\pi(s) \iff s \leq c^*$$

for some c^*, where $F_\alpha(s), F_\pi(s)$ are the cdfs of Y_1, Y_2 respectively.\(^{12}\) Because of symmetry c^* will be just $T/2$. To prove the above it is sufficient to prove that $f_\alpha(k) - f_\pi(k)$ is decreasing in $[0, T/2]$, where $f(\cdot)$ denotes the probability mass function. Then $F_\alpha(s) - F_\pi(s)$ would be decreasing (as a sum of decreasing functions) and the proof of the lemma would be completed, since this would imply equation 42. Hence, we need to show that:

$$\binom{T}{k} \left[\frac{B(k + \alpha, T - k + \alpha)}{B(\alpha, \alpha)} - \frac{B(k + \pi, T - k + \pi)}{B(\pi, \pi)} \right]$$

\(^{12}\)See, for instance, Osband & Roy (2018) "Gaussian-Dirichlet Posterior Dominance in Sequential Learning".
is decreasing in \(k \) (in the interval \([0, T/2]\)). Equivalently:
\[
\frac{1}{\Gamma(T + 2\alpha)B(\alpha, \alpha)} - \frac{\Gamma(k + \alpha)\Gamma(T - k + \alpha)}{\Gamma(k + \alpha)\Gamma(T - k + \alpha)} \frac{1}{\Gamma(T + 2\alpha)B(\alpha, \alpha)}
\]
is decreasing.

But the above holds because of the following 2 facts:

First, \(h(k) = \Gamma(k + \alpha)\Gamma(T - k + \alpha) \) is decreasing because
\[
[\log(h(k))]' = \psi(k + \alpha) - \psi(T - k + \alpha) < 0
\]
where \(\psi(\cdot) \) is the digamma function, which is an increasing function since \(\Gamma(\cdot) \) is log-convex (and \(k < T - k \)).

Second, \(\frac{\Gamma(k + \alpha)\Gamma(T - k + \alpha)}{\Gamma(k + \alpha)\Gamma(T - k + \alpha)} \) is increasing. Indeed, assume \(k_1 > k_2 \). Then, we want:
\[
\frac{\Gamma(k_1 + \alpha)\Gamma(T - k_1 + \alpha)}{\Gamma(k_1 + \alpha)\Gamma(T - k_1 + \alpha)} > \frac{\Gamma(k_2 + \alpha)\Gamma(T - k_2 + \alpha)}{\Gamma(k_2 + \alpha)\Gamma(T - k_2 + \alpha)}
\]
Equivalently:
\[
\frac{\Gamma(k_1 + \alpha)\Gamma(T - k_1 + \alpha)}{\Gamma(k_2 + \alpha)\Gamma(T - k_2 + \alpha)} > \frac{\Gamma(k_1 + \alpha)\Gamma(T - k_1 + \alpha)}{\Gamma(k_2 + \alpha)\Gamma(T - k_2 + \alpha)}
\]
Now using the property that \(\Gamma(z + 1) = z\Gamma(z) \) for any \(z \) and that \(k_1, k_2 \in \mathbb{Z} \), we get:
\[
\frac{(\alpha + k_2)(\alpha + k_2 + 1) \ldots (\alpha + k_1 - 1)}{(\alpha + T - k_1)(\alpha + T - k_1 + 1) \ldots (\alpha + T - k_2 - 1)} > \frac{(\alpha + k_2)(\alpha + k_2 + 1) \ldots (\alpha + k_1 - 1)}{(\alpha + T - k_1)(\alpha + T - k_1 + 1) \ldots (\alpha + T - k_2 - 1)}
\]
which is true since for example \(\frac{(\alpha + k_2)(\alpha + k_2 + 1)}{(\alpha + T - k_1)(\alpha + T - k_1 + 1)} > \frac{(\alpha + k_2)}{(\alpha + T - k_1 + 1)} \)

Therefore this proves that \(Y_1 \) single-crossing dominates \(Y_2 \) and hence it also second order stochastically dominates \(Y_2 \) and the lemma has been proved.

