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Abstract

In this paper, we build a new test of rational expectations based on the marginal dis-

tributions of realizations and subjective beliefs. This test can be used in many different

empirical settings, including in the common situation where realizations and subjective

beliefs are observed in two different datasets that cannot be matched. We show that

whether one can rationalize rational expectations is equivalent to the distribution of real-

izations being a mean-preserving spread of the distribution of beliefs. The null hypothesis

can then be rewritten as a system of many moment inequalities, for which tests have been

developed recently in the literature. Next, we define and estimate the minimal deviations

from rational expectations than can be rationalized by the data. In the context of struc-

tural models, we propose a natural and easy-to-implement way to conduct a sensitivity

analysis on the assumed form of expectations. Finally, we use our method to test and

quantify deviations from rational expectations about future earnings, and examine the

consequences of violations of rational expectations in the context of a life-cycle model of

consumption.

Keywords: rational expectations, test, data combination, subjective expectations,

sensitivity analysis.

∗We thank Peter Arcidiacono, Federico Bugni, Valentina Corradi, Gregory Jolivet, Jia Li, Andrew Patton,

Yichong Zhang and seminar participants at Amsterdam, Bocconi, CREST, Duke, Helsinki, Mannheim, Na-

tional University of Singapore, Singapore Management University, Surrey, Toulouse School of Economics, and

attendees of the 2017 Econometric Study Group (Bristol), the Conference on the Intersection of Econometrics

and Applied Micro (Toronto, Oct. 17), the 2017 Triangle Econometrics Conference, the 2018 International

Association for Applied Econometrics Conference (Montreal), and the 2018 CEME NSF-NBER conference on

“Inference in Nonstandard Problems” (Duke) for useful comments and suggestions.
†CREST, xavier.dhaultfoeuille@ensae.fr.
‡CREST and TSE, christophe.gaillac@ensae.fr.
§Duke University, NBER and IZA, arnaud.maurel@duke.edu.

1



1 Introduction

Understanding how individuals form their beliefs about uncertain future outcomes is criti-

cal to understand decision making. Despite longstanding critiques (see, among many others

Tversky and Kahneman, 1992; Manski, 2004), rational expectations remain by far the most

popular theory to describe such belief formation (Muth, 1961). This theory states that agents

have expectations that do not systematically differ from the realized outcomes, and efficiently

process all private information to form these expectations. Rational expectations (RE) re-

main a key building block in many macroeconomic model, but also in most of the dynamic

behavioral models that have been estimated over the last two decades (see, e.g., Aguirre-

gabiria and Mira, 2010; Arcidiacono and Ellickson, 2011; Wolpin, 2013; Blundell, 2017, for

recent surveys).

In this paper, we build a new test of RE. Our test only requires having access to the marginal

distributions of subjective beliefs and realizations. As such, it can be used to test RE in

many different empirical settings, including in a data combination context, where individ-

ual realizations and subjective beliefs are observed in two different datasets that cannot be

matched. Subjective expectations data have been increasingly used in economic research over

the last ten years, frequently in situations where actual outcomes and beliefs are observed in

two different datasets. The tests of RE implemented so far in this context (see in particular

Patton and Timmermann, 2012; Gennaioli et al., 2015) only use specific implications of this

hypothesis. In contrast, we develop a test that exploits all possible implications of RE. We

show for that purpose that, if one moment equality and infinitely many moment inequalities

hold, we can rationalize RE.1 In other words, if these moment conditions hold, RE cannot

be rejected, given the data at our disposal. By exhausting all implications of RE, our test is

able to detect much more violations of rational expectations than existing tests.

To develop a statistical test of RE rationalization, we build on the recent literature on inference

based on moment inequalities, and more specifically, on Andrews and Shi (2017, AS hereafter).

By applying their results to our context, we show that the test controls size asymptotically

and is consistent over fixed alternatives. We also provide conditions under which the test is

not conservative.

We consider several important extensions to our baseline test. First, we show that by observ-

ing the same covariates in the two datasets, we can increase our ability to detect violations

of the test. Another important issue is the one of unanticipated aggregate shocks. Even if

individuals are rational, the mean of observed outcomes may differ from the mean of individ-

ual beliefs simply because of such shocks. We show that our test can be easily adapted to

account for aggregate shocks. Finally, we show that our test is robust to measurement errors

in the following sense. If individuals are rational but both beliefs and outcomes are measured

with errors, then our test does not reject provided that the amount of measurement errors

1Interestingly, the equivalence on which we rely on, based on Strassen’s theorem (Strassen, 1965), is also

used in the microeconomic risk theory literature, see in particular Rothschild and Stiglitz (1970).
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on beliefs does not exceed the amount of intervening transitory shocks plus the measurement

errors on the outcome variable. In particular, subjective beliefs may be noisier than realized

outcomes. This provides a rationale for our test even in cases where realizations and beliefs

are observed in the same dataset, since the direct test based on a regression of the outcome

on beliefs is not robust to any amount of measurement error on beliefs.

