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Abstract

Weather shocks, i.e. deviations of temperature from historical values, have signi�cant e¤ects on

economic activity, even in developed economies such as the United States. This has been interpreted

as evidence of limits to adaptation. We document a large heterogeneity in the sensitivity of economic

activity to weather shocks across regions within the US, and show that this heterogeneity is largely

explained by di¤erences in average temperature. This leads us to interpret these di¤erences as the

result of adaptation choices that regions make given their speci�c climate. We use the reduced form

estimates to identify a simple structural model of adaptation. Our model estimates how much region

has adapted already, and can also predict how much each would adapt after climate change. The

size and distribution of losses from climate change vary substantially once adaptation is taken into

account �both in the case where adaptation stays as currently estimated, or changes after climate

change.

JEL codes: E23,O4,Q5,R13.

Keywords: climate change, adaptation, weather e¤ects.

1 Introduction

Climatologists project a signi�cant increase in global temperature over the next century, leading to mul-

tiple e¤ects on human communities. A substantial recent literature establishes that high temperatures

lead to low output.1 This body of research controls for a region�s average temperature by using panel

data with regional �xed e¤ects and can therefore identify economic sensitivity to �weather shocks�, de-

�ned as temperature deviations from normal values. This �nding is hence quite di¤erent from the usual

observation that income is lower in hot countries - a purely cross-sectional relation which is di¢ cult to

interpret causally. Some studies 2 build on these �ndings to estimate the impact of global warming by

�The views expressed here are those of the authors and do not necessarily represent those of the Federal Reserve Bank

of Chicago or the Federal Reserve System. We thank participants in a Chicago Fed brown bag, and in particular Gadi

Barlevy, Je¤ Campbell, and Sam Schulhofer-Wohl for their comments.
yFederal Reserve Bank of Chicago; francois.gourio@chi.frb.org.
zFederal Reserve Bank of Chicago; charles.fries@chi.frb.org.
1See Dell, Jones and Olken (2012), Burke et al. (2015), Deriyugina and Hsiang (2014), Colacito, Ho¤man and Phan

(2015).
2For a recent elaborate example, see Hsiang et al. (2016)
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interpreting climate change as a permanent weather shock. One well-known underlying assumption is

that there is no adaptation to the change in climate. Another less obvious assumption is that the impact

of weather shocks is the same in all US regions.

Our paper builds on this approach by using evidence of heterogenous sensitivity to weather shocks to

measure the cost of adaptation and its role in the eventual economic impact of climate change. Our �rst

contribution is to document a large heterogeneity in sensitivity to weather shock across US counties.

Places that are ordinarily warm, such as the South, are largely una¤ected by high temperature realiza-

tions, while colder regions in the North exhibit larger sensitivities. In the language of the treatment

e¤ect literature, previous research has identi�ed correctly an economically and statistically signi�cant

�average treatement e¤ect�but has not focused on the heterogeneity in this treatment e¤ect. We show

that the variable that explains the best the sensitivity heterogeneity is simply local climate - e.g. the

average temperature.

We interpret this heterogeneity as a consequence of adaptation. Households and �rms who operate

in the South are aware of its historical climate and, consequently, have made decisions to reduce the

e¤ect of hot days. The North has not faced similar conditions, and thus has not made similar decisions,

even though the same technologies are available. The North has not faced similar conditions, and thus

has not made similar decisions. Presumably, the cost of adaptation cannot be justi�ed given the cooler

northern climate.

Our second contribution, is to use the cross-section of sensitivies to weather shocks to infer the

cost of adaptation. To do so, we estimate a structural model incoporating (i) weather variation, (ii)

economic sensitivity to weather shocks, and (iii) a margin of adaptation. Each region is allowed to

decide how much to invest in adaptation, which involves a cost but reduces sensitivity to days with high

temperature. We estimate key parameters of the model to �t the evidence that: (i) the average US

county is sensitive to heat and (ii) counties with higher average temperature have lower sensitivity.3

We then simulate the e¤ect of climate change using our structural model. We �nd it useful to compare

three di¤erent assumptions about adaptation, which correspond respectively to constant adaptation

across time and space, constant adaptation across time and varying across space, and varying adaptation

across time and space. We call these the no adaptation, �xed adaptation, and endogenous adaptation

cases.

Our counterfactual analysis leads us to four main conclusions. Unsuprisingly, allowing endogenous

adaptation results in lower economic losses than if adaptation is �xed. For instance, we estimate that a

5.1C warming would lead to losses of -1.71% if counties adapt further in response to the warming, but

-4.18% if they do not.

Second, we �nd that the dispersion in losses (across regions) is much smaller once adaptation is

taken into account. The standard deviation across counties of losses is 0.51% with adaptation and

2.22% without. This is because the same counties that have the most to lose from climate change

bene�t the most from being able to adjust in the future.

Third, merely taking into account currently observed adaptation, i.e. varying adaptation across space

3The underlying intuition is if global warming means Chicago�s future climate climate will become like New Orleans�s

current climate, New Orleans�s current sensitivity is informative of Chicago�s future sensitivity.
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only, reduces the median and dispersion of losses expected from climate change. The counties projected

to see the largest increase in high temperature are currently the least sensitive to these episodes.

Fourth, assumptions about adaptation in�uence the distribution of losses, and in particular who

loses most. The South is the most a¤ected in the no adaptation case, but the Midwest and Northeast

are most a¤ected in the �xed and endogenous adaptation cases.

There are obviously a number of caveats to our study, which we discuss in section 4.

The rest of the paper is organized as follows. The remainder of the introduction discusses related

literature. Section 2 provides evidence about the e¤ect of weather shocks in the US, and documents

the heterogeneity in sensitivities across US regions. Section 3 presents and estimates our simple struc-

tural model. Section 4 discusses the e¤ect of climate change in our model. Section 5 presents various

robustness exercises and extensions, and Section 6 concludes.

1.1 Literature review

The growing literature on the economics of climate change, pioneered by Nordhaus (e.g. 1994, 2000),

focuses primarily on the economy�s e¤ect on the climate and how policy should address the central

pollution externality. Two recent prominent studies in this �eld are Acemoglu et al. (2016) and Krusell

et al. (2016). In contrast, our paper focuses solely on the propagation from climate to economy. There is

a substantive empirical literature on the e¤ect of weather �uctuations on the economy. As noted above,

and as reviewed in Dell, Olken, and Jones (2014), these studies use regional �xed e¤ects to identify the

economic impact of �weather shocks�. Dell, Olken and Jones (2012) o¤ers cross-country annual panel

data analysis demonstrating that poor countries�GDPs are a¤ected negatively by higher than average

temperature realizations. Perhaps surprisingly, this e¤ect is neither driven purely by agriculture nor

made up fully over following years. Extending this work, Burke et al. (2015) demonstrate that the

e¤ect of temperature on GDP is nonlinear. This non-linearity evidentlly holds even in rich countries,

which one might assume immune to most weather variation. Deryugina and Hsiang (2014) provide

similar evidence of the nonlinearity in the United States using county-year data. Colacito, Ho¤man and

Phan (2015) also o¤er supporting evidene that high temperature generate low output in the US using

state level GDP data.

Various studies have examined the e¤ect of weather on other features of economic activity, such as

agriculture (Greenstone and Deschenes, 2013) or hours worked (Gra¤, Zidin, and Neidell, 2014). Other

studies have demonstrated a short-run e¤ect of weather on economic indicators in the United States

(Boldin and Wright (2015); Bloesch and Gourio (2015); Foote (2015)).

The margins of adaptation to climate change have also been studied in several papers. Some pa-

pers note that the short-run e¤ect is an upper bound on the e¤ects of weather (e.g., Greenstone and

Deschenes (2013)), while others explicitly study various mechanisms for adaptation. Greenstone et al.

(2015) demonstrate that mortality has become less sensitive to hot days over time and link this to the

development of AC technology.
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2 Evidence

This section measures the short-run e¤ect of weather on US economic activity at the county-level

using reduced-form techniques. We document and how that short-run e¤ect varies with counties�

characteristics. Our approach follows Deryugina and Hsiang (2014).

2.1 Data

Our dataset is created by combining income and weather data at the county level and annual frequency.

The income statistics are compiled from the Bureau of Economic Analysis (BEA) and provide a measure

of a county�s total personal income per capita as well as its breakdown.4 These series are available at the

annual frequency since 1969. We construct our weather statistics using the US-HCN (historical climate

network) database, provided by the National Centers for Environmental Information (NCEI, formerly

NCDC). US-HCN collects daily measures of temperature,5 precipitation, and snowfall at the weather

station level, which we aggregate to the county-level by taking a simple average of all weather stations

located in a county.6 We merge county-year income and weather statistics to produce a unbalanced

sample of 2,901 counties over the period 1969-2015. Table 11 in the appendix presents summary statistics

of variables used in the analysis.

