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Abstract

This paper proposes a new equilibrium concept � organizational equilibrium � for models with

state variables that have a time inconsistency problem. The key elements of this equilibrium

concept are: (1) agents are allowed to ignore the history and restart the equilibrium; (2) agents

can wait for future agents to start the equilibrium. We apply this equilibrium concept to a quasi-

geometric discounting growth model and to a problem of optimal dynamic �scal policy. We �nd

that the allocation gradually transits from that implied by its Markov perfect equilibrium towards

that implied by the solution under commitment, with welfare signi�cantly improved relative to

that in the Markov equilibrium. The feature that the time inconsistency problem is resolved slowly

over time rationalizes the notion that goodwill is very valuable but has to be built gradually.
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1 Introduction

In this paper we pose an equilibrium concept especially suited for the study of policy settings in

macroeconomics where the time inconsistency problem is pervasive and the environment has state

variables. Our concept builds upon renegotiation proofness, but adapts it to the challenge of dealing

with a dynamic, rather than repeated game. We obtain allocations that are Pareto superior to those

of Markov equilibria, but are not supported by trigger-strategy reversion to dominated outcomes.

We argue that equilibria should satisfy three conditions in environments with a sequence of decision

makers that see themselves in a similar spot �a form of stationarity even if there are state variables.

The �rst such condition is that any outcome should have the property that no decision maker

would rather become an earlier member of the decision making sequence, something that could be

achieved by a form of restarting the plans that takes the environment to achieve an allocation.

This no restarting condition limits the use of trigger strategies as a future punishment. A second

condition prevents free riding at the start of the process: no agent can do better by sitting out the

system (playing Markov) and waiting for future agents to start a process. This condition is, to our

knowledge, new and it prevents jumping to desirable allocations fast. We interpret the implications

of this condition as the need for institutions to slowly earn good will, like earning a reputation for

good behavior without need of unobserved types or triggers. Finally, the third condition imposes

optimality within the class of allocations that satisfy the previous two requirements.

Our notion of equilibrium can be seen as a direct extension of that in Prescott and Rios-Rull (2005)

and of the notion of Reconsideration Proofness in Kocherlakota (1996) to economies with state

variables.1 The extension requires two distinct elements. One is to restrict our attention to a set

of environments that display a weak separability property where preferences can be decomposed

between a set of actions that we label rescaled actions and the state of the economy. We also

1Kocherlakota de�nes a �state� in his work, but this state only depends on the expectation about current and future
actions and is thus purely forward looking. In our case, we de�ne a state as arising from past actions (including possibly
past actions of nature, if randomness is present). This is in line with the literature on optimal control and dynamic
programming. The role of expectations about current and future actions arises in hybrid environments where some
elements of competitive-equilibrium behavior coexist with strategic interactions; we tackle this in Section 5.
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provide a strategy to approximate general economies by means of weakly-separable economies to

provide a characterization organizational equilibrium via solving for the equilibrium of approximated

economies (Kubler (2007)). The other element is the inclusion of an additional equilibrium condition

that precludes the delay of the implementation of the equilibrium strategy to future agents. This

condition has no bite in an environment without state variables, when the payo� of each player is

only a�ected by her actions and those of future players. In contrast, we argue that it is a desirable

re�nement in the case of economies with state variables. It imposes that the coordination that gives

rise to the initial equilibrium is not as generous as to tempt the �rst players to sit out of it, play

Markov, and count on the same coordinating mechanism to arise in the future.

We solve for organizational equilibrium in two benchmark environments. First, we analyze the well

studied growth model with quasi-geometric discounting which represents one of the simplest time

inconsistency problems (just due to the nature of preferences). Here we show how the economy starts

with a very low saving rate and converges to a much higher saving rate, that would have been chosen

by any agent if it were to be the constant saving rate for the whole feature. Less simply, but perhaps

more interestingly, we solve for the choice of a government that is �nanced via capital income taxes

(other tax instruments can be characterized in essentially similar ways), an environment subject to

time inconsistency previously studied by Klein, Krusell, and Ríos-Rull (2008), among others. In

both environments the equilibrium allocation is much better (Pareto dominates) that of the Markov

perfect equilibrium. The economy slowly moves towards a high/saving or low taxation behavior, that

is, the model slowly overcomes the time consistency problem. We interpret this to be a notion of

slowly building reputation, without any need for unobservable types. Here what we call reputation

is the result of having displayed in the past a form of patience beyond that implied by the behavior

in the Markov perfect equilibrium. We think that this type of behavior helps us understand the

value that modern institutions such as governments or central banks pose in showing that they

have concerns over the long run, and hence do not take actions such as large capital levies or fast

in�ationary policies that may have been predicted by models where the present is taken to be the

initial period.
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Our paper is related to various literatures. It studies macroeconomic environments with time-

inconsistency features typically characterized in terms of their Markov equilibria (e.g Cohen and

Michel (1988), Currie and Levine (1993), Krusell and Ríos-Rull (1996), Klein and Ríos-Rull (2003),

Krusell, Kuruscu, and Smith (2010), Klein, Quadrini, and Ríos-Rull (2005), Bassetto and Sargent

(2006), Klein, Krusell, and Ríos-Rull (2008), Bassetto (2008)). It also addresses the type of envi-

ronments previously studied by posing trigger strategies (Chari and Kehoe (1990), Phelan and Stac-

chetti (2001)). It is clearly related to the class of models that study versions of the quasi-geometric

discounting growth model (Strotz (1956), Phelps and Pollak (1968), Laibson (1997), Krusell and

Smith (2003), Chatterjee and Eyigungor (2016), Bernheim, Ray, and Yeltekin (2015) among others).

Finally, we build on the literature on re�nements of subgame perfect equilibrium, particularly in

relation to renegotiation proofness (Farrell and Maskin (1989), Kocherlakota (1996), Asheim (1997),

Ales and Sleet (2014)). Two other papers are of special relevance. Like us, Nozawa (2014) also

tries to extend the notion of a reconsideration-proof equilibrium to economies with state variables.

However, his extension imposes too strict requirements and leads to nonexistence of an equilibrium

in many applications. By relying on weak separability, our approach allows us to de�ne �state-free�

notions of the economic environment and to establish existence. Brendon and Ellison (2018) analyze

optimal policy in the Ramsey tradition, but they restrict the planner to choose policies that satisfy

a recursive Pareto criterion: this criterion disallows sequences that bene�t policymakers in the early

periods but are dominated for all policymakers from a given time onward. Like them, we also reject

policies that allow early decision makers to dictate future paths that lead to early bene�ts purely at

the expense of future decision makers. Rather than developing an optimality criterion, we propose

a solution concept aimed at positive analysis, where implicit cooperation across policymakers at

di�erent times builds over time. Because of this di�erent motivation, our �no-restarting condition�

is imposed on a period-by-period basis. The presence of state variables causes problems in their

environment as well, and our approach based on weak separability could be fruitfully applied there

too.2

2Our approach encompasses the more speci�c cases introduced by Brendon and Ellison in their latest version to
account for state variables.
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We start by posing the issues with time inconsistent preferences in the context of the well understood

quasi-geometric discounting growth model with log utility and full depreciation in Section 2. We

de�ne organizational equilibrium for separable economies in Section 3, where we also describe the

connections to game theory. Section 4 describes a class of examples of such economies and we then

de�ne a strategy to study non separable economies via this class of approximation using separable

economies. We study the implications of organizational equilibrium for public policy in environments

with time-consistency problems in Section 5, adapting our concept to hybrid settings of competitive

and strategic behavior. Section 6 concludes.

2 Organizational Equilibrium in a Quasi-Geometric Discounting Growth Model

To provide intuition, we explore the concept of organizational equilibrium in a single-agent decision

problem with time-inconsistent preferences, the canonical growth model with quasi-geometric dis-

counting, log utility and full depreciation. This allows us to abstract from considerations relating

to the competitive equilibrium emerging from the interaction of many agents, which we analyze in

Section 5.

Assume that the production function is

f(kt) = kαt ,

and the period utility function is

u(ct) = log ct.

The law of motion for the state is

kt+1 = f(kt)− ct.

The lifetime utility for the agent at period t is given by

Ψt = u(ct) + δ

∞∑
τ=1

βτu (ct+τ ) .
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It is easy to see that the agent will disagree with herself in the next period if δ 6= 1. For reasons that

will be apparent later, we describe the behavior of the household in terms of its saving rates (note

that the feasibility of the choice is independent of the level of capital).

2.1 Traditional Notions of Equilibrium in the Quasi-geometric Discounting Economy

Before we discuss the notion of organizational equilibrium, we �rst characterize the Ramsey outcome

(Section 2.1.1), the di�erentiable Markov equilibrium (the Markov equilibrium that is the limit of

�nite economies) (Section 2.1.2), and the best subgame-perfect equilibrium which can be supported

by the threat of reversion to a Markov equilibrium (Section 2.1.3).

2.1.1 Ramsey Outcome in the Quasi-geometric Discounting Economy

Suppose that the agent can commit to a particular sequence of saving rates {sτ}∞τ=0 at time 0, then

the problem of the agent at time 0 is

max
{st}∞t=0

u(c0) + δ
∞∑
t=1

βt u (ct) ,

subject to

kt+1 = stk
α
t ,

ct = (1− st)kαt ,

k0 given.

This problem can be broken into two components: choosing s0 and choosing {st}∞1 . Given s0, the

maximization with respect to future saving rates is a standard recursive problem whose solution has

a closed form that is given by the following value function:

Ω(k) =
1

1− β

[
log(1− αβ) +

αβ

1− αβ
log(αβ)

]
+

α

1− αβ
log k.
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This value function is associated with an optimal saving rate which is constant at st = sR = αβ.

The Ramsey problem reduces to

max
s0

u[(1− s0)kα0 ] + δ β Ω(s0k
α
0 ).

The optimal choice of initial saving rate s0 is

s0 =
αδβ

1− αβ + δαβ
.

The initial agent discounts the future more heavily than her future selves, so she is willing to apply

a lower saving rate than those in the future, s0 < αβ. In summary, the sequence of saving rates is

st =


αδβ

1−αβ+δαβ , t = 0

αβ, t > 0

(2.1)

The long run capital stock in the Ramsey problem is kR = (αβ)
1

1−α .3

A useful auxiliary problem is the payo� when all selves choose the same constant saving rate. Sup-

posing an agent starting with capital k and the saving rate for herself and all future selves is s, her

lifetime utility is given by

α(1− αβ + δαβ)

1− αβ
log k +

1− β + δβ

1− β
log(1− s) +

δαβ

(1− αβ)(1− β)
log s. (2.2)

De�ne the second part related to the saving rate as

H(s) ≡ 1− β + δβ

1− β
log(1− s) +

δαβ

(1− αβ)(1− β)
log s. (2.3)

The left panel in Figure 1 displays a typical pattern for H(s). Note that utility is not monotonic in

s, nor does it achieve it maximum at the Ramsey long-run solution sR, since such solution disregards

3This level of capital is not strictly a steady state since the Ramsey allocation starting from this level of capital will
reduce the level of capital before asymptotically returning to it.
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the concern for the short run implied by δ < 1. For comparison, consider the version of H(s) when

Figure 1: Steady State Comparison

δ = 1, where the time-inconsistent problem vanishes. De�ne R(s) as

R(s) ≡ log(1− s)
1− β

+
αβ

(1− αβ)(1− β)
log s. (2.4)

Note that unlike H(s), R(s) achieves its maximum at sR = αβ. Later it will be clear that the

functions H(s) and R(s) play an important role in understanding the nature of di�erent equilibria.

2.1.2 Markov Equilibrium in the Quasi-geometric Discounting Economy

We focus on the Markov equilibrium which is continuously di�erentiable, i.e., it satis�es the general-

ized Euler equation (GEE).4 Let g(k) denote the policy function for tomorrow's capital k′, the GEE

is

uc(f(k)− g(k)) = β uc

(
f [g(k)]− g[g(k)]

)[
δfk[g(k)] + (1− δ) gk[g(k)]

]
,

4It remains to be an open question whether the Markov equilibrium is unique or not. As shown in Krusell and
Smith (2003), there is a continuum of Markov equilibria in this economy around a steady state. Recent work by Cao
and Werning (2018) shows that if production functions are linear the type construction of continuum of equilibria used
in Krusell and Smith (2003) would imply a particular restriction of the state space.
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which yields

g(k) =
αδβ

1− αβ + δαβ
kα.