Next, we go beyond testing for rational expectations, and introduce the concept of minimal

deviations from rational expectations than can be rationalized by the data. We leverage tools

recently developed in the optimal transport literature (Villani, 2008) and in particular a recent

paper by Gozlan et al. (2018), and provide conditions under which there is a unique trans-

formation of subjective expectations that would make them rational, and which minimizes

the transportation cost for all convex and positive loss functions considered. These minimal

deviations have an intuitive interpretation as the minimal magnitude of measurement errors

that would need to affect the elicited beliefs in order for these to remain compatible with the

rational expectations hypothesis. Under some mild regularity conditions, we derive a consis-

tent estimator for this transformation. Importantly for practical purposes, this estimator can

be easily implemented, and at a minimal computational cost.

We then extend the concept of minimal deviations from rational expectations to accommodate

restrictions on the information set of the agents. We establish existence and uniqueness of

the corresponding minimal deviations, for which we derive a consistent and asymptotically

normal estimator. In the context of structural models, the proposed approach yields a natural

and easy-to-implement sensitivity check on the assumed form of expectations. This procedure

does not require observing the beliefs in the same dataset as the one used to estimate the

model, and as a result can be used quite generally. Overall, this method opens up a middle

ground between conducting inference on structural choice models based on realized data

under the assumption of rational expectations (standard approach a la Rust, 1987; Keane and

Wolpin, 1997), and estimating more flexible choice models using subjective beliefs (as in, e.g.,

Delavande and Zafar, 2018; Wiswall and Zafar, 2018, 2015; Kapor et al., 2017; Arcidiacono

et al., 2014; Stinebrickner and Stinebrickner, 2014b,a; Delavande, 2008).

We apply our method to test and quantify deviations from rational expectations about future

earnings. To do so, we combine elicited beliefs about future earnings with realized earnings,

using data from the Labor Market module of the Survey of Consumer Expectations (SCE, New

York Fed), and test whether household heads form rational expectations on their annual labor

earnings. While a naive test of equality of means between earnings beliefs and realizations

shows that earnings expectations are realistic in the sense of not being significantly biased,

thus not rejecting the rational expectations hypothesis at any standard levels, our test does

reject rational expectations at the 5% level. Taken together, these findings illustrate the

practical importance of incorporating the additional restrictions of rational expectations that

are embedded in our test.

Finally, we explore the sensitivity of the life-cycle model of earnings and consumption of

Kaplan and Violante (2010) to violations of the rational expectations hypothesis. We find
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that, even though agents are about right on average about their future earnings, some of

the findings exhibit significant sensitivity to departures from RE. Notably, we document the

existence of substantial changes in the behavioral response of consumers to income shocks.

In particular, consumption is less responsive to permanent income shocks if we relax RE.

Interestingly, after accounting for these deviations from RE, behavioral responses tend to be

more similar to what has been estimated in some of the earlier literature (see, e.g., resp.

Blundell et al., 2008; Kaufmann and Pistaferri, 2009).

By developing a test of rational expectations in a setting where realizations and subjective

beliefs are observed in two different datasets, we bring together the relatively recent literature

on data combination (see, e.g., Cross and Manski, 2002, Molinari and Peski, 2006, Fan et al.,

2014, Buchinsky et al., 2016, Pacini, 2017, and Ridder and Moffitt, 2007 for a survey), and the

literature on testing for (implications of) rational expectations in a micro environment (see,

e.g., Gourieroux and Pradel, 1986, and Ivaldi, 1992, for early methodological contributions).

This paper also fits into the small but growing literature on the application of optimal trans-

port methods in econometrics (see Galichon, 2016 for a recent overview of optimal transport

methods in economics). In the context of our analysis, optimal transport theory offers a very

natural and powerful way to quantify deviations from rational expectations.

On the empirical side, we contribute to a rapidly growing literature on the use of subjective

expectations data in economics (see, e.g., Manski, 2004, Delavande, 2008, 2014, Van der

Klaauw and Wolpin, 2008, Zafar, 2011, Van der Klaauw, 2012, Arcidiacono et al., 2012,

2014, de Paula et al., 2014, Stinebrickner and Stinebrickner, 2014b, and Wiswall and Zafar,

2015, 2018). In this paper, we show how to incorporate all of the relevant information from

subjective beliefs combined with realized data to test for, and measure deviations from rational

expectations.