Having established the above Lemma, we can now go back to proving Result 2. It is well known that if \(Y_1 \) second order stochastically dominates \(Y_2 \) then for any concave function \(u(\cdot) \):
\[
E_{Y_1}[u(m)] \geq E_{Y_2}[u(m)].
\]
Pick \(u(m) = -\frac{1}{p_{m,T}} \). Then we get: \(E_{Y_1}[\frac{1}{p_{m,T}}] \leq E_{Y_2}[\frac{1}{p_{m,T}}] \) and therefore:

\[
\frac{1}{E_{Y_1}[\frac{1}{p_{m,T}}]} \geq \frac{1}{E_{Y_2}[\frac{1}{p_{m,T}}]}
\]

That is if \(p_1, p_2 \) are the corresponding prices (where \(p_1 \) corresponds to the case with less heterogeneity, as \(\alpha > \alpha \)), we have that: \(p_1 > p_2 \) and the proof is completed.

Proof of Result 3:

Proof. As shown in equation (24),

\[
p_{0,0}^{-1} = \sum_{j=1}^{2N} c_j z_{j,T}
\]

From Result 1, \(c_j \) equals the probability that a \(BB(2N, \alpha, \beta) \) random variable takes the value \(j \). Therefore we can equivalently write

\[
p_{0,0}^{-1} = E_j [z_{j,T}] = E_j \left[e^{-\sigma \sqrt{2T} \frac{j}{\sqrt{N}}} \right]
\]

where the random variable \(j \) has a beta-binomial distribution, \(BB(2N, \alpha, \beta) \equiv BB(2N, \theta N + \eta \sqrt{N}, \theta N - \eta \sqrt{N}) \).

The Paul and Plackett theorem (see online Appendix for more details) states that \(j \), appropriately shifted and scaled, converges in distribution and in moment generating function to a Normal distribution. More specifically,

\[
\Psi_N \equiv \frac{j - N - \frac{\eta}{\sqrt{2N}} \sqrt{N}}{\sqrt{\frac{1 + \eta \theta}{2\theta} N}} \rightarrow N(0, 1)
\]

where \(E[j] = N + \frac{\eta}{\sqrt{2N}} \sqrt{N} \) and \(\text{var}[j] = \frac{1 + \eta \theta}{2\theta} N \). As

\[
\frac{j - N}{\sqrt{N}} = \Psi_N \sqrt{\frac{1 + \theta}{2\theta} + \frac{\eta}{\theta}}
\]
we have

\[p_{0,0}^{-1} = \mathbb{E}\left[e^{-\sigma \sqrt{2T} \left(\psi_N \sqrt{\frac{1+\theta}{2\theta}} + \frac{\psi}{\theta} \right)}\right] \]

\[\rightarrow \mathbb{E}\left[e^{-\sigma \sqrt{2T} \left(z \sqrt{\frac{1+\theta}{2\theta}} + \frac{\psi}{\theta} \right)}\right] \]

\[= \exp \left(-\frac{\eta}{\theta} \sigma \sqrt{2T} + \frac{\theta + 1}{2\theta} \sigma^2 T \right). \]

From the first to the second line, convergence of expectations follows from the fact that the beta-binomial converges to Normal in moment generating functions (for more details, see the Online Appendix). \(\Box \)

Proof of Result 4:

Proof. We want to find the perceived expectation and variance of returns from 0 to \(t \). In order to achieve that, we need to first compute \(p_{m,t} \), following the lines of the proof of Result 3, and then find the limiting distribution that it has from the perspective of any investor \(h \). We outline the main steps here, and present further details in the Online Appendix.

Define \(\phi = \frac{t}{T} \) and set \(m = \phi N + \psi_t \sqrt{\phi N} \), so that \(\psi_t \) is a convenient parametrization of \(m \). Given that \(z_{m+j,2N} = \lambda^{-2(m+j-N)} \), we have, similarly to equation (43)

\[p_{m,t}^{-1} = \mathbb{E}_j[e^{-\sigma \sqrt{2T} \frac{m+j-N}{\sqrt{N}}}]. \] (44)

where we view \(j \) as a random variable with beta-binomial distribution

\[BB \left(2(1-\phi)N, (\phi + \theta)N + (\psi_t \sqrt{\phi + \eta}) \sqrt{N}, (\phi + \theta)N - (\psi_t \sqrt{\phi + \eta}) \sqrt{N} \right). \]