This Markov equilibrium displays a constant saving rate

sM =
αδβ

1− αβ + δαβ
. (2.5)

Note that the saving rate in the Markov equilibrium is the same as the �rst period's saving rate in

the Ramsey outcome. The Markov equilibrium has a steady state kM =
(

αδβ
1−αβ+δαβ

) 1
1−α

< kR. The

payo� in the Markov equilibrium for an agent with capital k is given by

ΦM (k) =
α(1− αβ + δαβ)

1− αβ
log k +H(sM ). (2.6)

2.1.3 Subgame-Perfect Equilibria in the Quasi-geometric Discounting Economy

As discussed in Laibson (1994), by threatening to consume all the resources, any feasible plan can be

supported as a subgame-perfect equilibrium. To avoid this unrealistic punishment, we restrict our

attention to the set of subgame-perfect equilibria in which the worst payo� is the one delivered by

the Markov equilibrium characterized above, ΦM (k). The best such outcome is

max
{st}∞t=0

u(c0) + δ
∞∑
t=1

βtu (ct) s.t. (2.7)

kt+1 = stk
α
t , (2.8)

ct = (1− st)kαt (2.9)

u(ct) + δ

∞∑
j=1

βtu (ct+j) ≥ ΦM (kt) (2.10)

k0 given . (2.11)

We relegate the detailed analysis of this equilibrium to Appendix A where we characterize its solution

and establish that it has a stationary form. Essentially, the results can be partitioned into two
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scenarios. In the �rst case time inconsistency is relatively weak, i.e. δ is large enough and the

folk theorem applies. As a result, the Ramsey outcome can be supported in a subgame-perfect

equilibrium. In the second case, δ is relatively low, and the temptation to deviate is strong, in

which case the constraint (2.10) binds forever. To induce future selves not to revert to the Markov

equilibrium, the saving rate has to be lower than that in the Ramsey problem. Combining the two

cases, the outcome can be summarized as

st =


sR, H

(
sR
)
≥ H

(
sM
)

sT , H
(
sR
)
< H

(
sM
) (2.12)

for t > 0 and s0 = sM , where sT solves

sT = max
s

{
s : H(s) = H

(
sM
)}

(2.13)

Note that when the constraint (2.10) is binding in the steady state, the saving rate is not the same

as the Markov equilibrium. Each agent at time t > 0 attains the same payo� in this equilibrium as

if the Markov equilibrium were played from then on, but the initial player achieves strictly higher

utility, and all players that move at t > 1 bene�t from the higher saving rate that prevailed in the

past.5

2.2 Organizational Equilibrium in the Quasi-geometric Discounting Economy

Before we start describing the notion of organizational equilibrium, we establish an important prop-

erty of this economy, that preferences of agents over the inherited capital stock and any sequence

of savings rates display separability, i.e. that the utility can be written as a function of the initial

capital and of an aggregate that depends only on the sequence of savings rates (Section 2.2.1). Then

we de�ne an organizational equilibrium in terms of savings rates, and we construct it, therefore

establishing existence in Section 2.2.2.

5The maximization problem only takes into account the utility of the time-0 agent; the bene�t accruing to later
players is a byproduct of this agent's preferred outcome, which involves high saving rates from period 1 onwards.
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2.2.1 Separability

Consider a sequence of savings rates {st}∞t=0 and an initial capital stock k0. The implied sequence of

capital stocks, {kt}∞t=0, has the property that kt = kα
t

0 Πt−1
j=0s

αt−j−1

j . Accordingly, the lifetime utility

for the agent with capital k0 is

U(k0, s0, s1, . . .)

= log(1− s0)kα + δ
∞∑
j=1

βj log[(1− sj)kαj ]

=
α(1− αβ + δαβ)

1− αβ
log k0 + log(1− s0) + δ

∞∑
j=1

βj log[(1− sj)Πj−1
τ=0s

αj−τ
τ ]

=
α(1− αβ + δαβ)

1− αβ
log k0 + log(1− s0) +

δαβ

1− αβ
log(s0) + δ

∞∑
j=1

βk
(

log(1− sj) +
αβ

1− αβ
log(sj)

)
.

The same logic follows for the date t agent which means that its lifetime utility, or total payo�, is

the sum of a term that depends on the period t capital and a term that depends only on saving rates

of periods t and after. We write it compactly as

U(kt, st, st+1, . . .)︸ ︷︷ ︸
total payo�

= φ log kt︸ ︷︷ ︸
capital payo�

+V (st, st+1, . . .)︸ ︷︷ ︸
action payo�

(2.14)

We also write more compactly the total payo� into the term that depends on the state and the term

that depends on the subsequent actions

v(k,V ) :=
α(1− αβ + δαβ)

1− αβ
log k0 + V

where

V (s0, s1, . . .) := log(1− s0) +
δαβ

1− αβ
log(s0) + δ

∞∑
j=1

βk
(

log(1− sj) +
αβ

1− αβ
log(sj)

)
.
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In this economy, the preferences as of time t are separable in the level of capital kt and the sequence

of current and future saving rates. In fact, that the terms in k0 and V are additive implies a strong

form of separability. For our purposes, only a weak form of separability is required as we will see in

Section 3.

2.2.2 Discussion of Organizational Equilibrium

We now look at the features that the organizational equilibrium should have. We exploit separability

to specify how to run comparisons across agents with di�ering initial conditions: speci�cally, we

impose that agents factor out the component of utility arising from initial capital, and evaluate

proposals based on the sequence of saving rates alone, looking at the subutility V . On this subutility,

we impose the requirements that no agent would prefer being a previous member of the sequence

and that no agent would have an incentive to wait for a proposal to be implemented starting from

the next period. Formally,

De�nition 1. A sequence of saving rates {sτ}∞τ=0 is organizationally admissible if

1. V (st, st+1, st+2, . . .) is (weakly) increasing in t.

2. The �rst agent has no incentive to delay the proposal.

V (s0, s1, s2, . . .) ≥ max
s
V (s, s0, s1, s2, . . .)

Within organizationally admissible sequences, any sequence that attains the maximum of V (s0, s1, s2, . . .)

is an organizational equilibrium.

We now start characterizing the organizational equilibrium.

Proposition 1. There exist organizational equilibria. In any such equilibrium, the evolution of the
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saving rate is given recursively by the proposal function q∗

st = q∗(st−1) = 1− exp

{
−(1− β)V ∗ + δαβ

1−αβ log st−1 + log(1− st−1)

β(1− δ)

}
(2.15)

where the �xed point saving rate s∗ = q∗(s∗) and the maximum utility V ∗ are given by

s∗ =
δαβ

(1− β + δβ)(1− αβ) + δαβ
and (2.16)

V ∗ =
1− β + δβ

1− β
log(1− s∗) +

αδβ

(1− β)(1− αβ)
log s∗. (2.17)

Equilibria di�er by their initial saving rate, which belongs to the interval

s0 ∈
[

αδβ

1− αβ + αδβ
, q∗
(

αδβ

1− αβ + αδβ

)]
. (2.18)

Proof. Suppose the initial agent with capital k0 = k proposes a sequence of saving rates {sτ}∞τ=0,

which yields a sequence of capital {kτ}∞τ=0. Consider a subsequence of the proposed saving rates

from time t on, {sτ}∞τ=t. This is the sequence of saving rates that will be used by the agent with

capital kt. The lifetime utility for the agent with capital kt is

Ut(kt, {sτ}∞τ=t) =
α(1− αβ + δαβ)

1− αβ
log kt + Vt,

where

Vt = log(1− st) +
δαβ

1− αβ
log(st) + δ

∞∑
j=1

βk
(

log(1− st+j) +
αβ

1− αβ
log(st+j)

)
. (2.19)

The link between Vt and Vt+1 is given by

Vt − βVt+1 =
δαβ

1− αβ
log st + log(1− st)− β(1− δ) log(1− st+1). (2.20)

We will proceed by guessing and verifying. We �rst ignore condition 2 in the de�nition of organiza-

tionally admissible sequence, which will imply that a proposal has to be that Vt = V . This is because
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Vt has to be weakly increasing, and the proposer can be better o� by copying future agents' saving

rate sequence if Vt > V0 for some t. Later on, we will verify that condition 2 can be satis�ed by a

particular selection of a saving rate sequence.

The constant action payo� restriction, Vt = V , simpli�es equation (2.20) to

(1− β)V =
δαβ

1− αβ
log st + log(1− st)− β(1− δ) log(1− st+1). (2.21)

Equation (2.21) has two implications. First, it establishes a recursive relationship for saving rates

between two consecutive agents. Second, it provides us a way to select the saving rates sequence

that yields the highest utility.

Denote by s = q(s−;V ) as the proposal function that speci�es the current generation's saving rate

as a function of last generation's saving rate:

q(s−;V ) = 1− exp

{
−(1− β)V + δαβ

1−αβ log s− + log(1− s−)

β(1− δ)

}
. (2.22)

If the initial agent wants to make a proposal, it will choose the highest V possible. Given a particular

V , the �xed point of the function q(s−;V ) solves

(1− β)V =
δαβ

1− αβ
log s+ log(1− s)− β(1− δ) log(1− s). (2.23)

Also note that

δαβ

1− αβ
log s+ log(1− s)− β(1− δ) log(1− s) ∈ (−∞,V ∗],

where V ∗ is given by

s∗ =
δαβ

(1− β + δβ)(1− αβ) + δαβ
, (2.24)

V ∗ =
1− β + δβ

1− β
log(1− s∗) +

αδβ

(1− β)(1− αβ)
log s∗. (2.25)
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If the initial agent chooses V > V ∗, then there is no �xed point for q(s−;V ). Meanwhile, q(s−;V ) >

s− when V > V ∗, and s will converge to 1 at a rate which will make the sum in equation (2.19)

diverge to −∞, which cannot be optimal. Therefore, the optimal choice is V ∗. The optimal proposal

function associated with V ∗ is q∗(s−) = q(s−;V ∗).

If we ignore condition 2, there are many valid proposals that the initial agent could make; as an

example, a constant saving rate s∗ would be one of them. However, this constant saving rate sequence

{s∗} will violate condition 2. If the initial agent waits for the next generation to propose this constant

saving rate sequence, then the initial agent can choose the Markov saving rate αδβ
1−αβ+αδβ , which yields

a higher utility. This will be the case for all proposals in which

s0 ∈
(
q∗
(

αδβ

1− αβ + αδβ

)
, s∗
]

.

Furthermore, simple but tedious algebra shows that ds/ds− = 1 and d2s/d(s−)2 > 0 at s = s∗ when

V = V ∗. s∗ is thus a semi-stable steady state: it is stable from the left, but unstable from the right.

Proposals in which s0 > s∗ would lead the di�erence equation to converge to 1, which is ruled out

by the same argument which we used to establish that values above V ∗ are unattainable.

Equation (2.22) attains a minimum when s− is at the Markov saving rate and is strictly decreasing

below this value, converging to 1 as s− converges to 0. Hence, there exists a value s such that

q(s) > s∗ for s < s: this is a lower value on the initial saving rate, since once again the sequence

would otherwise yield arbitrarily negative utility.

The set of organizational equilibria is given by the set of sequences which satisfy (2.16), (2.17),

and (2.22), and which have

s0 ∈
[
s, q∗

(
αδβ

1− αβ + αδβ

)]
.

While there are many organizational equilibria, all of whom give the same utility to the �rst gener-
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Figure 2: Proposal Function q∗(s)

ation, the equilibrium in which

s0 = q∗
(

αδβ

1− αβ + αδβ

)
yields the highest utility for all subsequent generations, and is therefore the most appealing.

In any organizational equilibrium, time inconsistency is gradually overcome through time: at least

from period 2 on, the saving rate exceeds that of the Markov equilibrium, and a virtuous cycle is

started, with a monotonic increase which converges to s∗. Initial saving is limited by the temptation

to let the next generation start the virtuous cycle. This temptation diminishes in subsequent periods,

since restarting the virtuous cycle from scratch implies giving up on the accumulated e�ect of previous

increases in st. Note that s
∗ is below the long-term savings rate of the Ramsey outcome, no matter

how close to 1 δ is (as long as it is strictly less than 1): while the equilibrium path converges to the

Ramsey outcome as δ → 1, it never coincides with it, and the folk theorem does not apply. The

saving rate s∗ is the preferred constant saving rate of the agents, weighing their current patience

with their future impatience. This is illustrated in Figure 2.
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2.3 Comparison with Other Equilibria

We now compare the properties of the organizational equilibrium of the sequence of capital and the

lifetime utilities with those in the Ramsey outcome, the Markov equilibrium and the best (from the

point of view of the preferences of the time zero agent) subgame-perfect equilibrium supported by

the threat of reversion to Markov.

Figure 3: Transition Path I: Allocation

We �rst turn the transition paths of di�erent equilibria. We assume that the initial capital stock is the

steady state capital stock in the Markov equilibrium, i.e., k0 = kM . The value of δ we have speci�ed

in this example is large enough that the Ramsey outcome can be supported by the threat of reversion

to Markov. Figure 3 displays the transition paths for the saving rate st and capital kt. In the Markov

equilibrium, the capital stock remains unchanged at its steady-state level which we assumed as a

starting point. The Ramsey outcome features the same saving rate as the Markov equilibrium in the

�rst period, so that the capital stock remains the same at the beginning of the second period. From

the second period onwards the saving rate increases to sR permanently. The sequence of saving rates

in the organizational equilibrium is induced by the proposal function st+1 = q∗(st). Particularly,

the saving rate in the �rst period is s0 = q∗
(
sM
)
> sM , and the capital is initially higher than in
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the Ramsey allocation. Over time, the saving rates increases gradually and converge to s∗ < sR.

Asymptotically, capital in the organizational equilibrium settles between the Ramsey outcome and

the Markov equilibrium.

Figure 4: Transition Path II: Payo�

Now we turn to the welfare comparison. Given a particular sequence of saving rates {sτ}∞τ=0, based

on the analysis in the last section, the lifetime utility for generation t can be written as

Ut(kt, {sτ}∞τ=t)︸ ︷︷ ︸
total payo�

=
α(1− αβ + δαβ)

1− αβ
log kt + Vt︸︷︷︸

action payo�

.

The total payo� Ut and the action payo� Vt are depicted in Figure 4. The total payo� in the Markov

equilibrium is the lowest during the entire transition, which is the result of both the lowest capital

stock and action payo�.

The comparison between the Ramsey outcome and the organizational equilibrium is more subtle. In

the �rst period, the total payo� in the Ramsey outcome is higher than that in the organizational

equilibrium: this has to happen by de�nition, since the Ramsey outcome maximizes the total payo�

from the perspective of period 0. In the following period, the comparison reverses, and the total

payo� in the organizational equilibrium is actually higher than the Ramsey outcome. This happens
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both because the initial generation accumulates additional capital, and because the organizational

equilibrium does not impose as high a saving rate, allowing for some indulgence for the short-run

impatience that arises in the second period. Our notion of organizational equilibrium treats initial

capital as a bygone, factoring it out of the payo� that is relevant in computing the equilibrium itself;

however, it captures the notion that the initial agent is not privileged compared to future decision

makers and cannot impose on them sacri�ces that she has not undertaken. For this reason, when we

focus on Vt, an organizational equilibrium redistributes from the initial agent to all future decision

makers. When comparing the total payo�, after period 0, early decision makers bene�t both from

a higher capital level and a higher action payo�, while eventually capital falls below the Ramsey

outcome and late generations lose from this.