2.2 Baseline Results without Heterogeneity

Our baseline speci�cation is

� log Yi;t = �i + �t +
KX
k=1

�kBink;i;t + "i;t; (1)

where � log Yi;t is the growth rate of nominal income in county i in year t, �i is a county �xed e¤ect,

�t a time �xed e¤ect, and Bink;i;t is the number of days in year t in county i where temperature falls

in bin k = 1:::K: The central bin (12 �C-15 �C) is omitted, providing a reference by which temperature

deviations are evaluated. Following Deryugina and Hsiang (2014) we use K = 17 bins to capture

the possibly nonlinear e¤ects of temperature on income.7 This speci�cation is appealing because the

distribution of days across bins varies from year to year due to random weather �uctuations. With the

4 Income is broken down into wages, wage supplements, transfers, proprietor income, and capital income (dividends,

interest and rent).
5Temperature is de�ned as the average of the maximum and minimum temperatures of that day.
6 In untabulated results, we used an alternative approach to measure county weather. Rather than averaging all stations

in a county, we weight all stations (inside and outside the county) according to their inverse squared distance to the county�s

centroid. We obtained similar results.
7Our speci�cation di¤ers from that paper only in that we use the log change of income per capita as the dependent

variable; in contrast their paper uses the log (level) of income per capita, and adds the lagged level as a control. Our

calculation of standard errors also di¤ers slightly. Based on Abadie et al. (2017), we believe it is more appropriate to

cluster standard errors twoway by state and the interaction of NOAA region and year. This is because the treatement

(temperature) is correlated across states within a year, at least within the NOAA region (a hot year in Illinois is also likely

to be a hot year in Iowa). The resulting standard errors are somewhat larger. The standard errors are almost identical if

one clusters by year simply, or by county-year.
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Figure 1: The circles denote estimates of �k in equation (1), and the bars re�ect the associated plus

or minus two standard error bands. �k is the marginal e¤ect of an additional day in the relevant

temperature bin (relative to a day with average temperature between 12 �C and 15 �C) on annual

income growth.

inclusion of county �xed e¤ects we are e¤ectively comparing the growth rate of income in a county in

two years that di¤er in their composition of days by temperature.

Consistent with Deryugina and Hsiang (2014), we �nd that the marginal day above 27 �C, or perhaps

even 24 �C, a¤ects income growth negatively. Figure 1 depicts the results, and Table 1 presents coe¢ cient

estimates and the associated standard errors in Column 1. An additional day in the hottest bin reduces

annual income by about 0.05%, relative to the omitted reference bin (12 �C-15 �C). If income is

generated linearly across the year, one day corresponds only to 1/365=0.27% of annual income, and

then the reduction of daily income due to a 0.05% decrease in annual income amounts to a 18% decline

in daily income (0.05/0.27), which is a large e¤ect.8

The appendix reports several variants and robustness checks on this basic result. We show that (1)

the e¤ects are essentially reversed the following year, (2) the results are concentrated on weekdays, (3)

the results are concentrated on farm proprietary income.9

8Note, however, that in some cases income is not generated linearly across the year; for instance in some circumstances

a day too hot might kill crops, reducing signi�cantly the entire annual output. In that case we would �nd a reduction of

production greater than a 100% for a hot day.
9 It might seem contradicatory that the e¤ects are largely driven by farm and by weekdays. It turns out that, while for

farm income the e¤ects are similar on weekdays and weekends, wages and salaries actually increase with temperature on

weekends.
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Baseline Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

-15 �C or less 0.0394 0.00707 0.0647 0.0868 -0.111 0.0304

(0.80) (0.14) (1.09) (0.93) (-0.60) (0.46)

-15 �C,-12 �C -0.0107 -0.0792� -0.0280 0.0659 0.188 -0.604�

(-0.34) (-2.37) (-0.48) (1.04) (1.55) (-2.49)

-12 �C,-9 �C -0.00638 -0.0629� -0.00976 0.0620 -0.0166 0.430�

(-0.29) (-2.02) (-0.27) (1.15) (-0.22) (2.26)

-9 �C,-6 �C -0.0146 -0.0391 -0.0429 0.00257 -0.0121 0.142

(-0.82) (-1.62) (-1.78) (0.06) (-0.33) (1.26)

-6 �C,-3 �C -0.0163 -0.0625�� -0.0179 -0.00763 -0.0136 -0.0909

(-1.01) (-2.84) (-0.75) (-0.24) (-0.44) (-1.54)

-3 �C,0 �C -0.00704 -0.0586� -0.0223 0.0143 0.0294 -0.0435

(-0.45) (-2.61) (-0.92) (0.47) (1.30) (-1.62)

0 �C,3 �C -0.00932 -0.0435 -0.0197 0.00331 0.0170 0.0167

(-0.69) (-1.89) (-0.97) (0.12) (0.95) (0.93)

3 �C,6 �C -0.00739 -0.0226 -0.00585 -0.0113 0.00342 0.00822

(-0.56) (-1.04) (-0.26) (-0.39) (0.18) (0.42)

6 �C,9 �C 0.00859 0.00836 0.00544 0.0213 -0.0136 0.00189

(0.77) (0.42) (0.22) (0.73) (-1.09) (0.12)

9 �C,12 �C 0.00505 0.00423 -0.0123 0.0127 0.00437 -0.00281

(0.57) (0.20) (-0.66) (0.55) (0.33) (-0.25)

15 �C,18 �C -0.00400 -0.0116 0.0202 -0.00446 -0.00703 -0.00469

(-0.44) (-0.57) (1.14) (-0.25) (-0.44) (-0.34)

18 �C,21 �C -0.0153 -0.0656� -0.0254 0.00692 -0.00188 0.0109

(-1.12) (-2.49) (-1.11) (0.28) (-0.12) (0.70)

21 �C,24 �C -0.0186 -0.0401 -0.0366 -0.0238 0.000826 0.00653

(-1.23) (-1.28) (-1.61) (-0.86) (0.05) (0.54)

24 �C,27 �C -0.0358� -0.0781 0.00268 0.00321 -0.00210 0.0132

(-2.08) (-1.77) (0.09) (0.13) (-0.12) (0.95)

27 �C,30 �C -0.0534�� -0.277� -0.160�� -0.0518 -0.0222 0.00388

(-2.92) (-2.10) (-2.79) (-1.41) (-1.22) (0.29)

30 �C or more -0.0508�� -0.486 -0.503��� -0.234�� -0.0101 0.0169

(-2.70) (-1.30) (-3.97) (-3.51) (-0.38) (1.04)

N 90529 18145 18140 18073 18106 18065

Table 1: Estimates of the baseline speci�cation (Equation 1) for the entire sample (Column 1) and for

each quintile of counties, sorted by their average temperature (Columns 2-6). All regressions include

county and time �xed e¤ects. Standard errors clustered by year. Stars indicate statistical signi�cance

at the 10 percent (*), 5 percent (**) and 1 percent (***) level.
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2.3 Heterogeneity in Sensitivity

We proceed to document the heterogeneity across regions in sensitivity to temperature. The sensitivity

of income to hot days is smaller in hotter places. This is true even if we control for other county char-

acteristics. We show this result �rst using a simple subsample analysis, then a set of richer interaction

models, and �nally using a random coe¢ cient model.

2.3.1 Subsample analysis

Our subsample analysis approach involves dividing all counties into �ve quantiles of the average annual

temperature, and estimating our baseline regression separately for each quintile. Results are shown in

Table 1 and depicted in Figure 2.

The e¤ect of days above 30 �C for counties in the �rst quintile is around -0.5%. This is imprecisely

estimated because these counties have few hot days. In the second quintile the sensitivity is similar

but precisely estimated, with a t-stat close to four. In the third quintile, the coe¢ cient is halved,

but it remains highly statistically signi�cant. In quintile four, the coe¢ cient drops to -0.01 and is

indistinguishable from zero. In quintile �ve, the point estimate is positive, though not signi�cantly.

Economically, the last two quintiles have a fairly precisely estimated sensitivity which is close to zero.

The results are similar for the response to the number of days between 27 �C and 30 �C. In that case,

the coe¢ cient goes from -0.28, -0.16, -0.05, -0.02, to 0.004. The average treatment e¤ect estimated by

the baseline equation (1) hence re�ects considerable heterogeneity.

2.3.2 Interaction model

One potential issue with our subsample analysis is that average temperature might be correlated with

other characteristics that a¤ect the sensitivity to weather, such as income. The division into quintiles

is also arbitrary. These concerns lead us to estimate a model where the coe¢ cients on the temperature

bins are allowed to vary with the average temperature of the county, Ti, as well as other factors. The

general form of this model is:

� log Yi;t = �i + �t +
KX
k=1

 
LX
l=0

�klxilt

!
Bink;i;t + "i;t; (2)

where xilt are L factors that might a¤ect the sensitivity of the county to weather. Our baseline model,

Equation (1), is equivalent to Equation (2) if xilt is a constant. Figure 3 report the marginal e¤ect

of a day above 30 �C for four alternative models which di¤er in the set of variables included in xilt.