By the Paul and Plackett theorem, the standardized version of \(j \) converges in distribution and in moment generating function to a standard Normal random variable. Therefore we can find the (limiting) expectation on the right hand side of (44), by just considering the expectation under a Normal distribution, with the corresponding mean and variance (for detailed calculations see the proof in the Online Appendix.) As \(N \) tends to infinity, we will write \(p_{\psi_t} \equiv p_{m,t} \) (where, \(\psi_t = \frac{m-\phi N}{\sqrt{\phi N}} \)), to emphasize that we are considering the continuous time limit, in which \(\psi_t \) becomes the relevant state variable. We
get:
\[p_{\psi_t} = b_t \cdot e^{\frac{\theta + 1}{\theta + \theta} \sqrt{2\phi T} \psi_t} \]
(45)

where \(b_t = e^{-\frac{1-\phi}{2} \frac{\phi + 1}{\phi + \theta} \sigma^2 T + \frac{1-\phi}{2} \eta \sigma \sqrt{2T}} \).

We then view \(p_{\psi_t} \) as a function of \(\psi_t \), for which we care about each limiting distribution. We know that \(m(= \phi N + \psi_t \sqrt{\phi N}) \) has a binomial distribution with mean \(2\phi Nh \) and variance \(2\phi Nh(1 - h) \) from the perspective of agent \(h \). Indeed by the Central Limit Theorem (or by De Moivre’s theorem), a standardized version of \(m \) converges to a standard Normal distribution:
\[\frac{m - 2\phi Nh}{\sqrt{2\phi Nh(1 - h)}} \to N(0, 1). \]
(46)

Equivalently, we have:
\[\frac{\psi_t - (2h - 1)\sqrt{\phi N}}{\sqrt{2h(1 - h)}} \to N(0, 1), \]
(47)

where \((2h - 1)\sqrt{N} = \frac{\eta}{\theta} + \frac{\sigma}{\sqrt{2}} \) and \(h(1 - h) = \frac{1}{4} + O(\frac{1}{N}) \). Therefore, the expectation and variance of \(\log(p_t) \) are
\[
\mathbb{E}^{(h)} \log p_t = \frac{t(\theta + 1) \sigma \sqrt{T} - \frac{1}{2} (T - t)(\theta + 1) \sigma^2 T}{\theta T + t} + \frac{\eta \sigma \sqrt{2T}}{\theta} \]
\begin{align*}
&\text{var}^{(h)} \log p_t = \sigma^2 t \left(\frac{\theta + 1}{\theta + \frac{t}{T}} \right)^2.
\end{align*}
\]

Proof of Result 5:

Proof. We are interested in finding
\[
\mathbb{E}^{(h)} [R_{0 \to t}] = \mathbb{E}^{(h)} \left[\frac{p_{\psi_t}}{p_{0,0}} \right],
\]
where as in the proof of Result 4 we use the notation \(p_{\psi_t} := p_{m,t} \), which we have already computed in equation (45)
\[
p_{0,0}^{-1} \cdot b_t \cdot \mathbb{E}^{(h)} \left[e^{\frac{\theta + 1}{\theta + \theta} \sqrt{2\phi T} \psi_t} \right];
\]
46
and we have established, in equation (47), that \(\psi_t \) converges in distribution and in moment generating function to a Normal (as \(m \) does too). Hence asymptotically, the above is the expectation of a log-normal variable. In particular, after some algebra,

\[
E(h) \left[R_{0\rightarrow t} \right] = e^{\phi(\theta+1) \left[\frac{z}{\sqrt{\phi}} \sigma \sqrt{T} + \frac{\theta+1}{2} \left(\frac{1}{\theta+\phi} \right) \sigma^2 T \right]}. \tag{48}
\]

Setting \(\phi = \frac{t}{\phi} \), the proof is complete. Finally, note that by substituting \(\phi = 1 \) and \(h = \frac{1}{2} + \frac{\eta}{2\theta \sqrt{N}} + \frac{z}{\sqrt{8\theta N}} \) we obtain equation (29).