In terms of the steady state capital level, Figure 5 shows how it changes with δ. The capital stock in

the organizational equilibrium (kO), the Markov equilibrium (kM ), and the Ramsey outcome (kR)

are related by the following simple ratios:

kO

kR
=

(
1

1
δ − β(1− αβ + α)

(
1
δ − 1

)) 1
1−α

and
kM

kO
=

(
1− β(1− δ)(1− αβ)

1− αβ + δαβ

) 1
1−α

.

In the Ramsey outcome, the stationary allocation is independent of δ, and we normalize it to 1. As

can be seen from the Figure, as δ decreases, the capital stock in the Markov equilibrium decreases

faster than in the organizational equilibrium.

3 Organizational Equilibrium: A General De�nition

We proceed now to de�ne organizational equilibrium in a more general manner. The spirit of orga-

nizational equilibrium is that the solution concept should not treat the current decision maker more

favorably than future ones. This notion requires some form of stationarity.

Consider a generic environment of sequential decision makers (typically those that have a time-

consistency problem) where there is a physical state variable k ∈ K. Speci�cally, given the current
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Figure 5: Comparison of Stationary Allocations
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level of k, the agent making a decision will choose an action a from a set A. The state evolves

according to kt+1 = F (kt, at). Preferences for an agent making decisions in period t are given by

U(kt, at, at+1, at+2, . . .). The �rst assumption is that functions U and F are independent of calendar

time, which allows meaningful welfare comparisons across decision makers.

In the absence of a state variable, the economy looks the same starting at any time t, and �not treating

more favorably� the current decision maker readily translates to not o�ering to her higher utility

than to other decision makers. However, when a state variable is present, imposing the same utility

becomes an unnatural restriction: as an example, as capital evolves, the sequences of consumption

which can be supported by the given capital change. We follow here an alternative approach by

restricting the environments that we study to those in which the utility is weakly separable between

the state and the sequence of actions, such that the preference ordering over sequences actions is

independent of the initial state. It is then natural to require that the equilibrium choice of actions

be independent of the state. This amounts to a form of weak separability in terms of utility between

the state and the actions. Formally the assumptions on the environment that we make are:

Assumption 1. 1. At any point in time t, the set of feasible actions A is independent of the state
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kt;

2. U is weakly separable in k and in {as}∞s=0, i.e., there exist functions v : K × R → R and

V : A∞ → R such that

U(k, a0, a1, a2, . . .) ≡ v(k,V (a0, a1, a2, . . .)). (3.1)

and such that v is strictly increasing in its second argument.

Assumption 2. V is in turn weakly separable in a0 and {as}∞s=1, i.e., there exist functions Ṽ :

A×R→ R and V̂ : A∞ → R such that, for all sequences (a0, a1, a2, . . .) ∈ A∞,

V (a0, a1, a2, ...) = Ṽ (a0, V̂ (a1, a2, . . .)),

with Ṽ strictly increasing in its second argument.

Sometimes the original problem does not satisfy Assumption 1, but it is possible to rescale actions in

such a way that it does. As an example, the original speci�cation of the saving problem with quasi-

geometric discounting does not satisfy Assumption 1 if we de�ne the action to be consumption: the

feasible set of consumption levels depends on initial capital.6 Formally, suppose that the set of feasible

actions at any capital level k is Ã(k) ⊆ Ã and that preferences are given by Ũ(kt, ãt, ãt+1, ãt+2, . . .).

Our construction still applies as long as it is possible to �nd a set of actions A and a function γ such

that ã = γ(a, k) and that Assumption 1 holds for A, where

U(k, at, at+1, at+2, . . .) ≡ Ũ(k, ãt, ãt+1, ãt+2, . . .),

and where for t ≥ 0, ãt is computed recursively as

ãt = γ(at, kt),

kt+1 = F (kt, ãt).

(3.2)

6Note that weak separability automatically fails if certain actions are only feasible for some levels of capital, since,
holding actions �xed, the left-hand side of (3.1) would then be well de�ned for some values of k and not for others.
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We are now ready to de�ne organizational equilibrium.

De�nition 2. A sequence of actions {at}∞t=0 is organizationally admissible if it satis�es the following

requirements:

1. V (at, at+1, at+2, . . .) is (weakly) increasing in t; this condition ensures that subsequent agents

would not choose to rewind time.

2. The �rst agent has no incentive to delay the proposal.

V (a0, a1, a2, . . .) ≥ max
a∈A

V (a, a0, a1, a2, . . .); (3.3)

Within organizationally admissible sequences, any sequence that attains the maximum of V (a0, a1, a2, . . .)

is an organizational equilibrium.

3.1 Game-Theoretic Foundations and Relation to Other Equilibrium Notions

In this section, we discuss the connection between an organizational equilibrium and related notions

of equilibria in games. Our notion is most closely related to Kocherlakota's (1996) reconsideration-

proof equilibrium. While the two notions are very similar, two main di�erences emerge, which we

will discuss in turn:

• By exploiting weak separability, an organizational equilibrium extends the notion of reconsid-

eration proofness to dynamic games, rather than purely repeated games;

• In an environment without state variables, all reconsideration-proof equilibria have the same

value for all players. This is no longer the case for organizational equilibria. Our no-delaying

condition takes into account the role of the state variable to select a subset of the reconsideration-

proof equilibria. This selection is in line with the original motivation of renegotiation (and

reconsideration) proofness, but it imposes it in a limited way which still allows for existence of

an equilibrium.
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The general setup that we introduced in this section represents a game, with an in�nity of players

indexed by the time at which they act (0,1,...), each of whom has preferences given by (3.1). At each

time t, the history of play is given by ht := (a0, a1, ...at−1), with h0 := ∅. A strategy σt for player

t is a mapping from the set of time-t histories, Ht, to the set of actions A. A strategy pro�le is a

sequence of strategies, one for each player: σ := (σ0,σ1, ...). As usual, it is also convenient to de�ne

a continuation strategy after history ht, σ|ht , represented by the restriction of (σt,σt+1, ...) to the

histories following ht. So far, we have de�ned an organizational equilibrium only by its equilibrium

path. The simplest way to fully specify the game strategy that supports it as a subgame-perfect

equilibrium is to use the no-delaying condition (3.3) and set σ|ht = σ whenever

at−1 6= σt−1(ht−1), (3.4)

where ht = (ht−1, at−1). According to this strategy, the equilibrium of the game prescribes restarting

from the equilibrium path of period 0 whenever a deviation occurs. This is not the only possibility;

as an example, the function q∗ de�ned in (2.15) can be used in the quasi-geometric saving problem

to recursively generate an alternative strategy (not just an equilibrium path) that supports the

organizational equilibrium as a subgame-perfect equilibrium.

When there are no state variables the game presented here is encompassed by those considered in

Kocherlakota (1996).7 Kocherlakota analyzes a purely forward-looking environment, in which the

payo� accruing to the player in period-t only depends on the actions (or the expectations about

the actions) of players in period t onwards. In this environment, he de�nes a subgame-perfect

equilibrium to be symmetric if its continuation value is independent of the past history of play.

A reconsideration-proof equilibrium is then an equilibrium that achieves the highest payo�s within

symmetric equilibria.

7Kocherlakota de�nes a �state� in his work, but this state only depends on the expectation about current and future
actions, which makes it really not a state. In our case, we de�ne a state as arising from past actions (including possibly
past actions of nature, if randomness is present). This is in line with the literature on optimal control and dynamic
programming. Our analysis can be extended straightforwardly to situations in which expectations about current and
future actions a�ect the current set of actions and payo�s, as it happens in hybrid environments where some elements
of competitive-equilibrium behavior coexist with strategic interactions.
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The following proposition shows that an organizational equilibrium is reconsideration proof in the

absence of state variables.

Proposition 2. Consider a game where time-t preferences are given by

V (at, at+1, at+2, . . .)

and Assumption 2 holds. If a path (a0, a1, ...) is an organizational equilibrium, then it is the outcome

of a reconsideration-proof equilibrium.

Proof. First consider the set of sequences {aτ}∞τ=0 that satisfy the condition that lifetime utility is

weakly increasing (condition 1 in De�nition 2). Any sequence {aτ}∞τ=0 that attains the maximum

of V (a0, a1, . . .) within this set has to be such that V (at, at+1, . . .) = V̄ for any t. If not, then there

exists t such that V (at, at+1, . . .)<V (at+1, at+2, . . .). The initial proposer can copy the sequence

starting from agent in period t+1 by proposing {âτ} where âτ = aτ+t+1. Next, consider the strategy

proposed above, in which any deviation from the prescribed play leads to a restart of the path.

According to this strategy, regardless of the past history, the path of play induced by the strategy

going forward is a sequence (as, as+1, ...) for some s.8 The utility from any of these sequences to the

player called to move is V̄ , which proves that the equilibrium is symmetric. By the de�nition of an

organizational equilibrium, there exists no other sequence that could o�er a constant value V̂ > V̄

to all players. Since a reconsideration-proof equilibrium must give the same payo� to all players, it

follows that the organizational equilibrium attains the maximum payo� among symmetric equilibria,

which completes the proof.

In the presence of a state variable, an organizational equilibrium assumes that players coordinate

on strategies which only depend on the history of play ht and not on the physical state. In this

case, an organizational equilibrium imposes symmetry only in that the payo� of the subutility V

is independent of the history of play, but the payo� of each time-t player is still di�erent across

8If the player called to make decisions is player t, we have s = t on the equilibrium path and s < t if deviations
occurred in the past.
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histories which lead to di�erent levels of the state. Intuitively, a di�erent state implies a di�erent

set of possible utility levels going forward, so we should expect it to a�ect payo�s in the subgames

going forward. However, this dependence of utility from the state takes a simple form under weak

separability, and there is a natural mapping across histories with di�erent levels of capital: the same

sequences of actions are possible under any level of capital, and the preferences of player t over the

sequences from date t on are also represented by the subutility V , independent of kt. For this reason,

imposing reconsideration proofness on preferences represented by V alone is appealing.

Our construct cannot of course completely get around the presence of a physical state, and it is

for this reason that the no-delaying condition has some bite. In a reconsideration-proof equilibrium,

where the state is not there, at any time t both the current and the future players' equilibrium payo�s

are independent of the past history of play. This is no longer true in an organizational equilibrium

when the state matters: while the current player receives the same equilibrium payo� for all histories

that share the same state, future players do not.

To illustrate this point concretely, consider the example of Section 2. At each point t, the equilibrium

payo� for player t depends on the past history of play only through kt and not through the entire

past history of actions; moreover, the equilibrium is such that player t is indi�erent between all

saving rates in
[
q∗
(

αδβ
1−αβ+αδβ

)
, s∗
]
. However, future players would strictly prefer the equilibrium

path that would unfold if player t chose s∗, which would lead to s∗ being played for ever. If we

appealed to (strong) Pareto optimality to select among equilibria, then s∗ would be selected. But this

equilibrium is suspect for the same logic that leads us to discard the trigger strategies that support

the best subgame-perfect equilibrium for player t. Speci�cally, if player t anticipates that, as of t+1,

players will coordinate on the Pareto-optimal equilbrium and will thus play s∗ independently of past

history, she has an incentive to play the best one-shot saving rate instead. Our no-delaying condition

imposes that, whatever coordination mechanism selects the equilibrium to be played from period 0,

no player at any time could be better o� by deviating and counting on other players to use the same

coordination mechanism to restart the game. Formally, given an equilibrium strategy pro�le σ, we
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require

V (σt(h
t), at+1,σ|ht , at+2,σ|ht , ...) ≥ V (ãt,σ0, a1,σ, a2,σ, ...) ∀ãt ∈ A,ht,

where we used the following short-hand notation:

at+1,σ|ht := σt+1(ht,σ(ht)),

at+s,σ|ht := σt+s(h
t, at+1,σ|ht , ..., at+s−1,σ|ht ),

a1,σ := σ1(σ0),

as,σ := σs(σ0, a1,σ, ...as−1,σ).

It's useful to compare organizational equilibrium to two alternative notions of equilibrium for dynamic

games which are inspired by similar concerns about what constitutes a �credible punishment" in

subgame-perfect equilibria.

An extension of reconsideration-proofness to environments with state variables was already proposed

by Nozawa (2014). Nozawa requires weakly reconsideration proof equilibria to be such that the

equilibria of all subgames share the same payo� function Ψ(k), which depends on the state; in

the absence of the state, this reduces to Kocherlakota's (1996) symmetry requirement. A strong

reconsideration-proof equilibrium is then an equilibrium in which Ψ(k) is undominated by any other

equilibrium point by point. This is often too strong a requirement, and hence existence may fail. As

an example, no reconsideration-proof equilibrium would exist in the example of Section 2.

An alternative approach is revision proofness, which was introduced by Asheim (1997) and made

explicit as a game in Ales and Sleet (2014). In their papers, a larger class of credible punishments is

allowable. Speci�cally, under reconsideration proofness, if Σ is the set of equilibrium strategies of the

game, each player at any time t is allowed to coordinate current and future play to her favorite element

of Σ. Under revision proofness, player t's coordination power is limited because she is required to
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propose deviations from the equilibrium path of play that bene�t all future players. The resulting

equilibrium set is much larger. For the case of quasi-geometric discounting with linear preferences,

Ales and Sleet (2014) show that all subgame-perfect paths better than the Markov equilibrium are

revision proof. In environments with state variables, a limitation of revision proofness is that it is

unclear how a future player could �block� a revision proposal when she would inherit a di�erent state

under the revision proposal and would thus not be able to continue with the original strategy.