In addition to a constant, the top-left panel (A) consider a quadratic model in the average county

temperature Ti, so xilt = f1; Ti; Ti
2g; the top-right panel (B) depicts a cubic model xilt = f1; Ti; Ti

2
; Ti

3g,

the bottom-left panel (C) includes a control for log income and time (to control for trends), xilt =

f1; Ti; Ti
2
; t; log yitg2; and �nally the bottom right panel (D) adds to that the average share of farming

income in the county sharei; so that xilt = f1; Ti; Ti
2
; shareig2:

Regardless of the exact speci�cation, we observe a large decline in the sensitivity to hot days as the

average temperature of the county rises. For the warmest US counties, it is impossible to reject that this

e¤ect is (a fairly precisely estimated) zero. Moreover, the e¤ects are fairly similar across speci�cations.
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Figure 2: The circles denote estimates of �k in equation (1) for k = 15; 16; 17 (three hottest temperature

bins), for each of the �ve groups of counties (quintiles ordered by average temperature), and the bars

re�ect the associated +/- 2 standard error bands.
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Figure 3: The �gure plots the estimated marginal e¤ect of a day with average temperature above

30 �C from model (2), for di¤erent values of the average temperature of the county Ti: (A) Quadratic

average temperature model, (B) Cubic average temperature model, (C) Quadratic average temperature

with linear trend and log income model, (D) Quadratic average temperature with linear farming share

model.

In particular, controlling for income has a small e¤ect on this result. The one speci�cation that is

somewhat di¤erent is the cubic model,which has larger standard errors, but suggests an even larger

sensitivity in cold counties.

2.3.3 Random coe¢ cient model

The results in this section are preliminary. To document the heterogeneity in responses in a less para-

metric way, we estimate a random coe¢ cient model. We focus on a simple speci�cation that uses only

the last bin (K = 17 corresponding to days with average temperature above 30 �C):

� log Yi;t = �i + �t + �i;KBinK;i;t + "i;t; (3)

where �i and �K;i are both random e¤ects and �t is a �xed e¤ect. To enhance statistical power, we pool

by state, in e¤ect assuming that the slope coe¢ cient is constant across counties within the same state:

� log Yi;t = �s(i) + �t + �s(i);KBinK;i;t + "i;t; (4)

where s(i) is the state of county i: This average of the estimated �s(i);K has a mean of -0.203 with a

standard deviation of this slope across states equal to 0.046. Figure 4 depicts the �ltered slopes against
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Figure 4: The �gure plots the estimates of a random coe¢ cient model from equation (4), pooled by

state, against the average temperature of the state, together with a regression line.

the average temperature of the state. Again, we see that cooler states have a larger (in absolute value)

sensitivity.
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3 Structural Model

This section presents and estimates a structural model of adaptation. We use the model for counterfac-

tual analysis in the next section to study the e¤ect of potential climate change. The model, while highly

stylized, captures two key features: (1) the e¤ect of temperature on productivity, and (2) an endogenous

adaptation margin whereby counties can invest to reduce their exposure to temperature. In the �rst

subsection, we present the model assumptions and solution. In the second subsection, we estimate the

model to replicate some of our empirical results of section 2.

3.1 Model description

The model is a standard real business cycle model, without capital, where variation in productivity

is driven by temperature. The economy is made up of a �xed �nite number of independent counties.

Counties are autarkic: there is neither trade nor population migration. For simplicity we assume that

the time period is a day. (This simpli�es the mapping between the model and the reduced form work.)

The county�s population produces output using a decreasing return to scale production function:

Yit = AitN
�
it ;

where Ait is total factor productivity in county i at time t, Nit is labor supplied, and Yit is output.

Given that there is neither trade and nor capital, the resource constraint of county i reads:

Cit = Yit:

The county has a representative household with standard preferences:10

E

1X
t=0

�t

 
C1�it

1�  �
N1+ 
it

1 +  

!
:

Motivated by the empirical patterns of section 2, we assume that productivity depends on temperature

above a threshold temperature T as follows:

logAit = b0 if Tit < T;

= b0 � b1(k)(Tit � T ) if Tit � T :

This relationship is depicted in �gure 5. Here b0 is the baseline productivity, assumed constant over

time and across counties. (Given our empirical approach, which removes county and time �xed e¤ects,

this simpli�cation is without loss of generality.) The parameter T , assumed constant across counties, is

the threshold past which productivity starts to fall; and �nally b1(k) is the rate at which productivity

falls with each degree above T : This rate is endogenously chosen as we will explain shortly. In section

5, we consider alternative functional forms.

10For now we abstract from the e¤ect of weather on labor disutility; it is easy to incorporate, but estimating it requires

measuring precisely the employment response to weather, whereas our work so far has only estimated the e¤ect on income.
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Figure 5: This �gure illustrates the relationship between temperature and productivity assumed in our

model. The arrow depicts the e¤ect of investment in adaptation.

Temperature Tit is assumed to be iid over time11 and is drawn from a (constant) county-speci�c

cumulative distribution function Fi(:):12 This temperature distribution is the only exogenous di¤erence

across counties in our model, which are assumed to share the same parameters.

We next turn to the modeling of adaptation. We assume that the representative household can

choose to pay a cost to reduce its sensitivity b1 to temperature. The cost k reduces output in all states

of nature, but it also reduces the negative e¤ect of high temperature on productivity. Mathematically,

paying a cost k leads to b1 = b1(k); with b1 < 0 and b01 > 0; and the resource constraint is modi�ed to

Cit = Yit � (1� k):

Importantly, this cost is a once-and-for-all choice, rather than a margin that can be varied instanta-

neously in response to temperature today. In each county, the representative household makes a choice

of adaptation, knowing perfectly the distribution of its future temperature Fi(:).13

11Of course, the iid assumption for Tit is not true at the daily frequency (though it holds approximately at the annual

frequency), and there is seasonality within the year as well. These would not a¤ect our results however given that the

model responses are independent of the past. A more serious concern is whether the preferences and technologies are

adequate representation of behavior at the daily frequency; that is, there might be important nonseparabilities across time

in utility or production function.
12Note that since there are no economic links between counties, the correlation across counties of temperature is imma-

terial for our purpose.
13The model can be viewed as a static model, where the choice of adaptation is made before the temperature realizations;

or it can be viewed as a dynamic model, where the choice of adaptation is a sunk cost. In this case k is the amortized

cost per year of the investment in adaptation, which is made at time 0.
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3.2 Model solution

The model can be solved easily given its tractability. The �rst step is to calculate output, labor and

consumption for a given choice of adaptation and a given realization of productivity (i.e. temperature).

Then, we can solve for the optimal level of adaptation. Since counties do not interact, we can solve each

county�s equilibrium independently.

The �rst step involves writing the �rst order condition equating the marginal rate of substitution

between consumption and leisure and the marginal product of labor:

N 
itC


it = (1� k)�AitN

��1
it ;

where Cit = (1� k)AitN�
it ; leading to a closed form solution for labor

Nit =
�
�(1� k)1�A1�it

� 1
1+ +�(�1)

;

hence output is given by

Yit = (1� k)Ait
�
�(1� k)1�A1�it

� �
1+ +�(�1)

;

= ((1� k)Ait)
1+ +2�(1�)
1+ +�(�1) (�)

�
1+ +�(�1) :

This can be conveniently expressed in log as:

logNit =
1� 

1 +  + �( � 1) logAit + constant, (5)

log Yit =
1 +  + 2� (1� )
1 +  + �( � 1) logAit + constant. (6)

We can then de�ne the expected utility of a county that has climate Fi and chooses adaptation k as:

V (k;Fi) = max
Nit

E

1X
t=0

�t

 
C1�it

1�  �
N1+ 
it

1 +  

!
; (7)

s:t: : Yit = Ait(k; Tit)N
�
it and Tit ! Fi(:):

This expression can be simpli�ed as:

1

1� �E
 
(AitN

�
it(1� k))

1�

1�  � N1+ 
it

1 +  

!
;

where Nit is given by equation (5) and the expectation is taken over Tit, drawn according to Fi: In

practice, we discretize the distribution Fi using probability �is and mass points !is; for s = 1:::S,

allowing us to calculate V as

V (k;Fi) =
1

1� �

SX
s=1

�is

 
(A(k;!is)N(k;!is)

�(1� k))1�

1�  � N(k;!is)
1+ 

1 +  

!
:

We �nd the optimal adaptation choice as

k� = argmax
k

V (k;Fi): (8)

We implement this by a discretization of k, but we consider a grid thin enough that discreteness has no

impact on the results.
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symbol value meaning s.e.

� irrelevant discount factor preset n.a.

 1 consumption IES preset n.a.