Proof of Result 7:

Proof. Note that \(2\phi N \) is the number of periods corresponding to \(t = \phi T \). Writing \(q_{m,t} \) for the risk neutral probability of going from node \((0,0) \) to node \((m,t) \), we have (as in Lemma 1) \(q_{m,t} = p_{0,0} c_{m,t} \), where

\[
c_{m,t} = \binom{2\phi N}{m} \frac{B(\alpha + m, \beta + 2\phi N - m)}{B(\alpha, \beta)}.
\]

As the risk-free rate is 0, it follows that the time zero price of a call option with strike \(K \), maturing at time \(t \), is

\[
C(0, t; K) = \sum_{m=0}^{2\phi N} q_{m,t} (p_{m,t} - K)^+
\]

\[
= p_{0,0} \sum_{m=0}^{2\phi N} c_{m,t} \left(1 - \frac{K}{p_{m,t}} \right)^+
\]

\[
= p_{0,0} E \left[\left(1 - \frac{K}{b_t e^{-\frac{\theta+1}{2} \sigma \sqrt{2\theta T} \psi_t}} \right)^+ \right]
\]

where the expectation is taken with respect to the random variable \(m \) which follows a \(BB(2N\phi, \alpha, \beta) \) distribution and in the last line we have substituted \(p_{m,t} \) with its (continuous time limit) value computed at equation (45) (remember, \(\psi_t = \frac{m-\phi N}{\sqrt{2N}} \)). By the result of Paul and Plackett, the asymptotic
distribution of \(m \) satisfies
\[
\frac{m - \phi N - \frac{\eta}{\theta} \sqrt{N}}{\sqrt{\frac{\phi + \theta}{2\theta} \phi N}} \to \Psi \sim N(0, 1)
\]
as \(N \to \infty \). Equivalently:
\[
\frac{1}{\sqrt{\frac{\phi + \theta}{2\theta}}} \left(\psi_t - \frac{\eta}{\theta} \sqrt{\phi} \right) \to \Psi \sim N(0, 1)
\]
Thus
\[
C(0, t; K) = p_{0,0} \cdot \mathbb{E} \left[1 - \frac{K}{b_t} e^{-\frac{\theta + 1}{\theta + \phi} \sigma \sqrt{2T} \Psi} \right] + \Phi \left(\frac{-\log(X) + \tilde{\sigma}^2 t}{\tilde{\sigma} \sqrt{t}} \right)
\]
(Note that convergence in distribution implies convergence of the expectation by the Helly-Bray theorem, since the function of \(\Psi \) inside the expectation is bounded and continuous.) This expectation is now standard, and we have
\[
C(0, t; K) = p_{0,0} \left[\Phi \left(\frac{-\log(X)}{\tilde{\sigma} \sqrt{t}} \right) - e^{\frac{\tilde{\sigma}^2 t}{2} \frac{\theta + 1}{\theta + \phi} \sigma \sqrt{2T} \Phi} \left(\frac{-\log(X) + \tilde{\sigma}^2 t}{\tilde{\sigma} \sqrt{t}} \right) \right]
\]
where \(X = \frac{K}{b_t} e^{-\frac{\theta + 1}{\theta + \phi} \sigma \sqrt{2T}} \Phi \left(\frac{-\log(X) + \tilde{\sigma}^2 t}{\tilde{\sigma} \sqrt{t}} \right) \) and
\[
\tilde{\sigma}^2 t = \frac{(\theta + 1)^2}{\theta(\theta + \phi)} \sigma^2 t = \text{var} \left[\log \left(\frac{K}{b_t} e^{-\frac{\theta + 1}{\theta + \phi} \sigma \sqrt{2T} \Phi} \right) \right]
\]
Finally, noting that \(p_{0,0} = e^{\frac{\tilde{\sigma}^2 t}{2} \frac{\theta + 1}{\theta + \phi} \sigma \sqrt{2T}} \Phi \left(\frac{-\log(X) + \tilde{\sigma}^2 t}{\tilde{\sigma} \sqrt{t}} \right) \), we arrive at the Black–Scholes formula
\[
C(0, t; K) = p_{0,0} \Phi(d_1) - K \Phi(d_1 - \tilde{\sigma} \sqrt{t})
\]
where
\[
d_1 = \frac{\log \left(\frac{p_{0,0}}{K} \right) + \frac{1}{2} \tilde{\sigma}^2 t}{\tilde{\sigma} \sqrt{t}}
\]
and volatility is determined endogenously via
\[\tilde{\sigma} = \frac{\theta + 1}{\sqrt{\theta(\theta + \frac{t}{T})}} \sigma. \]