Our notion of organizational equilibrium retains the unilateral aspect of deviations from reconsid-

eration proofness, but it relies on weak separability to de�ne and impose symmetry across di�erent

levels of capital. The role of Pareto optimality enters in a limited way through the no-restarting

condition and potentially through a �nal selection of a Pareto optimal path among those that satisfy

symmetry and no-restarting.

3.2 Existence

To prove existence of an organizational equilibrium, we proceed in two steps. First, we rely on

Kocherlakota (1996) to prove the existence of a reconsideration-proof equilibrium for the game with

payo� function V (.). We then use Assumption 2 to argue that the threat of restarting from the period-

0 path after a deviation is a su�cient deterrent, no matter which deviation a player is considering.

The following assumptions mirror Kocherlakota's:

Assumption 3. 1. A is a convex compact subset of a locally convex topological linear space with

topology ρx.

2. V is quasiconcave over A∞.

3. V is continuous over A∞ with respect to the product topology ρ∞x .

Under Assumption 3, Proposition 4 in Kocherlakota (1996) proves that a reconsideration-proof equi-

librium exists for the game whose period-t payo� is V (at, at+1, at+2, ...). This equilibrium achieves
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the maximal utility within symmetric equilibria.

Proposition 3. Under Assumptions 2 and 3, an organizational equilibrium exists.

Proof. Let (aE0 , aE1 , . . .) be the outcome of a reconsideration-proof equilibrium for the game whose

period-t payo� is V (at, at+1, at+2, ...), and let V̄ be its associated value. This means that, for any

period t and any actions a ∈ A, there exists a continuation sequence (aĒt+1, aĒt+2, . . .) which is also a

reconsideration-proof equilibrium and is such that

V (aEt , aEt+1, aEt+2, . . .) ≥ V (a, aĒt+1, aĒt+2, . . .).

We then have

V (a, aĒt+1, aĒt+2, . . .) = Ṽ (a, V̂ (aĒt+1, aĒt+2, . . .)).

Acknowledging that the sequence (aĒt+1, aĒt+2, . . .) is potentially a function of the deviation a (as well

as of time t, which we can hold �xed), de�ne

V := inf
a∈A

V̂ (aĒt+1, aĒt+2, . . .). (3.5)

By the compactness of A, Tychono�'s theorem, and continuity of V̂ , we can �nd a sequence of actions

a∗0, a∗1, ... that attains the in�mum in equation (3.5) above. Exploiting Assumption 2, this sequence

ensures subgame perfection and satis�es the no-restarting condition:

V (a∗0, a∗1, a∗2, . . .) ≥ V (a, a∗0, a∗1, . . .).

This path attains a value V̄ . Since the set of organizationally admissible sequences is contained

in the set of outcomes of symmetric equilibria, it follows that this path attains the highest payo�

among organizationally admissible sequences and is therefore an organizational equilibrium for the

game without state variables. By weak separability (Assumption 1), this property carries over to

the original game with state variables. Hence, playing (a∗0, a∗1, ....) followed by a restart after any

28



deviation is an organizational equilibrium.

We conclude this section by studying the case in which the function V̂ admits a recursive structure,

as is the case in the example of Section 2 and in many other applications of economic interest. This

structure in turn provides a useful way to compute and characterize organizational equilibria.

Assumption 4. There exists a function W : A × R → R, increasing in the second argument, such

that, given any sequence {at}∞t=0 ∈ A∞,

V̂ (a0, a1, a2, . . .) ≡W
(
a0, V̂ (a1, a2, . . .)

)
, (3.6)

Proposition 4. Under Assumptions 2, 3 and 4, there exists an organizational equilibrium {at}∞t=0

which is recursive in the value V̂ (at, at+1, at+2, . . .): that is, there exists a function g : R → A×R

such that (at, vt+1) = g(vt), and vt = V̂ (at, at+1, at+2, . . .) for all t = 0, 1, ....

Proof. See Appendix B.

Proposition 4 uses values as a state variable in ways similar to Abreu, Pearce, and Stacchetti (1986,

1990). However, as the proof shows, constructing the set of possible values is considerably more

involved than in the case of Abreu, Pearce, and Stacchetti; hence, while the proposition greatly

simpli�es the task of constructing organizational equilibria, it still leaves a challenging task. To

make further progress, we need one more assumption:

[to be completed]

Proposition 5. Under Assumptions 2, 3, and 4, the value of V̂ (at, at+1, at+2, . . .) is increasing over

time for any organizational equilibrium, and it converges to the value associated with the steady

state which maximizes V (a, a, a, ...). Furthermore, if V̂ is a strictly quasiconcave function and the

steady state that maximizes V (a, a, a, ...) is not a Markov equilibrium. Then the initial value of

V̂ (a0, a1, a2, . . .) is strictly below the steady state: convergence is not immediate.
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Proof. See Appendix B

Proposition 5 provides a way of characterizing organizational equilibria. We �rst compute a steady

state that maximizes V (a, a, a, ...): this is the steady state that would be chosen by the decision

maker at time 0 if she could commit future players to take the same action. This maximization yield

a value V ∗ which must remain constant along the path, i.e., V (at, at+1, at+2, ...) = V ∗. We then

construct a path that leads to this steady state, using the no-delay condition to inform us of the

starting point. The last part of the proof shows that convergence to the steady state takes time,

unless we are in a special case in which the steady state can be supported in a Markov equilibrium

with no intertemporal incentives.

4 Approximated Equilibrium

In this section, we �rst introduce a class of weakly separable economies with the quasi-geometric

discounting preferences. This class include the example discussed in Section 2 as a special case, and

it also include some interesting models explored in the literature. In general, weakly separable is a

quite demanding requirement. We then proceed to provide an approximation algorithm for models

that are not weakly separable.

4.1 A Class of Weakly Separable Economies

Consider the following class of economies. The state variable is k and the action is a. The preference

is speci�ed as

Ψt = u(kt, at) + δ

∞∑
τ=1

βτ u (kt+τ , at+τ ) .

Suppose that the period utility function takes the form of

u(k, a) = C10 + C11h(k) + C12m(a),
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and the state evolves according to

h(k′) = C20 + C21h(k) + C22g(a),

for some monotonic functions h, g, and m, and some constant matrix C. Note that in Section 2, the

economy is corresponding to h(k) = log(k), g(a) = log(a) and m(a) = log(1− a). It is easy to verify

that this class of economies are weakly separable. To see this, given a sequence of actions {aτ}∞τ=0

and the initial state k0, the sequence of state variables follows

h(kt) = C20
1− Ct21

1− C21
+ Ct21h(k0) + C22

t−1∑
τ=0

Ct−1−τ
21 g(aτ ),

and the lifetime utility is given by

U(k0, {aτ}∞τ=0) =
1− β + δβ

1− β
C10 +

C11(1− βC21 + δβC21)

1− βC21
h(k0)

+ C12m(a0) +
C11C22δβ

1− βC21
g(a0) + δ

∞∑
j=1

βj
(
C12m(aj) +

βC11C22

1− βC21
g(aj)

)
.

We now turn to describe two examples that belong to this weakly separable class. Both of them are

widely used in the literature.

Linear production function and CRRA utility function This example can be interpreted as

a growth model with a linear production or a consumption-saving problem with a constant interest

rate. Without the loss of generality, the resource constraint can be written as c+ k′ = θk. Assume

the period utility function takes the following CRRA form u(c) = c1−σ

1−σ , and the lifetime utility for

an agent in period t is

Ψt = u(ct) + δ
∞∑
τ=1

βτu (ct+τ ) .

We use the saving rate as the rescaled action, and show that Assumption 1 is satis�ed. Given an

initial capital level k0 and a sequence of saving rate {sτ}∞τ=0, the implied sequence of capital is simply
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kt = Πt−1
τ=0sτθ

tk. The lifetime utility can be rewritten as

U(k0, {sτ}∞τ=0) =
(θk0)1−σ

1− σ

{
(1− s0)1−σ + δβ(s0(1− s1)θ)1−σ + δβ2(s0s1(1− s2)θ2)1−σ + . . .

}
≡ (θk0)1−σ

1− σ
V ({sτ}∞τ=0),

which is weakly separable. Therefore, we can apply our organizational equilibrium concept in this

environment.

Leisure choice Consider now the case where agents also choose the amount of labor to supply.

The production function now includes labor as input f(kt, `t) = kαt `
1−α
t , and the resource constraint

is ct + kt+1 = f(kt, `t). Assume the period utility function is u(ct, `t) = log ct + (1−`t)1−γ
1−γ , and the

lifetime utility for the agent at period t is given by

Ψt = u(ct, `t) + δ

∞∑
τ=1

βτu (ct+τ , `t+τ ) .

We choose saving rate s ∈ [0, 1] and labor ` ∈ [0, 1] as the rescaled action. With initial capital k0 = k,

the saving rate sequence {sτ}∞τ=0, and the labor sequence {`τ}∞τ=0. This will imply the sequence of

capital as kt = kα
t

0 Πt−1
j=0s

αt−1−j
j `

(1−α)αt−1−j

j . The total payo� is

U(k0, s0, s1, . . . , `0, `1, . . .)

=
α(1− αβ + δαβ)

1− αβ
log k0 + log(1− s0) +

δαβ

1− αβ
log s0 + δ

∞∑
j=1

βj
(

log(1− sj) +
αβ

1− αβ
log sj

)

+
(1− `0)1−γ

1− γ
+
δα(1− α)β

1− αβ
log `0 + δ

∞∑
j=1

βj
(

(1− `j)1−γ

1− γ
+
α(1− α)β

1− αβ
log `j

)
.

The weakly separable requirement is satis�ed by both the saving rates and the leisure choices, and

we can apply our equilibrium concept to each choice separately.
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4.2 Approximation with Weakly Separable Economies

The assumption of weakly separable utility is quite restrictive and is often not satis�ed. In this sec-

tion, we propose a strategy to study organizational equilibrium for economies where such assumption

is not satis�ed. Our approach is to look at an economy that is weakly separable and very similar in

a particular metric to the original one, and then study organizational equilibrium in this alternative

economy. This strategy has a strong tradition in Macroeconomics where little (if anything) is known

about recursive equilibrium in distorted economies that do not have a particular functional form.

Consequently, the equilibrium is computed for a similar economy in a certain sense (See Kubler and

Schmedders (2005) and Kubler (2007) for a discussion).

To illustrate our point, consider a quasi-geometric discounting economy with state variable k and

action a. Suppose the preference is

Ψt = u(kt, at) + δ
∞∑
τ=1

βτu (kt+τ , at+τ ) ,

and the state variable evolves according to

kt+1 = F (kt, at).

In general, Ψt may not be separable between k and the sequence of actions {at+τ}∞τ=0. Instead,

we consider the log-linearized version of the original problem around a particular point (k, a). This

approximated economy is

Ψ̂t = û(kt, at) + δ
∞∑
τ=1

βτ û (kt+τ , at+τ ) .

such that

û(k, a) = u
(
k, a
)

+ kuk
(
k, a
)

(log(k)− log(k)) + aua
(
k, a
)

(log(a)− log(a))

log(k′) = log
(
k
)

+ Fk
(
k, a
)

(log(k)− log(k)) +
aFa

(
k, a
)

k
(log(a)− log(a))
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This approximated economy belongs to the class of separable economies discussed in Section 4.1,

and therefore it is weakly separable. Unlike in a standard log-linearization exercise, the stationary

allocation of this economy under the organizational equilibrium is not known ex ante. Denote the

converging point of the transition path {aτ}∞τ=0 in the organizational equilibrium as a∗. The natural

requirements for the selection of (k, a) are a∗ = a and k = F (k, a). These lead to the following

condition that characterizes the steady state a

(1− β(1− δ))
(
1− βFk

(
k, a
))
ua
(
k, a
)

+ δβuk
(
k, a
)
Fa
(
k, a
)

= 0. (4.1)

Once (k, a) are �xed according to equation (4.1), the entire transition path can be derived similar to

Section 2.2

at+1 = exp

 log(at) + δβuk(k,a)Fa(k,a)

ua(k,a)(1−βFk(k,a))
log(at)− (1− β(1− δ)) log(a)

β(1− δ)

 . (4.2)

The detailed derivation can be found in the Appendix. We will also utilize this approximated economy

in the quantitative taxation problem in the next section.

5 Organizational Equilibrium and Public Policy

In this Section, we put the notion of Organizational Equilibrium to work for the cases that we �nd

most interesting, those of the determination of government policies when the Ramsey solution is time

inconsistent.

To look at these environments we extend the framework in Section 3 to accommodate a government

(a large player) who behaves strategically, and representative households who behave competitively.

Given the current level of k ∈ K, the government chooses an action a from a set A, and the consumers

choose an action s from the set s(k) ⊆ S. The state evolves according to k′ = F (k,x, s). Let the

preferences for the government in period t are given by Ψ(kt, at, st, at+1, st+1, at+2, st+2, . . .).9

9As in Section 3, sometimes it may be necessary to transform the original government action so that it is feasible
independently of the choices of the private sector and the current level of the physical state, and so that the desired
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Assumption 5. Given a sequence of government actions a := {at}∞t=0, there exists a unique com-

petitive equilibrium s(a) := {st(a)}∞t=0, where the sequence s(a) is independent of the state k0.