 1 labor supply IES preset n.a.

� 0.7 labor share preset n.a.

T 26 �C threshold preset n.a.

b1 0.208 sensitivity of TFP to T if T > T estimated 0.024

� 131.21 e¤ectiveness of adaptation estimated 0.176

Table 2: Parameters used in the model.

3.3 Model estimation

Our simple model captures the margin of adaptation which is critical for the economic impact of climate

change. The challenge is to estimate the parameters that govern adaptation. Our approach is to ask

the model to reproduce the heterogeneity in the currently observed sensitivities to weather shocks - that

is, to match the adaptation levels we observe across the US.

Our approach to choosing parameters is as follows. We preset some parameters based on previ-

ous research or commonly agreed macro elasticities. We assume a functional form for the adaptation

function:

b1(k) = b1e
��k;

where the parameter b1 captures the sensitivity of productivity to temperature above T without adap-

tation (k = 0) and the parameter � measures cost of adaptation.14 (Section 5 presents results for

alternative functional forms.) We then estimate the two critical parameters b1 and � to replicate the

regressions of income on number of hot days by quintile.

Speci�cally, our preset parameters are listed in Table 2. We use standard macro elasticities of one

for consumption and leisure. We set the labor share to 0.7 and, based on the evidence above, set the

threshold temperature T to 26C. To estimate b1 and �, we use indirect inference (Gourieroux, Monfort

and Renault (1993), Smith (1993)). Our target moments in the data are obtained as follows: we sort

counties into �ve quintiles based on their average annual number of hot days, where a hot day is now

de�ned as a day above 27 �C, and we estimate the sensitivity of income growth to the number of hot

days by quintile. This evidence, which is very similar to the one presented above, is summarized in

Table 3.

The indirect inference approach amounts to minimizing the distance between the data and model

moments. For a given parameter vector x = (b1; �), we solve and simulate the model and run on the

14More speci�cally, � measure the e¢ ciency with which the adaptation cost k translates into a smaller (in absolute

value) sensitivity.
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Q1 Q2 Q3 Q3 Q5 J-stat p-val

Data -0.130 -0.099 -0.066 -0.040 �0.007 � �

S.E. 0.075 0.053 0.022 0.010 0.009 � �

Model -0.118 -0.116 �0.063 -0.027 -0.012 2.068 0.559

Table 3: Model �t. This table reports the data moments and the model moments, for the estimated

parameters, together with the J-statistic.

�data�consisting of these simulations the same regression that we run in the true data:

� log Yi;t = �i + �t +
5X
q=1

qHot_Daysi;t �Di;q + "i;t; (9)

where Di;q is a dummy equal to 1 if county i belongs to quintile q according to the average number

of hot days. We hence obtain a vector of model moments (x) = (1; 2; 3; 4; 5): We calculate the

criterion

((x)� e)0W ((x)� e)
where e is the vector of parameters estimated in the true data, and W is a weighting matrix. In our

baseline estimates, we set W equal to the identity matrix, but in section 5 we show how the results

are a¤ected for other choices of W: We then choose the vector x in order to minimize the criterion.15

Because we have 5 target moments and only 2 parameters, the model is overidenti�ed and it can be

rejected using the standard J statistic.

The results of this procedure are presented in table 3. The model matches the �ve moments fairly well.

This is re�ected in the J-statistic of about 2, which means the model is not rejected at any conventional

level of statistical signi�cance (pval=55.9%). The values of b1 and � that generate this behavior are

listed in Table 2. The estimated b1 is large, which is necessary to �t the fact that high temperature

has a large e¤ect in cold regions with presumably little adaptation. In contrast, the estimated � is not

extremely large; reducing the sensitivity by 50% costs 0.5% of income (since log(0:5)=� is approximately

�0:005):

15This minimization is performed numerically using a variety of starting points.
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4 Climate change and adaptation

We use the model to predict the e¤ect of potential climate change. We feed the model a predicted

temperature increase associated with a global warming scenario, and calculate the implied change in

economic output and of adaptation e¤ort. We focus on two questions. First, how large are the income

losses from potential climate change? Second, which regions in the US are most a¤ected?

4.1 Methodology

Our calculations require two inputs: a climate forecast by county over the next century; and a model

that maps temperature into income. Regarding the climate forecast, we base our results on Rasmussen

et al. (2016). It turns out that there is relatively little heterogeneity across (continental) US counties in

the temperature increase predicted by these climate models. Hence, as a starting point, we assume that

warming is uniform across all counties. We also abstract from changes in the shape of the temperature

distribution within a county �we assume that the distribution simply shifts to the right.16 We consider

the four scenarios outline in Rasmussen et al. (2016), corresponding to increases of temperature of 1.6,

2.7, 3.4, or 5.1 �C respectively.

Regarding the model, we �nd it useful to contrast three speci�cations, which are all nested in our

structural model. We refer to these as the no adaptation, �xed adaptation, and endogenous adaptation

models. The no adaptation model assumes that, both today and in the future, there is no adaptation

margin. This corresponds to setting � =1 a priori in our structural model. The remaining parameter

b1 is estimated to match the �ve quintiles regression coe¢ cients as well as possible.17 All US counties

thus have the same sensitivity to weather, similar to the calculations Hsiang et al. (2017) perform for

a large class of models.

The second version is the �xed adaptation model, which assumes the level of adaptation is �xed and

cannot be changed after warming. Speci�cally, we assume that the structural model is correct and each

county has chosen its adaptation optimally given its climate. However, for unmodeled reasons it is not

possible to change the adaptation level in the future, so adaptation remains at its currently inferred

level. This is essentialy equivalent to a reduced form calculation that takes into account heterogeneity

across counties in terms of slopes.

The third version is the endogenous adaptation model, which is is our full structural model. Counties

can choose to adjust their level of adaptation in response to climate change.

16We plan to relax this in the future and consider (a) increases in mean temperatures that are di¤erent across counties

and (b) changes in the distribution beyond the increase in the mean.
17Of course, the model will not be able to �t the �ve quintiles regression coe¢ cients well, since all counties have by

construction the same sensitivity to temperature.
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4.2 Results

Table 4 presents each model�s estimates of the e¤ect of climate change on consumption (output less

adaptation costs) and total output across United States counties. We draw four main conclusions from

this table and the associated �gures, Figure 6 (a histogram of the losses by county) and �gures 7, 8 and

21 (maps of losses by county). We discuss these conclusions from more to less obvious.

(C1) Adaptation following climate change results in lower median losses

This conclusion is of course qualitatively preordained; counties can do no worse than keeping their

current adaptation level, so by optimizing it they reduce their losses. But the magnitudes of the reduc-

tions in losses is impressive. For instance, consider the 5.1 �C scenario. The median loss if adaptation

remains at current levels is -4.18%, whereas it is only -1.71% if counties are allowed to adjust optimally.

(C2) Adaptation following climate change results in lower dispersion of losses

Perhaps as important from a welfare point of view, the dispersion in losses is also vastly reduced

once adaptation is taken into account. Focusing again on the 5.1 �C scenario, we see that the standard

deviation of losses is 2.22% with �xed adaptation and only 0.51% with endogenous adaptation. The

economic mechanism is that counties that have the most to lose from climate change will be those that

bene�t the most from adaptation; as a result, the left tails of outcomes is strongly truncated. For

instance, the 10th percentile of losses is -7.35% under the �xed adaptation scenario and only -2.31%

under the endogenous adaptation scenario. This dramatic reduction in dispersion is most clear in Figure

6.

(C3) Taking into account the heterogeneity in current adaptation levels reduces the

median losses and the dispersion

The median loss under the �xed adaptation case is larger than the loss under the no adaptation case.