Our analysis also complements several recent studies which primarily focus on testing for

different information sets, while maintaining the rational expectations assumption (see, for

a survey, Cunha and Heckman, 2007, and recent articles by Navarro and Zhou, 2017, and

Dickstein and Morales, 2018). Unlike these papers, we focus instead on testing for and relaxing

rational expectations, while treating the agents’ information sets as an infinite dimensional

nuisance parameter.

Finally, by developing a new framework allowing to examine the sensitivity of behavioral

models to departures from the rational expectations hypothesis, we contribute to a small set

of recent papers that estimate structural choice models without imposing rational expectations

(see, e.g., Houser et al., 2004; Buchinsky and Leslie, 2010; Stinebrickner and Stinebrickner,

2014a; Hoffman and Burks, 2017; Kapor et al., 2017; and Agarwal and Somaini, 2018).

The remainder of the paper is organized as follows. In Section 2, we present the set-up and

discuss the main theoretical equivalences that we use to build our testing procedure. In Section

3, we present the statistical tests for rational expectations, and establish their asymptotic

properties. Section 4 studies minimal deviations from rational expectations that can be
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rationalized by the data. Section 5 illustrates the finite sample properties of our tests and

estimators through Monte Carlo simulations. Section 6 applies our framework to expectations

about future earnings. Finally, Section 7 concludes. The appendix collects various theoretical

extensions, additional simulation results, additional material on the application and all the

proofs.

2 Set-up and main theoretical equivalences

2.1 Set-up

We assume that the researcher has access to a first dataset containing the individual outcome

variable of interest, which we denote by Y . She also observes, through a second dataset,

the elicited individual expectation on Y , denoted by ψ. Throughout the paper, we focus on

situations where the researcher has access to elicited beliefs about mean outcomes, as opposed

to probabilistic expectations about the full distribution of outcomes. The type of subjective

expectations data we use in this paper has been collected in various contexts and used in a

number of prior studies (see, among others Delavande, 2008; Zafar, 2011; Arcidiacono et al.,

2012, 2014; Armantier et al., 2017; Kuchler and Zafar, 2017; Hoffman and Burks, 2017; Landier

et al., 2017).

Formally, ψ = E [Y |I], where I denotes the σ-algebra corresponding to the agent’s information

set and E [·|I] is the subjective expectation operator (i.e. for any U , E [U |I] is a I-measurable

random variable). Importantly, we remain agnostic throughout most of our analysis on the

information set I.2 We are interested in testing the rational expectations (RE) hypothesis

ψ = E[Y |I], where E [·|I] is the conditional expectation operator generated by the true data

generating process. It is easy to see that the RE hypothesis imposes restrictions on the joint

distribution of realizations Y and beliefs ψ.

In this context, the relevant question of interest is then whether one can rationalize RE, in

the sense that there exists a triplet (Y ′, ψ′, I ′) such that (i) the pair of random variables

(Y ′, ψ′) are compatible with the marginal distributions of Y and ψ; and (ii) ψ′ correspond to

the rational expectations of Y ′, given the information set I ′, i.e., E(Y ′|I ′) = ψ′. Hence, we

consider the test of the following hypothesis:

H0 : there exists a pair of random variables (Y ′, ψ′) and a sigma-algebra I ′ such that

σ(ψ′) ⊂ I ′, Y ′ ∼ Y, ψ′ ∼ ψ and E
[
Y ′
∣∣I ′] = ψ′,

where ∼ denotes equality in distribution. Rationalizing RE does not mean that the true Y ,

ψ and I are such that E [Y |I] = ψ. Instead, it means that there exists a triplet (Y ′, ψ′, I ′)
2We nevertheless do need to impose stronger restrictions when discussing the role of covariates in Section

2.2.2. For such covariates to be useful, we have to assume that σ(X) ⊂ I (taking the convention that “⊂”

includes the case of equality between the two sets). We also accommodate restrictions on the information

set of the agents when we discuss in Subsection 4.2 the estimation of the minimal deviations from RE in the

context of a behavioral model.
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consistent with the data and such that E [Y ′|I ′] = ψ′. In other words, rejecting H0 implies

that RE does not hold, in the sense that the true realizations Y , subjective beliefs ψ, and

information set I do not satisfy RE (E [Y |I] 6= ψ) but the converse is not true.

2.2 Equivalences

2.2.1 Main equivalence

Let δ = E [Y ]−E [ψ], Fψ and FY denote the cumulative distribution functions (cdf) of ψ and

Y , x+ = max(0, x), and define

∆(y) =

∫ y

−∞
FY (t)− Fψ(t)dt.

Throughout most of our analysis, we impose the following regularity conditions on the distri-

butions of realized outcomes (Y ) and subjective beliefs (ψ):

Assumption 1 E (|Y |) < +∞ and E (|ψ|) < +∞.

The following preliminary result will be useful subsequently.