Assumption 5 plays two roles. First, the uniqueness allows us to de�ne government preferences

directly over the sequence of government actions, taking as given that households will play the

associated competitive equilibrium. Second, the fact that s is independent of the initial state extends

the weak separability requirement that is at the heart of our method. We can then de�ne the

government's preferences over sequences of actions as

U(k, at, at+1, at+2, . . .) := Ψ(k, at, st(a), at+1, st+1(a), at+2, st+2(a), . . .), (5.1)

where for t ≥ 0, kt is computed recursively as

kt+1(k) = F (kt(k),xt, st(a)). (5.2)

These preferences take now the same form as in the one-agent case, so we impose once again Assump-

tions 1 and 2, and we de�ne an organizational equilibrium as in De�nition 1. While the de�nition

of an organizational equilibrium is the same in terms of sequences of actions, its connection to sym-

metric subgame-perfect equilibria of an underlying game is slightly di�erent, due to the presence of

competitive households that act in anticipation of the government's future actions. We describe this

game in detail in Appendix D.1. Two aspects are worth pointing out. First, as in the application

that we will describe shortly, we assume that the government is a �rst mover within each period,

so that households react contemporaneously to a government deviation.10 Second, the equilibrium

strategies that gradually reward the government from abstaining from short-run temptations and

conversely reverse those rewards in the event of a deviation rely on a coordination of the beliefs of

the private sector, rather than simply on the actions of future policymakers.

separability property of preferences emerges. A similar rescaling may be needed for the household choices.
10Of course, the de�nition could be adapted to environments where the opposite timing prevails.
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5.1 A Simple Taxation Example

To illustrate the general de�nition of an organizational equilibrium in a hybrid competitive-strategic

environment, we revisit Klein, Krusell, and Ríos-Rull (2008), replacing their Markov equilibrium

with our notion of organizational equilibrium. In this problem, the government sets a tax instrument,

which, depending on the case, is a �at tax on capital income, labor income, or total income. The

proceeds are used to produce a public good, and the government is constrained to a balanced budget.

In this subsection, we �rst consider a special case with inelastic labor supply and full depreciation,

where closed-form solution is possible. We then explore the quantitative version as in Klein, Krusell,

and Ríos-Rull (2008) in the next subsection.

The production function is given by

yt = f(kt, `t) = kαt `
1−α
t ,

where labor is inelastically supplied (`t = 1) and capital is subject to full depreciation, so that the

resource constraint is

ct + gt + kt+1 = f(kt, `t). (5.3)

gt is the government provision of the public good. Preferences are

∞∑
t=0

βt [log ct + γ log gt].

We derive the analytical expressions for the case in which the government instrument is a tax on

capital income. The same method can be applied when the tax is levied on labor income, or on total

income. The consumers' budget constraint is

ct + kt+1 = (1− τt)rtkt + wt.

We take the tax rate to be the government's action. Its domain is [0, 1] and is thus independent of
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initial capital. To avoid dealing with the complications of in�nitely negative utility, we constrain the

government to choices in [ε, 1− ε], where ε > 0 can be chosen arbitrarily small so that the bounds are

never hit in the equilibrium we consider. Given a sequence of tax rates {τt}∞t=0, we �rst characterize

a competitive equilibrium in terms of sequences of consumption, capital, and factor prices, and then

summarize it by a sequence of saving rates st ∈ [0, 1], which is our notion of private sector's actions.

Given a sequence of tax rates {τt}∞t=0 and an initial level of capital k0, a sequence {ct, gt, kt+1,wt, rt}∞t=0

is a competitive equilibrium if and only if the following conditions are satis�ed:

• Factor prices are equal to their marginal productivity, i.e.,

rt = fk(kt),

wt = f(kt)− rtkt;

• The household's intertemporal decision is optimal, which requires the Euler condition to hold

u′(ct) = βu′(ct+1)(1− τt+1)rt+1,

along with the transversality condition

lim
t→∞

βtu′(ct)kt+1 = 0;

• The government budget is balanced, i.e.,

gt = τtrtkt;

• And the resource constraint (5.3) holds.

Substituting factor prices, the resource constraint, and the budget constraint into the Euler equation

and summarizing private-sector actions by the saving rage st := kt+1/f(kt, `t) (which also is in [0, 1]
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independently of initial capital), a competitive equilibrium is described by the di�erence equation

st
1− st − ατt

=
αβ(1− τt+1)

1− st+1 − ατt+1
. (5.4)

along with the transversality condition

lim
t→∞

βt
st

1− ατt − st
= 0. (5.5)

Lemma 1. Assumption 5 is satis�ed for this economy. Speci�cally, given a sequence {τt}∞t=0 ∈

[ε, 1− ε]∞, there exists a unique competitive equilibrium.

Suppose the sequence of tax rates is {τj}∞j=0, the sequence of saving rates is {sτ}∞τ=0, and the initial

capital is k0. Then the sequence of capitals is,

kt = kα
t

0 Πt−1
j=0s

αt−1−j
j ,

and the current government's total payo� is

U(k0, s0, s1, . . . , τ0, τ1, . . .) =
γ

1− β
logα+

α(1 + γ)

1− αβ
log k0

+
∞∑
j=0

βj
{

log(1− ατj − sj) + γ log τj +
αβ(1 + γ)

1− αβ
log sj

}
.

Clearly, the weakly separable condition is satis�ed in this environment. In an organizational equilib-

rium, the action payo� should be equalized for governments in di�erent periods, i.e.,
∑∞

j=0 β
j

{
log(1−

ατt+j − st+j) + γ log τt+j + αβ(1+γ)
1−αβ log st+j

}
should equal to a constant for di�erent t. Utilizing the

recursive structure, the following lemma formalizes this idea.

Lemma 2. In an organizational equilibrium, given the current tax rate τ , then the current saving

rate s, the future tax rate τ ′ and s′ need to satisfy the following system of equations for some constant
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V

V = log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s, (5.6)

V = log(1− ατ ′ − s′) + γ log τ ′ +
αβ(1 + γ)

1− αβ
log s′, (5.7)

1− s′ − ατ ′

1− τ ′
=
αβ(1− s− ατ)

s
. (5.8)

Intuitively, equation (5.6) and (5.7) make sure that the action payo� for the current and future

government are the same. Equation (5.8) is corresponding to the Euler equation in the private

sector. Given τ , there could be two di�erent saving rates s that satisfy equation (5.6). To proceed,

de�ne h
(
τ ;V

)
as

h
(
τ ;V

)
= min

{
s ∈ (0, 1)

∣∣∣∣ log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s = V

}
(5.9)

which selects the smaller saving rates that delivers the action payo� V . The system (5.6) to (5.8) is

too complicated to allow analytical solutions, and we have veri�ed numerically that there does not

exist a solution to the system if the larger saving rate in equation (5.6) is selected. Therefore, in

terms of equation (5.7), only h(τ ′;V ) can be chosen as well. Otherwise, there will be no solution

in the next period. This leads to the following proposition that characterizes the organizational

equilibrium.

Proposition 6. The sequence of tax rates in the organizational equilibrium can be obtained recur-

sively by the proposal function q(τ) which satis�es

1− h(q(τ);V ∗)− αq(τ)

1− q(τ)
=
αβ(1− h(τ ;V ∗)− ατ)

h(τ ;V ∗)
, (5.10)

where V ∗ is de�ned as

V ∗ = max
τ

log(1− ατ − αβ(1− τ)) + γ log τ +
αβ(1 + γ)

1− αβ
log(αβ(1− τ)). (5.11)
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The initial tax rate τ0 is chosen such that Φ(τ0) ≤ V ∗, where Φ(τ0) is given by

Φ(τ0) = max
τ−1

log(1− ατ−1 − s−1) + γ log τ−1 +
αβ(1 + γ)

1− αβ
log s−1 (5.12)

subject to

1− s1(τ0)− ατ0

1− τ0
=
αβ(1− s−1 − ατ−1)

s−1
. (5.13)

In equilibrium, the government in each period will obtain the same constant action payo� V ∗. How-

ever, the no-waiting condition prevents a constant tax rate, and the sequence of tax rates only

approach to its steady state level τ∗ gradually. If the initial tax rate τ0 is known, then the entire

transition path can be computed recursively via the proposal function q(τ). The condition that

Φ(τ0) ≤ V ∗ then guarantees that the initial government has no incentive to wait for the next govern-

ment to make the equilibrium proposal. As in Section 2.2, we will select τ0 such that Φ(τ0) = V ∗.

Figure 6: Proposal Function q∗(s)

In the appendix, we describe the details of the Markov equilibrium and the Ramsey outcome. Let
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τM denotes the tax rate in the Markov equilibrium and τR denote the steady state tax rate in the

Ramsey outcome. The In the Markov economy, the government tends to choose a high tax rate

because they fail to take into account the e�ects of the current tax rate on past saving choices.

While in the Ramsey outcome, the government internalizes this e�ect and will set a lower tax rate in

the long run. In the organizational equilibrium, the proposal function q(τ) governs the dynamics of

the tax sequence. As a numerical example, we set β = 0.9,α = 0.36, and γ = 0.5, and the proposal

function is plotted in Figure 6. As expected, the initial tax rate τ0 is lower than τM , but it is higher

than τR. The proposal function implies a gradual transition of the tax rate from τ0 to the steady

state τ∗.

Figure 7 displays the corresponding transition paths for the tax rates and allocation in the three

economies. The initial capital is chosen to be the steady state capital level in the Markov economy. In

the Ramsey outcome, the government initially sets the tax rate as high as in the Markov equilibrium,

and rapidly adjusts it to the steady state value τR. As a result, the private consumption drops

initially since households anticipating a lower tax rate in the future. At the same time, the capital

stock accumulates to its steady state high level. The path of government spending is non-monotonic,

since the output and tax rate move in the opposite direction. In the organizational equilibrium, the

tax rates starts lower than the Markov tax rate, and it converges to τ∗ which is still higher than

the long-run level in the Ramsey outcome. The transition of the tax rate is slower than the Ramsey

outcome to make sure that the government action payo� is equalized across periods. Because of a

lower tax rate, the capital stock is higher than the Markov equilibrium.

5.2 A Quantitative Taxation Model

In this section, we revisit the quantitative taxation problem in Klein, Krusell, and Ríos-Rull (2008).

We extend previous section to allow elastic labor supply, partial depreciation, and three types of
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Figure 7: Transition Path

taxation. The preference is

∞∑
t=0

βt [γc log ct + γ` log(1− `t) + γg log gt].

where `t stands for labor. The budget constraint for the household is

ct + it = wt`t + rtkt − (τ `t + τt)wt`t −
(
τkt + τt −

δ(τkt + τt)

rt

)
rtkt
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where it is investment, τ `t is labor income tax, τkt is capital income tax, and τt is total income tax. The

last term on the right-hand of the budget constraint allows for the possibility of capital depreciation

deduction. In Klein, Krusell, and Ríos-Rull (2008), the capital evolves according to

kt+1 = (1− δ)kt + it.

However, this speci�cation does not allow the government's lifetime utility to be separable between

capital and the sequence of tax rates. Instead, we specify the law of motion of capital to be

log kt+1 = log k + (1− δ) log kt + δ log it.

This can be viewed as a log-linear approximation of the original law of motion, and it �ts into the

class of separable economies discussed in Section 4.1. This modi�cation delivers the weakly separable

property, and therefore we can apply the organizational equilibrium to this approximated economy.

We set the parameters to be α = 0.36,β = 0.96, δ = 0.08, γg = 0.09, γc = 0.27, γ` = 0.64. We choose

γg such that the steady state government spending to GDP ratio is 18% in the Pareto e�cient

allocation, and γ` such that the working time is 35% of a day. The rest of the parameters are

standard in the literature. The properties of the transition path are very similar to what we have

shown in the previous section, and in this part we discuss mainly the tax rates and allocation in the

steady state. Table 1 shows the steady state comparison among the Pareto allocation, the Ramsey

outcome, the Markov equilibrium, and the organizational equilibrium. The results regarding the

Ramsey outcome and the Markov equilibrium are very similar to those obtained in Klein, Krusell,

and Ríos-Rull (2008), and we will focus our attention to the organizational equilibrium. Throughout

the three di�erent tax instruments, a common feature is that the tax rates and the allocation in the

organizational equilibrium always stay between the Ramsey outcome and the Markov equilibrium.

This feature should be well understood from the discussion in Section 2.2 and Section 5.1. The capital

income taxation is the most distortionary one among the three taxes. In the Markov equilibrium,

the output level is only 35% compared with the Pareto e�cient output level, while the output level
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Table 1: Steady State Comparison

Aggregate
statistics

Labor income tax Capital income tax Total income tax

Pareto Ramsey Markov Organization Pareto Ramsey Markov Organization Pareto Ramsey Markov Organization

y 1.000 0.701 0.711 0.706 1.000 0.588 0.347 0.553 1.000 0.669 0.679 0.674

k/y 2.959 2.959 2.959 2.959 2.959 1.735 0.624 1.529 2.959 2.528 2.579 2.553

c/y 0.510 0.510 0.544 0.527 0.510 0.712 0.666 0.704 0.510 0.533 0.555 0.544

g/y 0.254 0.254 0.219 0.236 0.254 0.149 0.284 0.174 0.254 0.265 0.239 0.252

c/g 2.008 2.008 2.483 2.234 2.008 4.785 2.345 4.045 2.008 2.008 2.325 2.156

` 0.350 0.245 0.249 0.247 0.350 0.278 0.292 0.280 0.350 0.256 0.257 0.256

τ 0.397 0.342 0.369 0.673 0.916 0.732 0.332 0.301 0.317

in the organizational equilibrium is 55% of the Pareto allocation and it is only slightly below the

Ramsey outcome. We interpret this result as a large improvement over the Markov equilibrium.