For instance in the 5.1 �C scenario, the loss is 4.18% versus 5.82%. The logic here is that climate change

will increase the number of hot days, but mostly in places that are (as estimated using current data)

less sensitive to hot days than the average. As a result, the losses are smaller once this heterogeneity is

taken into account.18

(C4) Which regions lose is highly sensitive to the model considered

Figures 7, 8 and 9 depict the estimated losses under each model, again for the 5.1 �C scenario. With

no adaptation, the South su¤ers dramatically. The logic is that Southern counties experience a large

increase number of hot days, which are estimated, based on the entire US sample, to have a large

negative e¤ect on income. The �xed adaptation model, which takes into account current heterogeneity

in sensitivity, projects a much less severe e¤ect on the South. The reason is the South is currently

estimated to have a low sensitivity to hot days. In an interesting reversal, the Midwest and Northeast

appears to su¤er relatively the most. Under endogenous adaptation, all areas experience smaller losses,

but the Midwest and Northeast are still relatively the worst o¤. The reason is that these regions

currently are highly sensitive to hot days. With endogenous adaptation, these regions can reduce their

sensitivities, however they must pay the adaptation costs. These adaptation costs account for the

18Note that this result does not have to be true for all con�gurations. A su¢ ciently extreme global warming would

increase the number of hot days everywhere and this compositional argument would have little bite then.
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median sd p10 p25 p75 p90

Panel A: Scenario +1.6 �C

No adaptation model C; Y -1.262 1.369 -3.631 -2.495 -0.472 -0.138

Fixed adaptation C; Y -0.847 0.456 -1.441 -1.126 -0.569 -0.285

Endogenous adaptation C -0.643 0.289 -1.017 -0.856 -0.464 -0.276

Y 0.566 0.936 -0.425 -0.208 1.489 2.009

Panel B: Scenario +2.7 �C

No adaptation model C; Y -2.265 2.340 -6.259 -4.380 -0.869 -0.256

Fixed adaptation C; Y -1.541 0.826 -2.599 -2.035 -1.018 -0.498

Endogenous adaptation C -0.972 0.384 -1.421 -1.237 -0.747 -0.485

Y 0.558 0.963 -0.494 -0.274 1.472 2.030

Panel C: Scenario +3.4 �C

No adaptation model C; Y -2.873 2.936 -7.874 -5.543 -1.111 -0.328

Fixed adaptation C; Y -2.059 1.078 -3.389 -2.700 -1.365 -0.591

Endogenous adaptation C -1.220 0.455 -1.724 -1.514 -0.944 -0.586

Y 0.480 1.020 -0.558 -0.352 1.485 2.106

Panel D: Scenario +5.1 �C

No adaptation model C; Y -5.816 4.518 -12.965 -9.630 -2.918 -1.274

Fixed adaptation C; Y -4.176 2.220 -7.358 -5.788 -2.832 -1.945

Endogenous adaptation C -1.713 0.511 -2.310 -2.108 -1.350 -1.071

Endogenous adaptation Y 0.505 1.031 -0.657 -0.430 1.472 2.053

Table 4: Estimated e¤ect of climate change on income under di¤erent scenarios of adaptation. The statis-

tics report the cross-sectional losses across counties. The endogenous adaptation senario�s consumption

is di¤erent from output, since counties can pay (lower consumption) to decrease heat sensitivty (increase

output).

di¤erence between the response of consumption and output in table 4. To summarize quantitatively

these regional di¤erences, Table 5 presents the median losses for each Census region under each model for

the 5.1 �C scenario. To illustrate the di¤erence between the di¤erent models�predictions, Table 6 reports

the correlation across counties between the predicted losses for two di¤erents models. The predictions of

the model with no adaptation (i.e., constant and equal sensitivies countrywide) are actually negatively

correlated (-0.12 or -0.39) with those of the models that either take into account observed adaptation

today (��xed adaptation�), or allows for further adaptation (�endogenous adaptation�model). This

demonstrates quantitatively the importance of adaptation technology.
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North Midwest South West

No adaptation C,Y -2.56 -4.57 -10.58 -1.59

Fixed adaptation C,Y -4.83 -4.85 -3.68 -2.79

Endogenous adaptation C -2.19 -1.89 -1.43 -1.71

Endogenous adaptation Y -0.58 0.20 1.63 -0.54

Number of counties 186 775 846 354

Population (in Millions) 56.50 68.20 77.40 123.70

Table 5: The e¤ect of the di¤ernt scenarios on consumption and output by Census region.
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Figure 6: Histogram of model projections for county level consumption losses due to climate change in

the 5.1C scenario. Losses are windsorized at the 1% level.

No adaptation Fixed adaptation Endogenous adaptation

C,Y C,Y C Y

No adaptation C,Y 1.00

Fixed adaptation C,Y -0.12 1.00

Endogenous adaptation C -0.39 0.84 1.00

Y -0.93 0.31 0.59 1.00

Table 6: County level correlations of the losses under the di¤erent model for the 5.1C warming scenario.
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Figure 7: The map displays the percentage loss of consumption due to a 5.1C warming under the no adaptation

model.
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Figure 8: The map displays the percentage loss of consumption due to a 5.1C warming under the �xed adaptation

model.

4.3 Caveats

There are a number of limitations of our work. Some re�ect our design: we focus solely on the e¤ect of

temperature and abstract from other weather or climate variables, in particular extreme events or sea

level rise. We also focus on the e¤ect on economic production rather than on other measures of welfare.

Most importantly, we need to extrapolate from currently observed behavior to future behavior. This

requires two steps: �rst, estimating the e¤ect of the higher temperature on output; second, estimating

the changes in adaptation. The former re�ects, to some extent, mechanical extrapolation: the county

that is currently the hottest in the US19 will become even warmer after climate change. To forecast the

e¤ect this higher temperature will have on its output, we need to some extent extrapolation. Table 7

quanti�es this by showing, for each scenario of climat echange, how many counties will have an average

number of hot days (days above 27C) that is greater than the 95th, 99th or 100th percentile of the

currently observed distribution. For instance, if the temperature increases by 3.4C, 4.9% of counties will

19Which is XXX according to our data.
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Figure 9: The map displays the percentage loss of consumption due to a 5.1C warming under the endogenous

adaptation model.

Scenario p95 p99 pmax

+1.6C 17.6% 3.9% 1.2%

+2.7C 26.7% 9.9% 3.1%

+3.4C 32.3% 15.1% 4.9%

+5.1C 48.1% 24.9% 12.2%

Table 7: Measuring extrapolation. This table reports for each climate change scenario the percentage of

counties with an average number of hot days post-climate change that is greater than the corresponding

percentiles of the distribution of the historical average.

have an average number of hot days greater than any county today. For these counties, we are certainly

�extrapolating�. Figure 10 presents the corresponding distributions.

The other key assumption required for the �endogenous adaptation�case is that the costs of adapta-

tion remain stable. It is di¢ cult to forecast what will happen over time regarding these costs. Plausibly,

new technologies will reduce adaptation costs, in which case our results are an upper bound on the

losses. But it is also possible that climate change will reduce the set of technologies that can be used -

for instance by changing the precipitation patterns. There are also some general equilibrium forces that

we do not model, such as the change of relative prices corresponding to the output of di¤erent regions.

5 Robustness of structural model results

In this section, we present some extensions of our baseline model. In particular, we consider alternative

functional forms for two mappings: (a) the mapping of temperature to productivity, (b) the mapping of

adaptation cost k to sensitivity b1(k). We also consider alternative objective functions for the estimation

method. Finally, we show how the results change if intertemporal trade (i.e. borrowing and lending)
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Figure 10: The �gure plots the histogram of the distribution of average hot days per year across counties,

for the historical data and for our forecast post-climate change in the 3.4C scenario. The red line denotes

the maximum across counties of the average number of hot days today.
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between counties is allowed. Intertemporal trade allows counties to insulate their consumption from

their output �uctuations.

5.1 Mapping of temperature to productivity

Our baseline model, inspired by the empirical results, assumes that productivity is una¤ected by tem-

perature, up to a level T , then falls linearly with temperature for T > T : We set T = 26 �C. Here we

consider two variants on this model. First, we simply change the value of T . We then re-estimate the

model and re-run all the counterfactuals with the new estimated parameters. Second, we consider the

possibility of non-linear e¤ects of temperature on productivity, that is we assume

logAit = b0 if Tit < T;

= b0 � b1(k)(Tit � T )2 if Tit � T ;

and we also consider di¤erent values for T : The resulting estimated parameters, moment �ts, and

counterfactuals are summarized in Tables 8, 9 and 10 respectively.

The estimated slope b1 of temperature on productivity (absent any adaptation) is higher if T is

larger, since the model is required to �t the e¤ect of hot days measured in the data (see rows 2-3 and

9-11 of table 8). In terms of model �t, all these models have a roughly similar �t, as seen in rows 3-4

and 10-12 of table 9. None is rejected, and all have p-values in the range of 43%-56%, corresponding

to J-statistics between 2 and 3. Third, these models imply di¤erent economic losses in the +5.1 �C

climate change scenario, as shown in table 10. It would be useful to distinguish among these models to

forecast the extant of losses. We plan to do this by adding more precise measures of data moments (e.g.,

the responses to di¤erent bins of temperatures rather than to hot days as a whole) in our estimation

procedure. Note, however, that the general features (C1)-(C4) we noted in the previous section remain.

In this sense, our key results appear una¤ected by the exact functional form used.