Proof of Result 8:

Proof. An agent’s SDF links his or her perceived true probabilities to the objectively observed risk-neutral probabilities. Thus

\[M_t^h(m) = \frac{p_{0,0}}{p_{m,t}} \frac{c_{m,t}}{\pi_t^h(m)} \]

where \(\pi_t^h(m) \) is the probability that we will end up at node \((m, t)\), as perceived by agent \(h \). As \(c_{m,t} \) has a beta-binomial distribution and \(\pi_t^h(m) \) has a binomial distribution, they are each asymptotically Normal\(^{13}\) and we have the following characterization for the SDF \(M_T \):

\[M_t^h(m) \sim \sqrt{\frac{4h(1-h)\theta}{\phi + \theta}} p_{0,0} b_t^{-1} e^{-\frac{\phi + \theta}{\phi + \theta} \sqrt{2\theta T} \psi_t - \frac{\theta (m-\phi N-\frac{\theta}{2}\sqrt{N})^2}{(\phi + \theta)\theta N} + \frac{(m-2\phi Nh)^2}{4h(1-h)\theta N}} \] (49)

where \(\psi_t = \frac{m-\phi N}{\sqrt{2\theta N}} \) is asymptotically Normal from the perspective of any agent \(h \) by the De Moivre–Laplace theorem.\(^{14}\) Parametrizing further \(h \) with \(z \) such that \(h = \frac{1}{2} + \frac{\eta}{2\theta \sqrt{N}} + \frac{z}{\sqrt{8\theta N}} \), the right hand side can be rewritten

\[M_t^h(\psi_t) \sim \sqrt{\frac{\theta}{\phi + \theta}} p_{0,0} b_t^{-1} e^{-\frac{\phi + \theta}{\phi + \theta} \sqrt{2\theta T} \psi_t - \frac{\theta (m-\phi N-\frac{\theta}{2}\sqrt{N})^2}{(\phi + \theta)\theta N} + \frac{(m-2\phi Nh)^2}{4h(1-h)\theta N}}. \] (50)

Thus \(M_t^h(\psi_t) \) is asymptotically equivalent to a function of the random variable \(\psi_t \), and hence of the variable \(\Psi^h = \sqrt{2}(\psi_t - \sqrt{2}(\frac{\theta}{2} + \frac{z}{\sqrt{8\theta}})) \) which converges in distribution to a standard normal (as \(\Psi^h = \frac{m-2\phi Nh}{\sqrt{2\theta Nh(1-h)}} \)). By

\(^{13}\)Note that the price at 0, is given by Result 3. Moreover the asymptotic distributions of \(c_{m} \) and \(\pi_t^h(m) \) are given in the proof of Result 4.

\(^{14}\)The notation \(A \sim B \) is used to denote \(A \) being asymptotically equivalent to \(B \), or in other words: \(\lim_{N \to \infty} \frac{A}{B} = 1 \).
the continuous mapping theorem, since this function is continuous, it converges in distribution to $f(Z)$ (where $f(\cdot)$ is the corresponding function).

In order to be able to take expectations of M_t^2 (for the rest of the proof, we suppress the dependence on h in our notation) we need one additional condition. In particular we will prove that the above sequence of random variables is uniformly integrable.

For that, rewrite equation (50) as $(M^2)^{(N)} := D e^{A(\psi^{(N)}_t)^2 + B \psi^{(N)}_t + C}$ to denote a sequence of random variables whose limiting expectation we want to find (we write $\psi^{(N)}_t$, $(M_t^2)^{(N)}$ instead of ψ_t, M_t^2, to emphasize the dependence on N).

We want to prove that there exists an $\epsilon > 0$ such that
\[
\sup_N \mathbb{E}[(e^{A(\psi^{(N)}_t)^2 + B \psi^{(N)}_t + C})^{1+\epsilon}] < \infty.
\]

As L_p convergence for $p > 1$ implies uniform integrability, this will give us the result we want.