For labor income tax and total income tax, the di�erence between the Ramsey outcome and the

Markov equilibrium is much smaller. Since the organizational equilibrium stays in between of the

two benchmarks, we only conclude that it brings the allocation closer to the Ramsey outcome.
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6 Conclusion

TO BE ADDED.
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Appendix

A Sustainable Equilibrium in Section 2

The initial agent's problem is

max
{ct}∞t=0

u(c0) + δ

∞∑
t=1

βtu (ct) s.t.

ct + kt+1 = f(kt),

u(ct) + δ

∞∑
j=1

βtu (ct+j) ≥ ΦM (kt),

k0 given .

Let ξt and λt denote the multipliers associated with the resource constraint and the participation constraint.

The Lagrangian is

J = (1− δ)u(c0) + δ

∞∑
t=0

βt
{
u(ct) + λt

(
(1− δ)u(ct) + δ

∞∑
k=0

βtu(ct+k)− φM (kt)

)
− ξt (ct + kt+1 − f(kt))

}
.

Note that
∞∑
t=0

βtλtδ

∞∑
k=0

βtu(ct+k) = δ

∞∑
t=0

βtµtu(ct),

where

µt = µt−1 + λt, with µ−1 = 0.

It follows that

J = (1− δ)u(c0) + δ

∞∑
t=0

βt
{

(1 + λt + δµt−1)u(ct)− λtΦM (kt)− ξt (ct + kt+1 − f(kt))

}

Frot t > 0, the �rst order conditions with respect to ct and kt+1 are

(1 + λt + δµt−1)uc(ct) = ξt,

β(ξt+1fk(kt+1)− λt+1ΦMk (kt+1)) = ξt,
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which leads to

(1 + λt + δµt−1)uc(t) = β((1 + λt+1 + δµt)uc(ct+1)fk(kt+1)− λt+1ΦMk (kt+1))

and can be rewritten as

(1 + λt + δµt−1)
st

1− st
= β

(
(1 + λt+1 + δµt)

α

1− st+1
− λt+1φ

)
,

where φ = α(1−αβ+δαβ)
1−αβ . De�ne the normalized multipliers zt and vt as

zt ≡
1 + δµt

1 + λt + δµt−1
,

vt+1 ≡
λt+1

1 + λt + δµt−1
.

Then the allocation needs to satisfy

st
1− st

= β

(
(zt + vt+1)

α

1− st+1
− vt+1φ

)
zt+1 =

1 + δµt+1

1 + λt+1 + δµt
=
zt + δvt+1

zt + vt+1

For t = 0, we have

(1− δ)uc(0) + δ(1 + λ0 + δµ0)uc(0) = δξ0

β(ξ1fk(1)− λ1Uk(1)) = ξ0

which leads to

(
1

δ
+ λ0 + δµ0

)
s0

1− s0
= β

(
(1 + λ1 + δµ0)

α

1− s1
− λ1φ

)
.

From now on, we use a guess-and-verify approach to solve for the equilibrium saving rates. The �rst scenario

is that the participation constraint does not bind in the steady state, i.e., H(sR) > H(sM ). If this is the case,

then the participation constraint will never bind, and the sequence of saving rates in the Ramsey outcome will

be the solution in the sustainable equilibrium. To verify this, one can simply set λt = 0 for all t ≥ 0. The �rst
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order conditions in period 0 and in subsequent periods are

1

δ

sM

1− sM
= β

α

1− sR
,

sR

1− sR
= β

α

1− sR
,

both of which are true.

The second scenario is that the participation constraint binds in the steady state, i.e., H(sR) = H(sM ). The

conjecture is that the saving rate is s0 = sM and st = sT for t > 0, where11

sT = max
s

{
s : H(s) = H

(
sM
)}

.

In the steady state, the following system of equations need to be satis�ed

z∞ =
z∞ + δv∞
z∞ + v∞

,

sT

1− sT
= β

(
(z∞ + v∞)

α

1− sT
− φv∞

)
.

The solution is that

z∞ =
sT

1− sT
1− αβ
αβ

.

To verify the conjecture, consider the �rst order condition in the �rst period where λ0 = µ0 = 0,

1

δ

sM

1− sM
=

α

1− αβ
= β

(
(1 + λ1)

α

1− sT
− λ1φ

)
.

To make the �rst order condition hold, λ1 has to equal to

λ1 =
v∞
z∞

.

11It is easy to verify that both the two solutions satisfy the �rst order conditions, but the one with higher saving
rate yields higher utility for the initial agent.
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To see this more clearly, note that the steady state condition implies that

sT

1− sT
= z∞

α

1− αβ
= β

(
(z∞ + v∞)

α

1− sT
− φv∞

)
,

which can be further written as

α

1− αβ
= β

((
1 +

v∞
z∞

)
α

1− sT
− v∞
z∞

φ

)
= β

(
(1 + λ1)

α

1− sT
− λ1φ

)
.

For t ≥ 1, it is su�cient to show

z1 =
1 + δλ1
1 + λ1

=
1 + δ v∞z∞
1 + v∞

z∞

= z∞.

B Proof of Proposition 4.

To prove this we rely on a useful lemma, which introduces a convenient way of representing equilibria through

their values, similarly to Abreu, Pierce, and Stacchetti's (1986; 1990) method.12

Lemma 3. Let V ∗ ∈ R and V̂ ⊂ R be a value and a set of continuation values that satisfy the following

properties:

1.

∀a ∈ A ∃v̂ ∈ V̂ : Ṽ (a, v̂) ≤ V ∗;

2.

∀v ∈ V̂ ∃(a, v̂) ∈ A× V̂ : Ṽ (a, v̂) = V ∗ ∧W (a, v̂) = v

3. There exists no value V ∗∗ > V ∗ and set
ˆ̂V that satis�es properties 1 and 2; furthermore, there is no set

V̂a ⊃ V̂ that satis�es properties 1 and 2 together with V ∗.

Then:

• Construct an arbitrary sequence of actions {a∗t }∞t=0 recursively as follows. In period 0, pick v̂∗0 ∈ V̂

12Note, however, that we cannot adopt their method to recursively compute the desired sets. Given V ∗, V̂ can be
computed recursively as in Abreu, Pierce, and Stacchetti. However, without further assumptions the set of values of
V ∗ for which V̂ is de�ned need not be convex, which makes �nding its maximum di�cult.
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and (a∗0, v̂∗1) ∈ A × V̂ such that Ṽ (a∗0, v̂∗1) = V ∗ and W (a∗0, v̂∗1) = v̂∗0 . In each subsequent period, pick

(a∗t , v̂
∗
t+1) ∈ A × V̂ such that Ṽ (a∗t , v̂

∗
t+1) = V ∗ and W (a∗t , v̂

∗
t+1) = v̂∗t . Constructing such a sequence is

possible by the de�nition of V ∗ and V̂. The sequence so constructed is the outcome of a reconsideration-

proof equilibrium;

• If {a∗t }∞t=0 is the equilibrium path of a reconsideration-proof equilibrium, Ṽ (a∗0, a∗1, ...) = V ∗ and V̂ (a∗t , a
∗
t+1, ...) ∈

V̂ for any t > 0.

Proof.

First, we prove that the recursively-constructed sequence {a∗t }∞t=0 satis�es

Ṽ (a∗t , V̂ (a∗t+1, a∗t+2, ...)) = V ∗ ∀t ≥ 0 (B.1)

and

V̂ (a∗t , a
∗
t+1, a∗t+2, ...) ∈ V̂ ∀t ≥ 0. (B.2)

Note that, if v̂∗T = V̂ (a∗T+1, a∗T+2, a∗T+3, ...) for some period T , iterating backwards we �nd that v̂∗t =

V̂ (a∗t+1, a∗t+2, a∗t+3, ...) for all t < T 13, so that equations (B.1) and (B.2) hold.

De�ne

{at}∞t=0 ∈ arg min
{at}∞t=0

V̂ (a0, a1, ...)

and similarly let {āt}∞t=0 be a sequence that attains the maximum. Both exist by the compactness of A and

the continuity of V̂ (in the product topology).

Next, truncate the sequence {a∗t }∞t=0 at time S > T and replace the continuation with {at}∞t=0 or {āt}∞t=0. By

assumption 4 and the monotonicity of W , we have

V̂ (a∗T , a∗T+1, ..., a∗S , a0, a1, ...) ≤ V̂ (a∗T , a∗T+1, ..., a∗S , a∗S+1, a∗S+2, ...) ≤ V̂ (a∗T , a∗T+1, ..., a∗S , ā0, ā1, ...) (B.3)

13Should it be v̂∗T = V̂ (a∗T , a
∗
T+1, a

∗
T+2, a

∗
T+3, ...) and v̂

∗
t = V̂ (a∗t , a

∗
t+1, a

∗
t+2, a

∗
t+3, ...)?
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and

V̂ (a∗T , a∗T+1, ..., a∗S , a0, a1, ...) = W (a∗T ,W (a∗T+1, ...W (a∗S ,W (a0,W (a1, ...)...))...)) ≤

W (a∗T ,W (a∗T+1, ...W (a∗S , v̂∗S)...)) = v̂∗T ≤

W (a∗T ,W (a∗T+1, ...W (a∗S ,W (ā0,W (ā1, ...)...))...)) = V̂ (a∗T , a∗T+1, ..., a∗S , ā0, ā1, ...)

(B.4)

Taking limits as T → ∞ in equations (B.3) and (B.4) and exploiting the continuity of V̂ according to the

product topology, the left-most and right-most expressions in the inequalities converge to the same value,

which then implies that indeed v̂∗T = V̂ (a∗T+1, a∗T+2, a∗T+3, ...) and (B.1) and (B.2) hold.

To complete the proof of the �rst point, we need to show that there exists no symmetric subgame-perfect equi-

librium whose payo� is strictly greater than V ∗. By contradiction, suppose that there is such an equilibrium

with value V ∗∗ > V ∗. Let σ∗∗ be the strategy pro�le representing one such equilibrium. De�ne

V̂b := {v : v = V̂ (a∗∗t+1|ht , a∗∗t+2|ht , a∗∗t+3|ht , ...), ht ∈ At},

where {a∗∗s |ht}∞s=t+1 is the equilibrium path implied by the strategy pro�le σ∗∗ following a history ht. The

pair (V ∗∗, V̂b) satis�es property 1 in the lemma, since otherwise σ∗∗0 would not be optimal at time 0. It also

satis�es property 2 since σ∗∗ is symmetric and by the de�nition of V̂b. But then this implies that property 3

in the lemma does not hold for V ∗, establishing a contradiction.

In the previous point we proved that, given V ∗ and V̂, we can construct a reconsideration-proof equilibrium

of value V ∗. Since all reconsideration-proof equilibria must have the same value, it must be the case that

Ṽ (a∗0, a∗1, ...) = V ∗. Furthermore, repeating the steps of the previous point, we can prove that the value V ∗

and the set

V̂a := {v : v = V̂ (a∗t+1|ht , a∗t+2|ht , a∗t+3|ht , ...), ht ∈ At},

satisfy properties 1 and 2. By the de�nition of V̂, it follows that V̂a ⊆ V̂.

While not essential for the proof of Proposition 4, the following lemma is useful for computations:

Lemma 4. The set V̂ de�ned in Lemma 3 is convex.14

14Lemma 3 de�nes a unique set, since the union of all sets satisfying properties 1 and 2 satis�es properties 1 and 2
as well.
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Proof. We �rst de�ne the set V̂c by relaxing property 2 in Lemma 3 to be the following:

∀v ∈ V̂c ∃(a, v̂) ∈ A× V̂ : Ṽ (a, v̂) ≥ V ∗ ∧W (a, v̂) = v. (B.5)

We will later prove that V̂c = V̂.

Simple case. First, if V̂c is a singleton, then it is necessarily convex and V̂c = V̂: by property 3 of Lemma 3,

V ∗ should be raised until Ṽ (a, v̂) = V ∗ at the single element v̂ ∈ V̂c, with no e�ect on property 2 and relaxing

the constraint in property 1.

From now on, we study the case in which V̂c contains at least two values.

Step 1. To prove that V̂c is convex, we prove that its convex hull, Co(V̂c), satis�es properties 1 and 2 as well

(and of course Co(V̂c) ⊃ V̂c unless V̂c is convex as well). Property 1 is immediate from the monotonicity of Ṽ .

Let v1, v2 ∈ V̂c, and let (a1, v̂1), (a2, v̂2) elements of A×V̂c be two pairs of actions and continuation values that

satisfy property 2 of Lemma 3. Consider their convex combination (αv1+(1−α)v2,αv̂1+(1−α)v̂2), α ∈ [0, 1].

Since Ṽ is continuous and quasiconcave and W is continuous, Ṽ (αv1 + (1− α)v2,αv̂1 + (1− α)v̂2) ≥ V ∗, and

W (αv1 + (1 − α)v2,αv̂1 + (1 − α)v̂2) takes all values in [v1, v2] as α varies between 0 and 1. Hence, all

intermediate values satisfy property 2 as well, which completes the proof that Co(V̂c) satis�es property 2.

Step 2. To prove that V̂c = V̂, proceed as follows. De�ne vc := min{V̂c} and v̄c := max{V̂c}.15 By de�nition,

we can �nd (a, v̂) and (ā, ¯̂v) such that

Ṽ (a, v̂) ≥ V ∗ ∧W (a, v̂) = v

and

Ṽ (ā, ¯̂v) ≥ V ∗ ∧W (ā, ¯̂v) = v̄.

Since A is convex, we can construct within it a line from a to ā by de�ning a(α) := αa+ (1− α)ā, α ∈ [0, 1].

By the quasiconcavity of Ṽ , we know

Ṽ (a(α),αv̂ + (1− α)¯̂v) ≥ V ∗.