5.2 Functional form of adaptation technology

The baseline model assumes a simple functional form h(k) = e��k: But of course, we have little knowl-

edge of the technology for adaptation, and it is not guaranteed that this functional form is the best

approximation of the data. This leads us to consider some alternatives, for instance h(k) = max(1��k; 0)

(linear case, row 6 in Table 8), h(k) = max
�
1� �k2; 0

�
(quadratic case, row 7) or h(k) = max(1��

p
k; 0)

(square root case, row 8). The linear case is statistically rejected (p = 0:4%) as it implies that the fourth

and �fth quintiles have sensitivities much lower than in reality. The quadratic case and the square root

case also underestimate the sensitivity of the �fth quintile, but they �t reasonably well the other mo-

ments. Note that the quadratic case implies �increasing returns�to adaptation. As a result, the model

moments are constant over the �rst three quintiles before falling o¤ quickly. In contrast, the square root
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b1 �

Baseline 0.21 131.21

(0.02) (0.18)

T = 28 �C 1.09 131.83

(0.61) (5.79)

T = 24 �C 0.13 69.42

(0.01) (313.87)

Moments weighted by SE 0.18 106.85

(0.00) (0.07)

Moments weighted by pct dev 0.22 167.26

(0.01) (0.33)

h(k) linear 0.20 53.20

(0.01) (0.09)

h(k) quadratic 0.16 916.14

(0.00) (0.03)

h(k) square-root 0.20 5.97

(0.01) (0.30)

Quadratic e¤ect of T on productivity 0.08 137.96

(0.00) (980.89)

Quadratic + T = 24 �C 0.03 108.16

(0.00) (0.03)

Quadratic + T = 28 �C 2.30 63.00

(2.00) (55.93)

Table 8: Robustness: estimated parameter values and standard errors for each of the models considered

in section 5.
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Q1 Q2 Q3 Q4 Q5 J stat pval

Data -0.130 -0.099 -0.066 -0.040 -0.007

Baseline -0.118 -0.116 -0.063 -0.027 -0.012 2.068 0.559

T = 28 �C -0.123 -0.115 -0.057 -0.026 -0.011 2.544 0.467

T = 24 �C -0.127 -0.107 -0.059 -0.031 -0.016 2.068 0.558

Moments weighted by SE -0.104 -0.107 -0.073 -0.033 -0.014 1.442 0.696

Moments weighted by pct dev -0.124 -0.112 -0.049 -0.021 -0.009 4.050 0.256

h(k) linear -0.114 -0.116 -0.066 -0.004 -0.000 13.401 0.004

h(k) quadratic -0.096 -0.098 -0.101 -0.041 -0.002 3.145 0.370

h(k) square-root -0.111 -0.105 -0.087 -0.031 -0.002 2.244 0.523

Quadratic e¤ect of T on productivity -0.122 -0.115 -0.058 -0.025 -0.011 2.630 0.452

Quadratic + T = 24 �C -0.125 -0.112 -0.057 -0.028 -0.013 2.137 0.544

Quadratic + T = 28 �C -0.129 -0.103 -0.057 -0.035 -0.020 2.730 0.435

Table 9: Robustness: �t of the various models considered in section 5. The table reports the data

and model implied moments (regression coe¢ cient of income growth on hot days) for each of the �ve

quintiles, together with the J-statistic of model overidenti�cation and the associated p-value.

No Adaptation Fixed Adaptation Endogenous adaptation

Median SD Median SD Median SD

Baseline -5.816 4.518 -4.176 2.220 -1.713 0.511

T = 28 �C -7.707 8.232 -5.552 3.002 -2.179 0.636

T = 24 �C -5.441 3.376 -4.175 1.645 -2.310 0.616

Moments weighted by SE -2.291 1.878 -4.609 2.275 -2.037 0.589

Moments weighted by pct dev -0.811 0.676 -3.578 2.110 -1.360 0.426

h(k) linear -5.872 4.558 -0.926 3.684 -0.614 0.777

h(k) quadratic -5.858 4.548 -3.695 4.287 -1.866 1.264

h(k) square root -5.837 4.533 -4.580 3.260 -1.380 1.019

Quadratic e¤ect of T on productivity -7.431 7.565 -5.914 2.536 -2.011 0.505

Quadratic + T = 24 �C -6.373 5.646 -5.007 1.919 -2.042 0.484

Quadratic + T = 28 �C -11.450 11.130 -9.982 8.077 -6.678 1.719

Table 10: Robustness. The table reports the estimated e¤ect of a uniform 5.1C warming for each of

the models considered in Section 5, under the three cases (no adaptation model, �xed adaptation, and

endogenous adaptation). The statistics report the median and standard deviation across counties of the

losses.

25



case implies (like our baseline model) �decreasing returns�and the pattern of reduction of the coe¢ cient

is more regular (as is the data).

In terms of model implications for the cost of climate change, the range of estimated losses is similar

(except for the linear model which is strongly rejected as we showed). For instance, the median loss

under �xed (endogenous) adaptation is -4.17% (-1.71%) for the baseline model, as opposed to -3.69% (-

1.87%) for the quadratic model and -4.58% (-1.38%) for the square root model. Perhaps more important,

the other conclusions C1-C4 drawn above hold for the di¤erent functional forms. This suggests a certain

robustness of our �ndings to the exact way adaptation is modeled.

5.3 Estimation targets

Our baseline estimates are based on a simple criterion �we weight all �ve moments equally. From a

statistical perspective, it is recommended (Hansen (1982)) to use as weighting matrix the inverse of

the covariance matrix of moments. From an economic perspective, one might want to de�ne model

errors (i.e., deviation between data and model moments) be measured in percentage terms. Rows 4

and 5 implement these objective functions. Both of them lead to put signi�cantly more weight on the

quintiles 4 and 5 which are measured more precisely and have smaller absolute values. The results for

the �xed adaptation and endogenous adaptation models are little changed. However, the model with

no adaptation behaves very di¤erently. To �t the fourth and �fth quintiles, the estimator picks a much

lower sensitivity b1. As a result, the median and standard deviation of estimated losses are lower than

in our baseline estimation method.

5.4 Trade

The model assumes that counties are autarkic, i.e. consumption equals output, Cit = Yit. Instead we

assume now that counties can borrow and lend goods to each other. The resource constraint is now at

the nation level:
NX
i=1

Cit =
NX
i=1

Yit;

where we abstract from foreign trade. We assume complete markets, which is the most extreme form

of borrowing and lending imaginable. In that case, the equilibrium is characterized by: two conditions.

First, the marginal rate of substitution of leisure and consumption must be equalized in each county to

the marginal product of labor, leading to:

N 
itC


it = �AitN

��1
it

Second, the optimal risk-sharing condition states that

C�it �i = �t;

where �i is the Pareto weight of county i and �t is a multiplier. In the case with no aggregate uncertainty

(e.g. weather shocks average out over the nation), then �t is constant. This implies that Cit is constant
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as well. Overall, we obtain

Nit =

�
�Ait

Ci


� 1
 +1��

and

Yit = AitN
�
it = Ait

�
�Ait

Ci


� �
 +1��

and

Cit = Ci:

Results to be added.

6 Conclusion

To be added.
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Figure 11: (Top): The �gure plots the locations of weather stations that are used in 2000 in our

calculations of county-speci�c weather. (Bottom): This �gure plots the number of weather stations

that are used each year in our calculations of county-speci�c weather.

8 Appendix

8.1 Summary Statistics Table

8.2 Station statistics

Figure 11 depicts the number of stations used in our dataset to construct our measures of weather and

the locations of the stations used for the year 2000 (as an example).

8.3 Current Climate

Figure 12 depicts the average annual temperature and the average annual number of �hot days�for each

US county.

8.4 Robustness of Empirical results

In this subsection, we present some additional empirical results that relate to the baseline results. These

results are overall consistent with those reported in Deryugina and Hsiang (2014). Table 12 presents

the results. The �rst column simply reports the results when counties are weighted by their population.
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mean sd min p5 p50 p95 max count

(days in range)

-15 �C or less 4.87 10.50 0.00 0.00 0.00 26.00 178.00 92738

-15 �C,-12 �C 3.48 4.95 0.00 0.00 1.00 14.00 45.00 92738

-12 �C,-9 �C 5.67 6.62 0.00 0.00 3.00 19.00 55.00 92738

-9 �C,-6 �C 8.77 8.53 0.00 0.00 7.00 24.00 73.00 92738

-6 �C,-3 �C 13.26 10.66 0.00 0.00 13.00 31.00 74.00 92738

-3 �C,0 �C 19.42 12.81 0.00 0.00 20.00 40.00 88.00 92738

0 �C,3 �C 24.63 13.47 0.00 2.00 25.00 47.00 117.00 92738

3 �C,6 �C 29.26 12.51 0.00 8.00 29.00 49.00 132.00 92738

6 �C,9 �C 30.86 11.20 0.00 16.00 30.00 49.00 134.00 92738

9 �C,12 �C 32.16 10.45 0.00 19.00 31.00 49.00 154.00 92738

12 �C,15 �C 30.29 12.69 0.00 0.00 31.00 47.00 216.00 92738

15 �C,18 �C 33.87 10.06 0.00 20.00 33.00 49.00 157.00 92738

18 �C,21 �C 37.60 12.31 0.00 20.00 38.00 55.00 306.00 92738

21 �C,24 �C 36.30 16.46 0.00 4.00 37.00 60.00 276.00 92738

24 �C,27 �C 31.13 24.15 0.00 0.00 29.00 73.00 223.00 92738

27 �C,30 �C 17.43 23.44 0.00 0.00 6.00 68.00 169.00 92738

30 �C or more 3.11 9.38 0.00 0.00 0.00 18.00 130.00 92738

(in log di¤erences)