By Hoeffding’s inequality,\(^{15}\)
\[
P\left(\frac{m - \phi N}{\phi N} \geq k\right) \leq 2e^{-k^2} \tag{51}
\]
for any $k > 0$. As the coefficient, A, on ψ_t^2 in M_t^2 satisfies $A = \frac{2\phi}{\phi + \theta} < 1$, we can set $\epsilon > 0$ such that $A = 1 - \epsilon$. Then inequality (51) implies that
\[
P\left(e^{\frac{(m - \phi N)^2}{\phi N}} \geq x\right) \leq 2\frac{1}{x^{1+\epsilon^2}} \tag{52}
\]
for $x > 0, \gamma > 0$.

\(^{15}\)Hoeffding’s inequality states that if Z_1, Z_2, \ldots, Z_n are i.i.d. random variables, with $Z_i \in [a, b]$, and $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} Z_i$, then $\mathbb{E}||X - \mathbb{E}[X]|| \geq k \leq 2e^{-\frac{2k^2}{(b-a)^2}}$. In our case, m_t is the sum of $2\phi N$ i.i.d. Bernoulli variables, so the theorem can be applied.
Using this inequality together with the fact that $e^{1+\varepsilon^2 \frac{(m_2-\phi N)^2}{\phi N}} \geq 1$ we have
\[
\mathbb{E}[e^{1+\varepsilon^2 \psi_t^2}] = \mathbb{E}[e^{1+\varepsilon^2 \frac{(m_2-\phi N)^2}{\phi N}}] \leq \int_0^\infty \mathbb{P} \left(e^{1+\varepsilon^2 \frac{(m_2-\phi N)^2}{\phi N}} \geq x \right) dx \\
\leq 1 + \int_1^\infty \mathbb{P} \left(e^{1+\varepsilon^2 \frac{(m_2-\phi N)^2}{\phi N}} \geq x \right) dx \\
\leq 1 + 2 \int_1^\infty \frac{1}{x^{1+\varepsilon^2}} dx \\
= 1 + \frac{2}{\varepsilon^2} < \infty.
\]

Finally note that $(1+\varepsilon)A = 1 - \varepsilon^2 < \frac{1}{1+\varepsilon^2}$. Hence there exists a constant, K, such that $(1+\varepsilon)(A\psi_t^2 + B\psi_t + C) < \frac{1}{1+\varepsilon^2} \psi_t^2 + K$, and therefore $\mathbb{E}[e^{A\psi_t^2 N+B\psi_t^2 +C}] < \mathbb{E}[e^{1+\varepsilon^2 \psi_t^2 +K}] < \infty$. Thus our sequence is uniformly integrable, and hence there is convergence of expectations.\(^{\text{(16)}}\)

We can now work towards finding the variance of M_t from the perspective of agent h. The results above imply that this problem reduces, in the limit as $N \to \infty$, to finding the expectation of a chi-squared random variable. By computing this expectation we find that
\[
\mathbb{E}[M_t^2] = \frac{\theta}{\sqrt{\theta^2 - \phi^2}} \exp \left\{ \left[z\sqrt{\theta\phi} + (\theta + 1) \sigma \sqrt{\phi T} \right]^2 \right\}. \quad \square
\]

Proof of Result 9:

Proof. We follow the logic of the proof of Result 8. Note, from equation (50), that $\log M_t$ is a quadratic function of ψ_t. Let us assume this quadratic has the form $F\psi_t^2 + G\psi_t + H$ for some constants F, G, H. Then this sequence of random variables converges in distribution to the corresponding quadratic of a Normal variable. By the Hoeffding inequality (51), $\mathbb{P}(2F\psi_t^2 \geq x) = \mathbb{P}(|\psi_t| \geq \sqrt{x/2F}) \leq 2e^{-x/2F}$. Thus $\mathbb{E}[2F\psi_t^2] \leq 2 \int_0^\infty e^{-x/2F} dx = 4F < \infty$, and hence $\mathbb{E}[F\psi_t^2 + G\psi_t + H] < \mathbb{E}[2F\psi_t^2 + c] < \infty$ for some constant c, which implies