15It is straightforward to prove that V̂c is closed, by the continuity of the functions de�ning it.
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By property 1 of Lemma 3, for each action a(α) and the monotonicity and continuity of Ṽ we have

Ṽ (a(α), v) ≤ V ∗.

Since V̂c is convex, we can �nd a (unique) value v̂(α) such that

Ṽ (a(α), v̂(α)) = V ∗.

Monotonicity and continuity of Ṽ imply that v̂(α) is a continuous function. It then follows that V̂ (a(α), v̂(α))

is a continuous function of α. As α ∈ [0, 1], this function must take all values between v and v̄, proving that

the property 2 of Lemma 3 is satis�ed by V̂c and thus V̂c = V̂.

We are now ready to prove Proposition 4.

Proof. The second property of the value V ∗ and the set V̂ in Lemma 3 implies that we can construct a

function g : V̂ → R × V̂ with the property that Ṽ (g(v)) = V ∗ and W (g(v)) = v.16 Starting from any value

v0 ∈ V̂, we can construct recursively a path (at, vt+1) = g(vt). By Lemma 3, this is the equilibrium path of a

reconsideration-proof equilibrium. It will thus be an organizational equilibrium provided that

V (at, vt+1) ≥ max
a

Ṽ (a, v0) ∀t.

By the de�nition of V, this property is satis�ed by its least element, v;17 hence, it will be satis�ed provided

that the initial value v0 is su�ciently low.

We now proceed to prove Proposition 5.

Proof. De�ne a correspondence ζ : R×R⇒ R as follows:

v ∈ ζ(v′, v∗)⇐⇒ ∃a ∈ A :


Ṽ (a, v′) = v∗

W (a, v′) = v.

(B.6)

16This function may not be unique.
17 By the monotonically of Ṽ in its second argument and the property 1 of V, Ṽ (a, v) ≤ V ∗ for all a ∈ A.
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In words, given (v∗, v′), v belongs to the correspondence if there is an action a which, together with a

continuation value v′, yields utility v∗ when evaluated according to the decision maker's preferences (Ṽ ) and

utility v when evaluated with her continuation utility function W .

We prove that there exists a value v∗ for which ζ is nonempty and admits a �xed point in continuation utilities

(v = v′). We do so by proving that a Markov equilibium (aM , vM ) exists, such that18

V ∗ = Ṽ (aM , vM ) = max
a

Ṽ (a, vM ) (B.7)

and

vM = W (aM , vM ). (B.8)

To prove the existence of a Markov equilibrium, we construct a correspondence â(.) from A into itself by

setting

â(a) = max
a0∈A

V̂ (a0, a, a, a, ...).

By the usual compactness and continuity properties, this correspondence is nonempty, compact-valued, and

upper hemicontinuous. Quasiconcavity of V̂ ensures that it is also convex-valued. Hence, the correspondence

has a �xed point by Kakutani's theorem; let aM be one such �xed point. Given Assumption 4, letting

vM := V̂ (aM , aM , aM , ...), equations (B.7) and (B.8) are satis�ed.

We thus know vM ∈ ζ(vM , Ṽ (aM , vM )). Once again, our assumptions about compactness and continuity

imply that the correspondence ζ is upper hemicontinuous. Let V ∗ be the maximal value for which ζ admits

a �xed point in continuation utilities. In the proofs below, it is useful to establish that

v ∈ ζ(v′,V ∗) =⇒ v ≤ v′. (B.9)

Suppose (B.9) is not satis�ed. Let (a, v′) be such that V (a, v′) = V ∗ and W (a, v′) > v′. Holding the action

a �xed, continuity and monotonicity imply that higher values of v′ lead to higher values of V (a, v′) and

W (a, v′). As long as W (a, v′) > v′, we know that v′ < max{at}∞t=0
V̂ (a0, a1, ...) and can thus be raised further.

Eventually, we will attain a value vh > v′ for which W (a, vh) = vh (this has to happen, since W (a, v′) is

bounded by the maximum above). Let V h := V (a, vh) > V ∗. We just established that a �xed point of ζ(.,V h)

exists, which contradicts the assumption that V ∗ is the highest value for which a �xed point can be found.

18Should it be v∗ instead of V ∗ in equation (B.7)?
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In our next step, we prove that there are no symmetric equilibria with value V ∗∗ > V ∗. By the de�nition of V ∗,

given any combination of an action and a continuation utility (a, v′), if Ṽ (a, v′) = V ∗∗ thenW (a, v′) < v′. This

implies that any equilibrium path with value V ∗∗ would feature a strictly increasing sequence of continuation

values; convergence is ruled out, because continuity and compactness would imply that the limiting point

would be a �xed point of ζ, which is inconsistent with V ∗∗ > V ∗. Since the set of possible continuation values

is bound by

max
{at}∞t=0

V̂ (a0, a1, . . .),

no such equilibrium path can exist.

We now prove that there exist symmetric equilibria with value V ∗, which then implies that any such equilibrium

is reconsideration proof. Let vSS be the maximal �xed point of ζ(.,V ∗). For any continuation value v > vSS ,

a repetition of the arguments described above for V ∗∗ imply that no equilibrium path would be possible.19

We prove instead that there exists a convex set V = [v`, v
SS ] which, together with V ∗, satis�es the properties

of Lemma 3, where

v` := min
v′≤vSS

min ζ(v′,V ∗). (B.10)

To do so, prove �rst that, for any action a ∈ A, Ṽ (a, min{at}∞t=0
V̂ (a0, a1, ...)) ≤ V ∗. By contradiction, suppose

that an action aL such that Ṽ (aL, min{at}∞t=0
V̂ (a0, a1, ...)) > V ∗ existed. We could then repeat the same steps

used to prove (B.9) and construct a steady state with value higher than V ∗.

Since Ṽ (a, min{at}∞t=0
V̂ (a0, a1, ...)) ≤ V ∗ ∀a ∈ A, we can de�ne

v′min := min
(a,v′)

v′ := Ṽ (a, v′) = V ∗.

Since there exists an action aSS such that V (aSS , vSS) = V ∗, v′min ≤ vSS . Also, by equations (B.9) and (B.10),

v` ≤ vmin
20. Hence, V (a, v`) ≤ V ∗ ∀a ∈ A21: Property 1 of Lemma 3 is satis�ed by the value V ∗ and the

continuation set [v`, v
SS ]. To prove Property 2, let a` and v

′
` be such that W (a`, v

′
`) = v`, and λ ∈ [0, 1]22. As

we just established, Ṽ (λa`+(1−λ)aSS , v`) ≤ V ∗. By quasiconcavity, Ṽ (λa`+(1−λ)aSS ,λv′`+(1−λ)vSS) ≥ V ∗.
19If along the equilibrium path, for some T ≥ 0, vT > vSS , then vt > vSS for all t > T . Since {vt} is bounded and

monotonically increasing, the limiting point will be a �xed point of ζ, which is a contradiction to that vSS is the largest
�xed point.

20Should here be v′min instead of vmin? Is the prime supposed to make it di�erent from v ≡ min{at} V̂ (a0, a1, . . .)?
21Should it be Ṽ (a, v`) and Ṽ (aSS , vSS)?
22Should we choose a` and v

′
` such that W (a`, v

′
`) = v` and Ṽ (a`, v

′
`) = V ∗? Is it possible that v′` > vSS?
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Strict monotonicity implies that there exists a unique value vλ such that Ṽ (λaSS + (1−λ)a`, vλ) = V ∗, which

must vary continuously with λ by the continuity of Ṽ . It follows that W (λaSS + (1−λ)a`, vλ) is a continuous

function of λ and it takes all values between v` and v
SS , proving that Property 2 of Lemma 3 holds. Finally,

from equations (B.9) and (B.10), we know that any value v 6∈ [v`, v
SS ] could only be attained by some action a

with a continuation value v′ > vSS , which would lead to nonexistence in subsequent periods. Hence, [v`, v
SS ]

is the largest set that satis�es Properties 1 and 2 of Lemma 3 together with the value V ∗, completing the proof

that a reconsideration-proof equilibrium has value V ∗, and thus that in turn the organizational equilibrium

with the state variable is also associated with an action value V ∗.

Finally, suppose that V is strictly quasiconcave. Let aSS be the unique action that attains maxa V (a, a, a, ...).

If this steady state is not a Markov equilibrium, then aSS < maxa Ṽ (a, vSS). In this case, a sequence that

starts at aSS and stays constant violates the no-delay condition.

C Approximated Equilibrium

Consider the class of economies speci�ed in Section 4.1.

Ψt = u(kt, at) + δ

∞∑
τ=1

βτu (kt+τ , at+τ ) . (C.1)

such that

u(k, a) = C10 + C11h(k) + C12m(a) (C.2)

h(k′) = C20 + C21h(k) + C22g(a) (C.3)

In the approximated equilibrium, C is a constant matrix chosen to match the level and �rst order derivative.

C =

 u(k, a)− uk(k,a)

hk(k)
h(k)− ua(k,a)

ma(a)
m(a) uk(k,a)

hk(k)

ua(k,a)
ma(a)

h(k)− Fk(k, a)h(k)− hk(k)Fa(k,a)
ga(a)

g(a) Fk(k, a) hk(k)Fa(k,a)
ga(a)

.

 (C.4)
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It is easy to verify the weakly separable utility. Supposing the sequence of rescaled actions is {aτ}∞τ=0 and the

initial state is k0, then the sequence of state variables is

h(kt) = C20
1− Ct21
1− C21

+ Ct21h(k0) + C22

t−1∑
τ=0

Ct−1−τ21 g(aτ ). (C.5)

The lifetime utility is given by

U(k0, {aτ}∞τ=0) =
1− β + δβ

1− β
C10 +

C11(1− βC21 + δβC21)

1− βC21
h(k0) + V ({aτ}∞τ=0), (C.6)

where

V ({aτ}∞τ=0) = C12m(a0) +
C11C22δβ

1− βC21
g(a0) + δ

∞∑
j=1

βj
(
C12m(aj) +

βC11C22

1− βC21
g(aj)

)
. (C.7)

Let Vt ≡ V ({aτ}∞τ=t), then

Vt = C12m(at) +
δβC11C22

1− βC21
g(at) + βVt+1 − β(1− δ)C12m(at+1). (C.8)

In a stationary allocation,

(1− β)V = (1− β(1− δ))C12m(a) +
δβC11C22

1− βC21
g(a). (C.9)

In an organizational equilibrium, the interior maximum, a∗, has to equal to the stationary rescaled action a.

Therefore,

(1− β(1− δ))C12ma(a) +
δβC11C22

1− βC21
ga(a) = 0. (C.10)

It follows that the stationary allocation has to be satisfy

(1− β(1− δ))ua(k, a)(1− βFk(k, a)) + δβuk(k, a)Fa(k, a) = 0. (C.11)

Note that this condition characterizes the stationary allocation and is independent of the choice of h(k),m(a), g(a).
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Along the transition, the proposal function at+1 = q(at) is given by

at+1 = m−1

{
C12m(at) + δβC11C22

1−βC21
g(at)− (1− β)V ∗

β(1− δ)C12

}
(C.12)

In terms of the initial starting point, recall that

V ({aτ}∞τ=0) = C12m(a0) +
C11C22δβ

1− βC21
g(a0) + δ

∞∑
j=1

βj
(
C12m(aj) +

βC11C22

1− βC21
g(aj)

)
(C.13)

If the initial agent take future actions as given, then she will simply maximize C12m(a0) + C11C22δβ
1−βC21

g(a0),

which leads to the Markov action aM that solves

C12ma(aM ) +
C11C22δβ

1− βC21
ga(aM ) = 0 (C.14)

To make sure the initial agent is willing to make a proposal, it has to be that

a0 = q(aM ). (C.15)

D Taxation Section

D.1 A Description of the Game for Policy Applications

In Section 3, there is one player for each period. Here, the policymaker is still represented by one player for

each period, but we also include a continuum of identical households that face a dynamic problem.23

The game unfolds as follows. In each period, the government in power takes an action a ∈ A �rst. Then,

the households move simultaneously. Each household takes an action s ∈ S. The aggregate state for next

period evolves according to k′ = F (k, a, s). A full description would require us to specify what happens when

households take di�erent actions, so that, while they are identical ex ante, they may end up being di�erent

ex post. However, in most of the applications that are of interest, the household optimization problem has

a unique solution. Hence, there can be no equilibrium in which identical households take di�erent actions.

23The notion of an equilibrium can be readily extended to environments with �nite types of households, or to
economies with overlapping generations. Extending organizational equilibrium to environments can be done by inter-
acting the analysis here with distributional notions of equilibrium as in Jovanovic and Rosenthal (1988).
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Moreover, a deviation from a single household has no e�ect on aggregates. We exploit these properties and

specify the evolution of the economy and preferences only after histories in which (almost) all households have

taken the same action. Starting from an arbitrary period t and state kt, household preferences are given by a

function

Z(kt, {av, sv, s−v }∞v=t), (D.1)

where sv represents the action taken by the individual household, and s−v is the action taken by (almost) all

other households. We assume that S is a convex compact subset of a locally convex topological linear space

and that Z is jointly continuous in all of its arguments (in the product topology), strictly quasiconcave in the

own action sequence {sv}∞v=t, and weakly separable between the state and the remaining arguments. We also

assume that household preferences are time consistent. More precisely, we assume that, given an initial level

of the state kt and a sequence of other households' actions {av, sv}∞v=t,

Z(kt, {av, sv, sv}∞v=t) = max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t) =⇒ Z(F (kt, at, st), {av, sv, sv}∞v=t+1) =

max
{s̃v}∞v=t+1

Z(kt, {av, s̃v, sv}∞v=t+1).