Personal Income Per Capita 5.54 6.80 -107.49 -3.30 5.11 15.27 130.48 90568

Wages and Salaries 5.74 6.41 -105.11 -2.96 5.41 15.25 124.44 90568

Propietor Income 4.94 32.18 -637.47 -38.67 5.33 46.93 657.68 90068

Farm Propietor Income 1.84 93.11 -949.66 -141.22 2.86 140.05 870.62 68110

Nonfarm Propietor Income 5.35 14.02 -288.79 -13.98 5.65 23.29 413.44 90527

(in thousands)

Population 108.44 334.50 0.20 3.15 28.05 477.47 10170.29 92738

Table 11: Summary statistics of primary variables of analysis. Units are in parentheses at the top of

each section.
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Figure 12: The top panel depicts the average temperature of each county; the bottom panel depicts the

average number of days per year with an average temperature above 30�C. Weather statistics calculated

over the period 1969-2015.
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Figure 13: The circles denote unweighted (green) and population weighted (orange) estimates of �k in

equation (1), and the bars re�ect the associated +/- 2 standard error bands.

Figure ?? depicts the resulting coe¢ cients together with those of the baseline model 1. The resulting

coe¢ cients on hot days are smaller (and less precisely estimated), suggesting that small counties are

important drivers of the results. The second column reports the results when the time e¤ect is omitted

from the regression. The third column uses the change in the number of days in a given bin (rather

than the level) as the variable of interest. This speci�cation may be preferable if there are trends in the

data. The results are fairly similar, though less statistically signi�cant. The fourth and �fth columns

illustrate the dynamic e¤ects of the weather shock. The speci�cation is:

� log Yi;t = �i + �t +
KX
k=1

�kBink;i;t +
KX
k=1

�lagk Bink;i;t�1 + "i;t; (10)

and the results are also presented in graphical form in Figure 14. As can be seen the coe¢ cients on the

hot days lagged are now signi�cantly positive. The hypothesis �k + �lagk = 0 (i.e., there is no long-run

e¤ect on income) can be rejected. Finally, the last column shows the e¤ect of adding precipitation as a

control variable. The speci�cation is

� log Yi;t = �i + �t +

KX
k=1

�kBink;i;t +

MX
k=1

�Pk Bin
P
k;i;t + "i;t;

where the BinPk;i;t are bins of precipitation for county i in year t, de�ned analogously to those for

temperature. The results for temperature remain similar once precipitation is controlled for.

We next consider which income categories account for the result. To do so, we simply replace total

income growth with some subcomponents Z and estimate the same speci�cation:

� logZi;t = �i + �t +
KX
k=1

�kBink;i;t + "i;t: (11)

The results for Z corresponding to (a) wages and salaries, (b) proprietor income, (c) nonfarm proprietor

income, and (d) farm proprietor income, are depicted in Figure 15 and the coe¢ cient estimates are

in 13. The estimated e¤ects are much larger for proprietor income, and these appear to be driven by
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Population
Weighted

No
Time FE

Bins
First Di¤erence

Lagged
Current Coefs

Lagged
Lagged Coefs

With PRCP
Controls

-15 �C or less 0.0109 0.113 -0.0274 0.0344 0.0268 0.0403

(0.53) (1.96) (-0.40) (0.74) (0.43) (0.90)

-15 �C,-12 -0.00866 0.0273 -0.000443 -0.0112 0.00115 -0.00953

(-0.82) (0.51) (-0.01) (-0.39) (0.03) (-0.34)

-12 �C,-9 �C -0.00464 0.0268 0.00570 0.00232 -0.00492 -0.00500

(-0.35) (0.66) (0.18) (0.08) (-0.22) (-0.16)

-9 �C,-6 �C -0.00591 -0.0171 0.00586 -0.00909 -0.00655 -0.0133

(-0.56) (-0.52) (0.27) (-0.48) (-0.32) (-0.75)

-6 �C,-3 �C -0.0127 -0.0165 0.00562 -0.00963 -0.00202 -0.0153

(-2.00) (-0.58) (0.27) (-0.59) (-0.11) (-1.03)

-3 �C,0 �C -0.00417 0.00936 -0.00167 -0.00369 0.00577 -0.00655

(-0.65) (0.32) (-0.10) (-0.22) (0.36) (-0.39)

0 �C,3 �C -0.00519 -0.00700 0.00890 -0.00843 -0.00357 -0.00871

(-0.97) (-0.25) (0.46) (-0.52) (-0.26) (-0.55)

3 �C,6 �C -0.00713 -0.0123 0.0139 -0.00515 -0.0104 -0.00705

(-1.38) (-0.54) (0.99) (-0.42) (-0.96) (-0.54)

6 �C,9 �C -0.00949 0.00482 0.0112 0.00832 -0.0104 0.00886

(-1.34) (0.25) (0.75) (0.77) (-0.89) (0.76)

9 �C,12 �C 0.000599 0.0112 -0.00272 0.00207 0.00359 0.00524

(0.13) (0.90) (-0.20) (0.23) (0.36) (0.62)

15 �C,18 �C -0.00931 -0.00242 0.000935 -0.00719 -0.00353 -0.00384

(-1.64) (-0.20) (0.05) (-0.97) (-0.31) (-0.48)

18 �C,21 �C -0.00505 -0.0109 -0.0185 -0.0210 0.0153 -0.0156

(-0.99) (-0.56) (-1.04) (-1.36) (1.06) (-1.05)

21 �C,24 �C -0.0135�� -0.00437 -0.0174 -0.0242 0.0164 -0.0190

(-2.76) (-0.22) (-1.04) (-1.55) (1.15) (-1.25)

24 �C,27 �C -0.0146� -0.0157 -0.0351 -0.0419� 0.0329� -0.0363

(-2.25) (-0.52) (-1.78) (-2.10) (2.08) (-1.90)

27 �C,30 �C -0.0123 -0.0625� -0.0266 -0.0609�� 0.0241 -0.0543��

(-1.57) (-2.16) (-1.31) (-2.81) (1.46) (-2.73)

30 �C or more -0.00457 -0.0527 -0.0621� -0.0633� 0.0598�� -0.0525�

(-0.47) (-1.96) (-2.57) (-2.53) (2.94) (-2.30)

N 90529 90529 80587 80587 80587 90529

Table 12: Estimates of the baseline speci�cation (Equation 1) for di¤erent types of income. Each column

refers to a di¤erent outcome variable. All regressions include county and time �xed e¤ects. Standard

errros clustered by year. Stars indicate statistical signi�cance at the 10 percent (*), 5 percent (**) and

1 percent (***) level.
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Figure 14: The green circles denote estimates of �lagk in equation (12), and the bars re�ect the associated

+/- 2 standard error bands.

farm proprietor income. Figure 16 shows the results if one estimates equation 11 for farm proprietor

income by quintile of temperature. The same pattern emerges of a sensitivity that is larger for the

colder counties (with one exception for the �rst quintile in the 27C-30C range).

We next turn to the decomposition between weekends and weekdays, a useful placebo test proposed

by Deryugina and Hsiang (2014). We estimate the speci�cation is:

� log Yi;t = �i + �t +

KX
k=1

�WD
k BinWD

k;i;t +

KX
k=1

�WE
k BinWE

k;i;t + "i;t; (12)

where

BinWD
k;i;t = # of weekdays in bin k in county i year t;

BinWE
k;i;t = # of weekend days in bin k in county i year t:

The results are shown in Figure ?? and in the �rst column of Table 14. We also �nd that the results are

overall driven by weekdays. However, weekend e¤ects are imprecisely estimated. Moreover, the weak

weekend e¤ect results from the combination of a positive e¤ect on wages and salaries and a negative

e¤ect on farm proprietor income.
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Figure 15: The circles denote estimates of �k in equation (1), and the bars re�ect the associated +/-

2 standard error bands. Green circles are e¤ect on Personal Income per Capita and oragne circles are

(a) Wages and Salaries (b) Proprietors Income (c) Nonfarm Proprietors Income (d) Farm Propreitors

Income. (All in log di¤erences)
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Figure 16: The circles denote estimates of �k in equation (1) for k = 15; 16; 17 (three hottest temperature

bins), for each of the �ve groups of counties (quintiles ordered by average temperature), where the

response variable is Farm Proprietor Income. The bars re�ect the associated +/- 2 standard error

bands.
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Figure 17: The circles denote estimates of �k in equation (1), and the bars re�ect the associated +/- 2

standard error bands. Green circles are e¤ects on Weekdays and orange circles are e¤ects on weekends.