\(^{\text{(16)}}\)From equation (52) one could deduce that our sequence of random variables is dominated by the tail of a Pareto distribution, which has a finite expectation, and then use the dominated convergence theorem to reach the conclusion that there is convergence of expectations.
that the sequence is uniformly integrable. We can thus take the expectation under the corresponding normal distribution. In particular, \(\frac{m-2\phi Nh}{2\phi Nh(1-h)} \) converges to a standard Normal. We can then write \(\psi_t \) in terms of this random variable (as in the proof of the previous result) to find

\[
E \log(M_t) = \left[\frac{z\sqrt{\theta \phi} + (\theta + 1) \sigma \sqrt{t}}{2\theta (\theta + \phi)} \right]^2 + \frac{1}{2} \left(\log \frac{\theta + \phi}{\theta} - \frac{\phi}{\theta + \phi} \right).
\]

Proof of Result 10:

Proof. Note that \(W_T^{(h)} = W_0 \cdot R_{h,T} \), where \(R_{h,T} \) is the growth optimal return, and \(W_0 \) is the initial endowment which is \(p_{0,0} \). As \(N \to \infty \),

\[
W_T^{(h)} = (M_T^{(h)})^{-1} p_{0,0} \sim p_T \sqrt{\theta + 1} \exp\left(-\frac{\theta (m-N) - 2z}{(1+\eta)N} \right) \cdot \exp\left(\frac{(m-2Nh)^2}{4h(1-h)}N \right).
\]

Substituting \(\psi = \frac{m-N}{\sqrt{N}} \) and \(\sqrt{N}(2h-1) = \frac{\eta}{\theta} + \frac{z}{\sqrt{2\theta}} \), we have

\[
W_T = \sqrt{\frac{\theta + 1}{\theta}} \exp\left(-\frac{\psi^2}{\theta + 1} + \psi(\frac{2\eta}{\theta(\theta + 1)} + \frac{2z}{\sqrt{2\theta}} + \sigma \sqrt{2T}) - \frac{z^2}{2\theta} - \frac{2z\eta}{\sqrt{2\theta \phi}} - \frac{\eta^2}{\theta^2(\theta + 1)} \right).
\]

Finally, substituting \(\log(p_T) = \sigma \sqrt{2T} \psi \), we obtain Result 10. \qed

B Static and dynamic trade in the risky bond example

This section contains some further calculations in the risky bond example of Section 2.2. Specifically, we ask what happens if agents are not allowed to trade dynamically. Agent \(h \) perceives a probability \(1 - (1-h)^T \) that the bond pays 1, and \((1-h)^T \) that the bond pays \(\varepsilon \), so solves

\[
\max_{x_h} (1 - (1-h)^T) \log(w_h - x_h p + x_h) + (1-h)^T \log(w_h - x_h p + x_h \varepsilon).
\]
The first-order condition (after setting \(w_h = p \) to account for the fact that all agents are initially endowed with a unit of the risky asset) is

\[
x_h = p \left(\frac{1 - (1 - h)^T}{p - \varepsilon} - \frac{(1 - h)^T}{1 - p} \right).
\]

If \(T \) is reasonably large, most agents will have \((1 - h)^T \approx 0\), and so will choose \(x_h \approx \frac{p}{p - \varepsilon} \); their wealth in the bad state of the world is then approximately zero. Thus, if forced to trade statically most agents will lever up (almost) as much as possible without risking bankruptcy.

For the market to clear, we require \(\int_0^1 x_h \, dh = 1 \), which implies that \(p = \frac{(1+T)\varepsilon}{1+T\varepsilon} \). This is the same as the time-0 price in the case with dynamic trade. It follows that agent \(h \)'s demand for the asset is

\[
x_h = 1 + (1 - (1 + T)(1 - h)^T) \frac{1 + T\varepsilon}{T(1 - \varepsilon)}.
\]

If an individual investor is forced to trade statically (while everyone else is trading dynamically, so that the price at time \(t \) is observed) then the investor’s leverage at time \(t \), defined as debt-to-wealth ratio, is

\[
\text{leverage}_t = \frac{p_0(x_h - 1)}{x_hp_t + p_0 - p_0x_{h,0}} = \frac{1 - (1 + T)(1 - h)^T}{T - t(1 - (1 + T)(1 - h)^T)} \frac{1 + t - t\varepsilon + T\varepsilon}{1 - \varepsilon}.
\]