(D.2)

Equation (D.2) states that, if it is optimal from period t to follow the same sequence of actions that all other

households are taking, then it is also optimal to follow that sequence also in subsequent periods, as long as

other households also continue to do the same. Notice that we exploit the fact that each household has no e�ect

on the aggregates to leave the continuation preferences over several histories unspeci�ed; this is convenient,

because it prevents us from having to explicitly introduce individual state variables. To be concrete, consider

the taxation game to which we apply this general de�nition; in that game, st is the individual saving rate.

Equation (D.2) is written from the perspective of a household that starts with the same level of kt as the

aggregate, which allows us not to draw a distinction between the two. If that household �nds it optimal to

follow the same saving rate as all other households, then it will optimally choose to have the same level of

kt+1, and equation (D.2) ensures that the continuation plan will remain optimal from period t+ 1 onwards. If

instead the household chooses a di�erent saving rate from others, then it would potentially enter period t+ 1

with a di�erent level of the state from the aggregate; however, whenever this choice does not maximize (D.1),

we know this would not be an optimal individual choice without need to specify the entire continuation path;

moreover, the individual deviation does not a�ect aggregate incentives, hence we do not need to keep track of

it for the purpose of computing other households' best response either.
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We de�ne a competitive equilibrium from period t and a state kt as a sequence {av, sv}∞v=t such that

Z(kt, {av, sv, sv}∞v=t) = max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t).

Proposition 7. Given any sequence of policy actions {av}∞v=t, a competitive equilibrium exists.

Proof. Fix kt and {av}∞v=t. Given our assumptions on S and Z, the best-response function

br({sv}∞v=0) := arg max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t)

is well de�ned and continuous. By Brouwer's theorem, it admits a �xed point, which is a competitive equilib-

rium.

Equation (D.2) ensures that the continuation of a competitive equilibrium is a competitive equilibrium itself.

In what follows, we proceed by assuming that the competitive equilibrium is unique given the policy action,

which can be veri�ed in each speci�c application. Non-uniqueness can be accommodated by assuming a

selection rule on how households coordinate when multiple equilibria are possible, as long as this rule has

the property that the continuation of a selected competitive equilibrium is selected itself as a continuation

competitive equilibrium.

At time t, government preferences are given by a function Ψ(kt, at, st, at+1, st+1, at+2, st+2, . . .).

A symmetric history of play is a record of all actions taken in the past; we distinguish between histories at

which the government is called to play, which are given by h0 := ∅ and

ht := (a0, s0, a1, s1, ..., at−1, st−1), t > 0,

and histories at which households are called to play, that take the form of hp,0 := a0 and

hp,t := (a0, s0, a1, s1, ..., at−1, st−1, at), t > 0.

Let H be the set of histories at which the government is called to play, and Hp the set of histories at which

households are called to play. For the reasons discussed above, we only keep track of histories in which almost
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all households have taken the same action.

A strategy for the households is a mapping σp : Hp → S; likewise, a government strategy is a mapping

σ : H → A. A symmetric strategy pro�le is a pair (σp,σ), representing how all households and the government

will act following any symmetric history; it recursively induces a path of play {at, st}∞t=0.

A symmetric strategy pro�le (σp,σ) is a sequential equilibrium if the following is true:

• Given that the government will follow σ and other households will follow σp, the actions dictated by σp

are optimal for each household. After any history hp,t, each household takes as given the government

policy action at and the initial state kt, which is recursively determined by the history of past play.

Moreover, the strategy σp followed by other households and the government strategy σ determine the

future path of aggregate play, {sv, av+1}∞v=t. Household optimality requires that the sequence of actions

prescribed by σp is optimal along this path: equivalently stated, it requires the actions prescribed by

σp to be a competitive equilibrium from period t on, following any arbitrary (symmetric) history.

• Given that households will follow the strategy σp and that future governments will follow the strategy

σ, and given any past history ht, the current government choice σ(ht) is optimal.

Proposition 8. There exists a sequential equilibrium of the game, in which the payo� from the weakly separable

part is independent of the past.

[to be completed]

D.2 Proof of Lemma 1

First consider the following social planer's problem

max

∞∑
t=0

βt log ct

subject to the resource constraint

ct + kt+1 = kαt
t .
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Note that αt in the production function can be time-varying in a deterministic fashion. The Euler condition

is

1

ct
= αt+1βk

αt+1−1
t+1

1

ct+1
.

Let µt denote the saving rate, i.e., kt+1 = µtk
αt
t , then the Euler condition above can be rewritten as

1

(1− µt)ztkαt
t

= αt+1βk
αt+1−1
t+1

1

(1− µt+1)k
αt+1

t+1

,

which can be further simpli�ed to

µt
(1− µt)

= αt+1β
1

(1− µt+1)

The associated transversality condition is

lim
t→∞

βt
kt+1

ct
= lim
t→∞

βt
µt

(1− µt)
= 0.

By the standard concavity arguments, the planning problem has a unique solution and the Euler condition

and the transaversality condition are necessary and su�cient for optimality. Hence, there must be a unique

sequence of saving rates that satis�es them.

Now consider the tax-distorted competitive equilibrium in Section. In the tax-distorted competitive equilib-

rium, de�ne ϕt as the after taxation saving rate, i.e., kt+1 = ϕt(1−ατt)kαt , the Euler condition for households

is

1

ct
= αβkα−1t+1

(1− τt+1)

ct+1

or

1

(1− ϕt)(1− ατt)kαt
= αβkα−1t+1

(1− τt+1)

(1− ϕt+1)(1− ατt+1)ϕt(1− ατt)kαt

which can be simpli�ed to

ϕt
(1− ϕt)

= α
1− τt+1

1− ατt+1
β

1

(1− ϕt+1)

The transversality condition is

lim
t→∞

βt
kt+1

ct
= lim
t→∞

βt
ϕt

(1− ϕt)
= 0

The Euler and the transversality condition must hold in the competitive equilibrium of the original economy.

By de�ning αt = 1−τt+1

1−ατt+1
, there exists a unique sequence of saving rates that satis�es them in the social

planner's problem. As a result, there exists a unique competitive equilibrium.
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D.3 Proof of Lemma 2

In an organizational equilibrium, the action payo� to government in di�erent periods should be the same.

Therefore, for some constant P ,

P =

∞∑
j=0

βj
{

log(1− ατt+j − st+j) + γ log τt+j +
αβ(1 + γ)

1− αβ
log st+j

}
= log(1− ατt − st) + γ log τt +

αβ(1 + γ)

1− αβ
log st

+ β

∞∑
j=0

βj
{

log(1− ατt+j+1 − st+j+1) + γ log τt+j+1 +
αβ(1 + γ)

1− αβ
log st+j+1

}
= log(1− ατt − st) + γ log τt +

αβ(1 + γ)

1− αβ
log st + βP

De�ne V ≡ (1− β)P , it follows that for all t,

log(1− ατt − st) + γ log τt +
αβ(1 + γ)

1− αβ
log st = V

This leads to condition (5.6) and (5.7). In addition, the Euler condition for consumers needs to be satis�ed,

which leads to condition (5.8).

D.4 Proof of Proposition 6

Equation (5.10) simply rewrites condition (5.8) using the saving rate de�ned in equation (5.9). By Lemma (2),

the sequence of tax rates derived from q(τ) together with the sequence of saving rates derived from h(τ ;V ∗)

satisfy the Euler equation and that the action payo� to government in di�erent periods is equalized. If q(τ)

does not have a �xed point, then the tax rate will diverge to the upper or lower bound, which cannot be an

equilibrium. If q(τ) has a �xed point, then V ∗ is equal to the highest payo� in the steady state. Therefore,

V ∗ solves

V ∗ = max
τ ,s

log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s

subject to

s = (1− τ)αβ
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Any action payo� higher than V ∗ cannot yield a �xed point for q(τ). The initial τ0 is determined by the

no-waiting condition in a straightforward way.

D.5 Ramsey Problem and Markov Equilibrium in the Taxation Problem

In this appendix, we describe the case without capital depreciation deduction.24 Let st denote the saving rate,

i.e., kt+1 = stf(kt, `t). The allocation in the competitive equilibrium is

kt+1 = kk1−δt (styt)
δ,

gt = (α(τkt + τt) + (1− α)(τ `t + τt))yt,

ct = (1− st − α(τkt + τt)− (1− α)(τ `t + τt))yt.

where yt = f(kt, `t) is the total output. The household's inter and intra Euler conditions satisfy

uc(t)

δ kt+1

it

=βuc(t+ 1)

{
(1− τt+1 − τkt+1)fk(kt+1, `t+1) +

1− δ
δ

it+1

kt+1

}
,

u`(t) =− uc(t)(1− τ `t − τt)f`(kt, `t),

which can be written as

st = µ2β
1− st − α(τkt + τt)− (1− α)(τ `t + τt)

1− st+1 − α(τkt+1 + τt+1)− (1− α)(τ `t+1 + τt)

{
α(1− τkt+1 − τt+1) + st+1

µ1

µ2

}
,

γ`
`t

1− `t
= γc

(1− α)(1− τ `t − τt)
1− st − α(τkt + τt)− (1− α)(τ `t + τt)

24 When there is capital depreciation deduction, the households' budget constraint is

ct + it = wt`t + rtkt − (τ `t + τt)wt`t −
(
τkt + τt −

δ(τkt + τt)

rt

)
rtkt

However, this speci�cation will break the weakly separable property. Instead, we assume that the budget constraint is

ct + it = wt`t + rtkt − (τ `t + τt)wt`t −
(
τkt + τt −

δ(τkt + τt)

r

)
rtkt

where r is the steady state interest rate. This speci�cation will reserve the weakly separable property.
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Given an initial capital level k0 = k, a sequence of saving rates, and a sequence of labor supply choices, the

implied sequence of capital is

kt = k
(1−δ+αδ)t
0 Πt−1

j=0s
δ(1−δ+αδ)t−1−j

j `
(1−α)δ(1−δ+αδ)t−1−j

j k
1+(1−δ+αδ)+...+(1−δ+αδ)t−1

Given a sequence of tax rates, the action payo� for the government is

V (s, τ , τ k, τ `) = (γc + γg)

 αβµ2

1− (µ1 + αµ2)β

∞∑
j=0

βj log sj +
(1− α)(1− βµ1)

1− (µ1 + αµ2)β

∞∑
j=0

βj log `j


+

∞∑
j=0

βjγc log
(
1− sj − α(τkj + τj)− (1− α)(τ `j + τj)

)
+

∞∑
j=0

βjγ` log (1− `j) +

∞∑
j=0

βjγg log
(
α(τkj + τj) + (1− α)(τ `j + τj)

)

Ramsey Outcome Let gt = µtf(kt, `t). The government budget constraint requires that

µt = α(τkt + τt) + (1− α)(τ `t + τt)

Depending on the tax instrument used for �nancing public spending, it is easy to de�ne the required tax rate

as a function of µt. Denote T k(µ), T `(µ), and T (µ) as the capital income, labor income, and total income tax

rate to achieve the government spending to output ratio µ.

By the primal approach of the Ramsey problem, the government e�ectively chooses the sequence of saving

rates, labor supply, and government spending to output ratios to maximize the welfare of the initial government

max
{st},{`t},{µt}

∞∑
t=0

βt
(

γc + γg
1− (1− δ + αδ)β

(αβδ log st + (1− α)(1− β(1− δ)) log `t) + γc log (1− st − µt)

+ γ` log (1− `t) + γg log (µt)

)

subject to the corresponding implementability constraint

1

β

st
1− st − µt

=
δα
(
1− (T k(µt+1) + T (µt+1))χ

)
+ (1− δ)st+1

1− st+1 − µt+1
,

γ`
`t

1− `t
= γc

(1− α)(1− T `(µt)− T (µt))

1− st − µt
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Markov Equilibrium In the Markov equilibrium, the current government take future government's policy

as given. In our setting, this will be that taking future government policy as a constant independent of current

policy. Assume future tax rates are {τkf , τ `f , τf} and the current policy choice is {τk0 , τ `0 , τ0}. The current

government action payo� is

M(τk0 , τ `0 , τ0; τkf , τ `f , τf )

=(γc + γg)

{
αβµ2

1− (µ1 + αµ2)β

(
log s0 +

β

1− β
log sf

)
+

(1− α)(1− βµ1)

1− (µ1 + αµ2)β

(
log `0 +

β

1− β
log `f

)}
+ γc

{
log
(
1− s0 − α(τk0 + τ0)− (1− α)(τ `0 + τ0)

)
+

β

1− β
log
(
1− sf − α(τkf + τf )− (1− α)(τ `f + τf )

)}
+ γ`

{
log (1− `0) +

β

1− β
log (1− `f )

}
+ γg

{
log
(
α(τk0 + τ0) + (1− α)(τ `0 + τ0)

)
+

β

1− β
log
(
α(τkf + τf ) + (1− α)(τ `f + τf )

)}

The current government's problem is

max
τk
0 ,τ`

0 ,τ0
M(τk0 , τ `0 , τ0; τkf , τ `f , τf )

subject to the implementability constraints

s0 = δβ
1− s0 − α(τk0 + τ0)− (1− α)(τ `0 + τ0)

1− sf − α(τkf + τf )− (1− α)(τ `f + τf )

{
α(1− τkf − τf ) + sf

1− δ
δ

}
,

γ`
`0

1− `0
= γc

(1− α)(1− τ `0 − τ0)

1− s0 − α(τk0 + τ0)− (1− α)(τ `0 + τ0)

sf =
δαβ(1− τkf − τf )

1− β(1− δ)

γ`
`f

1− `f
= γc

(1− α)(1− τ `f − τf )

1− sf − α(τkf + τf )− (1− α)(τ `f + τf )

The Markov equilibrium is then the �xed point where future taxes and the current taxes are the same.
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