Values are (a) Personal Income Per Capita (b) Wages and Salaries (c) Proprietors Income (d) Farm

Proprietors Income. (All in log di¤erences)
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Figure 18: Sensitivity Given Current Environment

(.2 2 5 ,.2 5 ]
(.2 ,.2 2 5 ]
(.1 7 5 ,.2 ]
(.1 5 ,.1 7 5 ]
(.1 2 5 ,.1 5 ]
(.1 ,.1 2 5 ]
(.0 7 5 ,.1 ]
(.0 5 ,.0 7 5 ]
(.0 2 5 ,.0 5 ]
[0 ,.0 2 5 ]
No  d a ta

Figure 19: Model Projections of Sensitivies Given Adaptation to Climate Change in the 5.1C warming

scenario.

8.5 Estimated Sensitivity to Temperature from structural model

Figure 18 depicts the estimated sensitivity to hot days in the current environment. Figure 19 shows

how the model projects these sensitivities will change given climate change, after adaptation has taken

place.

8.6 Adaptation choices in the structural model

In order to understand the logic of the endogenous adaptation model, it is helpful to see its implications

for adaptation costs and sensitivity to weather. Figure 20 presents each county�s optimal adaptation k

today and after climate change. Almost all counties increase adaptation. Many counties that currently

have little adaptation would increase it signi�cantly. These counties would bear substantial costs. Figure

21 depicts the sensitivity b1(k) to hot temperature before and after climate change. The big chunk of

counties that move from zero adaptation to something positive are re�ected in the vertical scatter at

the very right of the panel.
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Income Wage Transf. Div.Int. Nonfarm Farm

-15 �C or less 0.0302 -0.00541 -0.00215 -0.0355 0.0824 -0.441

(0.61) (-0.30) (-0.12) (-1.51) (1.21) (-0.88)

-15 �C,-12 �C -0.00312 0.0186 -0.0108 0.0151 -0.0489 -1.186�

(-0.09) (0.94) (-0.50) (0.64) (-0.67) (-2.37)

-12 �C,-9 �C -0.0102 -0.00191 -0.0114 -0.00282 0.0416 -0.901�

(-0.46) (-0.10) (-0.66) (-0.13) (0.94) (-2.28)

-9 �C,-6 �C -0.0170 -0.00293 -0.0182 -0.0140 0.0244 -0.695�

(-0.95) (-0.25) (-1.33) (-0.84) (0.56) (-2.18)

-6 �C,-3 �C -0.0197 0.00917 -0.00404 -0.0175 -0.00397 -0.766�

(-1.22) (0.97) (-0.32) (-1.26) (-0.12) (-2.30)

-3 �C,0 �C -0.0105 -0.00837 -0.00414 -0.00176 0.0152 -0.882��

(-0.64) (-0.82) (-0.40) (-0.14) (0.37) (-3.00)

0 �C,3 �C -0.0114 -0.00474 -0.00169 -0.0184 -0.0168 -0.823�

(-0.82) (-0.57) (-0.20) (-1.65) (-0.71) (-2.24)

3 �C,6 �C -0.00912 -0.00472 -0.00233 -0.0170 -0.00629 -0.360

(-0.70) (-0.59) (-0.28) (-1.52) (-0.21) (-1.01)

6 �C,9 �C 0.00651 -0.00739 0.00313 -0.0137 -0.00659 -0.0558

(0.59) (-0.93) (0.52) (-1.24) (-0.19) (-0.15)

9 �C,12 �C 0.00192 -0.0126 0.00515 -0.0101 0.0152 -0.210

(0.21) (-1.81) (1.03) (-1.09) (0.49) (-0.69)

15 �C,18 �C -0.00687 -0.00647 -0.000331 -0.0164 -0.00833 -0.227

(-0.73) (-1.09) (-0.07) (-1.85) (-0.26) (-0.68)

18 �C,21 �C -0.0169 -0.0108 -0.00155 -0.0192 -0.0432 -0.681

(-1.16) (-1.54) (-0.26) (-1.67) (-1.15) (-1.74)

21 �C,24 �C -0.0214 -0.0117 0.00245 -0.0254 -0.00338 -0.898�

(-1.30) (-1.81) (0.36) (-1.85) (-0.10) (-2.53)

24 �C,27 �C -0.0366 -0.0149 0.00239 -0.0268 -0.000767 -1.131�

(-2.00) (-1.56) (0.34) (-1.69) (-0.02) (-2.21)

27 �C,30 �C -0.0562�� -0.0124 -0.00793 -0.0199 -0.0898 -0.322

(-3.03) (-1.25) (-1.17) (-1.31) (-0.95) (-0.29)

30 �C or more -0.0485� 0.0172 -0.0106 0.00640 -0.363��� -6.532�

(-2.56) (1.19) (-1.01) (0.28) (-3.53) (-2.35)

N 90529 90529 90529 90529 18127 12650

Table 13: Estimates of the baseline speci�cation for di¤erent types of income. Each column refers to

a di¤erent outcome variable. All regressions include county and time �xed e¤ects. Standard errros

clustered by year. Stars indicate statistical signi�cance at the 10 percent (*), 5 percent (**) and 1

percent (***) level.
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Personal Income Per Capita Wages and Salaries Nonfarm Wages and Salaries

Weekdays Weekend Weekdays Weekend Weekdays Weekend

-15 �C or less 0.0335 0.0422 0.0903 -0.0415 2.365 -0.530

(0.22) (0.58) (1.09) (-1.41) (1.75) (-0.79)

-15 �C,-12 �C -0.209 0.0722 0.101 -0.0107 -0.276 -0.103

(-1.73) (1.49) (1.38) (-0.36) (-0.20) (-0.18)

-12 �C,-9 �C -0.121 0.0397 0.125 -0.0486 -1.488 0.196

(-1.35) (0.81) (1.91) (-1.80) (-1.47) (0.39)

-9 �C,-6 �C -0.119 0.0268 0.103� -0.0436� -1.097 0.0435

(-1.47) (0.74) (2.07) (-2.30) (-1.15) (0.08)

-6 �C,-3 �C -0.0971 0.0161 0.0926� -0.0217 -1.426 0.104

(-1.40) (0.44) (2.36) (-1.05) (-1.62) (0.22)

-3 �C,0 �C -0.0802 0.0232 0.0651 -0.0343 -0.871 0.122

(-1.40) (0.77) (1.81) (-1.84) (-1.13) (0.34)

0 �C,3 �C -0.0605 0.0130 0.0295 -0.0162 -1.164 0.00732

(-1.22) (0.54) (0.96) (-1.04) (-1.73) (0.03)

3 �C,6 �C -0.0162 -0.00173 0.0127 -0.0104 -0.634 -0.157

(-0.47) (-0.08) (0.59) (-0.79) (-1.29) (-0.54)

6 �C,9 �C 0.0197 0.00470 0.00208 -0.00948 -0.00687 -0.0530

(0.68) (0.29) (0.10) (-1.16) (-0.02) (-0.24)

9 �C,12 �C -0.0110 0.0109 -0.0180 -0.00870 0.0659 0.0404

(-0.54) (0.93) (-0.95) (-1.12) (0.22) (0.27)

15 �C,18 �C 0.0402 -0.0195 0.00578 -0.0104 -0.0722 -0.000592

(1.59) (-1.33) (0.34) (-1.58) (-0.22) (-0.00)

18 �C,21 �C 0.0505 -0.0399 0.00737 -0.0164 -0.474 0.0121

(1.18) (-1.60) (0.29) (-1.48) (-1.13) (0.05)

21 �C,24 �C 0.0416 -0.0422 -0.00211 -0.0139 -1.089� 0.136

(0.77) (-1.54) (-0.07) (-1.02) (-2.11) (0.48)

24 �C,27 �C 0.0427 -0.0659 0.00968 -0.0234 -1.669� -0.135

(0.68) (-1.96) (0.27) (-1.51) (-2.22) (-0.44)

27 �C,30 �C 0.0805 -0.103� 0.0306 -0.0277 -1.560 -0.627

(1.17) (-2.58) (0.73) (-1.76) (-1.74) (-1.50)

30 �C or more 0.124 -0.121� 0.0352 0.0116 -1.606 -1.666��

(1.25) (-2.10) (0.81) (0.45) (-1.37) (-3.30)

N 90529 90529 90529 90529 68059 68059

Table 14: Estimates of the speci�cation for week-end vs. weekdays for di¤erent types of income. All

regressions include county and time �xed e¤ects. Standard errors clustered by year. Stars indicate

statistical signi�cance at the 10 percent (*), 5 percent (**) and 1 percent (***) level.
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Figure 20: This �gure plots the adaptation chosen by each county in the current climate (x-axis) against

the adaptation it will choose after climate change (y-axis) according to the structural model.
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Figure 21: This �gure plots the sensitivity to temperature of each county in the current climate (x-axis)

against its sensitivity after climate change (y-axis) according to the structural model.
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