For comparison, in the dynamic case investor \(h \)'s time-\(t \) demand will be

\[
x_{h,t} = (1 - h)^t + \frac{(1 - h)^t}{1 - \varepsilon} [h(2 + t)(1 + t(1 - \varepsilon) + T\varepsilon) - 1 - T\varepsilon]
\]

and the investor’s leverage at time \(t \), defined as in equation (13), is

\[
\text{leverage}_t = \frac{x_{h,t}p_t - w_{h,t}}{w_{h,t}} = \frac{(h(2 + t) - 1)(1 + t(1 - \varepsilon) + T\varepsilon)}{(1 + t)(1 - \varepsilon)}.
\]

This strategy delivers the dynamic investor higher expected utility. An
investor who follows the static strategy has wealth
\[
p_0 \left(1 - (1 - h)^T \right) \frac{1 - (1 - p_0^*) \cdots (1 - p_{T-1}^*)}{1 - (1 - p_0^*) \cdots (1 - p_{T-1}^*)}
\]
if the bond does not default—which, in the investor’s opinion, occurs with probability \(1 - (1 - h)^T\). If the bond does default, the investor ends up with
\[
\frac{p_0(1 - h)^T}{(1 - p_0^*) \cdots (1 - p_{T-1}^*)} = \frac{p_0(1 - h)^T(1 - \epsilon)}{1 - p_0}.
\]
This occurs with probability \((1 - h)^T\). The static investor therefore has expected utility
\[
EU_{static} = \left[1 - (1 - h)^T\right] \log \left(\frac{p_0 \left(1 - (1 - h)^T \right)}{1 - (1 - p_0^*) \cdots (1 - p_{T-1}^*)} \right) + (1 - h)^T \log \left(\frac{p_0(1 - h)^T(1 - \epsilon)}{1 - p_0} \right).
\]

Conversely, a dynamic investor ends up with wealth
\[
\frac{p_0(1 - h)^T}{(1 - p_0^*) \cdots (1 - p_{T-1}^*)} \frac{1}{p_t^*}
\]
if the first up move occurs after \(t\) successive down-moves, where \(t \in \{0, \ldots, T - 1\}\).
This outcome has probability \((1 - h)^t h\). If the bond defaults, his terminal wealth is
\[
\frac{p_0(1 - h)^T}{(1 - p_0^*) \cdots (1 - p_{T-1}^*)} = \frac{p_0(1 - h)^T(1 - \epsilon)}{1 - p_0}.
\]
Thus his expected utility is
\[
EU_{dynamic} = \sum_{t=0}^{T-1} (1 - h)^t h \log \left(\frac{p_0(1 - h)^t h}{(1 - p_0^*) \cdots (1 - p_{T-1}^*)} \right) + (1 - h)^T \log \left(\frac{p_0(1 - h)^T(1 - \epsilon)}{1 - p_0} \right).
\]

54
Figure 13: The attractiveness of dynamic strategies relative to static strategies, for investors of differing levels of optimism h.

It follows that

$$EU_{dynamic} - EU_{static} = \sum_{t=0}^{T-1} (1 - h)^t h \log \left(\frac{h(1 - h)^t \left[1 - (1 - p_0^*) \cdots (1 - p_{T-1}^*) \right]}{\left[1 - (1 - h)^T \right] (1 - p_0^*) \cdots (1 - p_{T-1}^*) p_t^*} \right)$$

$$= \sum_{t=0}^{T-1} (1 - h)^t h \log \left(\frac{(1 - h)^t h(1 + t)(2 + t)T}{(1 - (1 - h)^T)(1 + T)} \right),$$

which is independent of ε.

To convert this logic into dollar terms, suppose an investor is indifferent between wealth of $\omega_h w_h$ and being constrained to invest statically, and wealth of w_h and being allowed to invest dynamically. Then ω_h must satisfy $\mathbb{E}_{static} \log (\omega_h w_h R) = \mathbb{E}_{dynamic} \log (w_h R)$ which implies that $\omega_h - 1 = \exp \{ EU_{dynamic} - EU_{static} \} - 1$. Figure 13 plots this quantity for $\varepsilon = 0.3$ and $T = 50$, as in the example in the main text.