Lemma 1 Suppose that Assumption 1 holds. Then H0 holds if and only if there exists a pair

of random variables (Y ′, ψ′) such that Y ′ ∼ Y , ψ′ ∼ ψ and E [Y ′|ψ′] = ψ′.

Lemma 1 states that to test for H0, we can focus on the constraints on the joint distribution

of Y and ψ, and ignore those related to the information set. This is intuitive given that we

impose no restrictions on this set. Our main result, then, is Theorem 1 below. It states that

rationalizing RE (i.e., H0) is equivalent to a set of many moment inequality and equality

constraints.

Theorem 1 Suppose that Assumption 1 holds. The following statements are equivalent:

(i) H0 holds;

(ii) (FY is a mean-preserving spread of Fψ) ∆(y) ≥ 0 for all y ∈ R and δ = 0;

(iii) E
[
(y − Y )+ − (y − ψ)+] ≥ 0 for all y ∈ R and δ = 0.

The implication (i) ⇒ (iii) and the equivalence between (ii) and (iii) are simple to establish.

The key part of the result is to prove that (iii) implies (i). To show this, we first use Lemma 1,

which states that H0 is equivalent to the existence of (Y ′, ψ′) such that Y ′ ∼ Y , ψ′ ∼ ψ and

E [Y ′|ψ′] = ψ′. Then the result essentially follows from Strassen’s theorem (Strassen, 1965,

Theorem 8).

It is interesting to note that Theorem 1 is related to the theory of risk in microeconomic

theory. In particular, using the terminology of Rothschild and Stiglitz (1970), (ii) states

that realizations (Y ) are more risky than beliefs (ψ). The main value of Theorem 1, from a

statistical point of view, is to transform H0 into the set of moment inequality (and equality)

restrictions given by (iii). We show in Section 3 how to build a statistical test of these

conditions.
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Comparison with alternative tests of rational expectations We compare hereafter

our test with alternative ones that have been proposed in the literature. In the following

discussion and throughout this section, we reason at the population level. Accordingly, we

compare the different tests in terms of data generating processes violating the null hypothesis

associated with each test.

Our test can clearly detect many more violations of rational expectations than the “naive”

test of rational expectations simply based on the equality E(Y ) = E(ψ). It also detects more

violations than a test based on E(Y ) = E(ψ) and V(Y ) ≥ V(ψ), which has been considered in

the macroeconomic literature on the accuracy and rationality of forecasts (see in particular

Patton and Timmermann, 2012).3 On the other hand, and as expected since it is based on

the joint distribution of (Y, ψ), the “direct” test of E(Y |ψ) = ψ can detect more violations of

rational expectations than ours.

To better understand the difference between these four different tests, it is helpful to consider

important particular cases. Of course, if ψ = E [Y |I], individuals are rational and none of the

four tests reject their null hypothesis. Next, consider departures from rational expectations

of the form ψ = E [Y |I] + η, with η independent of E [Y |I]. If E(η) 6= 0, subjective beliefs are

biased, and individuals are on average either over-pessimistic or over-optimistic. It follows

that E(Y ) 6= E(ψ), implying that all four tests are rejected.

More interestingly, if E(η) = 0, individuals’ expectations are right on average, and the naive

test is not rejected. However, it is easy to show that, as long as deviations from RE are

heterogeneous in the population (V(η) > 0), the direct test always leads to a rejection.

In this setting, our test constitutes a middle ground, the rejection of which depends on

the degree of dispersion of the deviations from RE (η) relative to the unpredictable shocks

(ε = Y −E(Y |I)). In other words and intuitively, we reject our test whenever departures from

rational expectations dominate the uncertainty shocks affecting the outcome Y . Formally,

and using similar arguments as in Proposition 4 in Appendix B, one can show that if ε is

independent of E [Y |I], our test rejects if the distribution of ε stochastically dominates at the

second-order the distribution of η.

Specifically, if ε ∼ N (0, σ2
ε) and η ∼ N (0, σ2

η), our test rejects if and only if σ2
η > σ2

ε . In

such a case, our test boils down to the second test mentioned above: we reject whenever

V(ψ) > V(Y ). But interestingly, if η is not normally distributed, we can reject H0 even if

V(ψ) ≤ V(Y ). Suppose for instance that ε ∼ N (0, 1) and

η = a (−1{U ≤ 0.1}+ 1{U ≥ 0.9}) , U ∼ U [0, 1] and a > 0.

In other words, 80% of individuals are rational, 10% are over-pessimistic and form expecta-

tions equal to E [Y |I]− a, whereas 10% are over-optimistic and expect E [Y |I] + a. Then one

can show that our test rejects when a ≥ 1.755, while for a = 1.755, V(η) ' 0.616 ≤ V(ε) = 1.

3We also refer the reader to Elliott et al. (2005), Jin et al. (2017) and references therein, for other recent

contributions to the literature on the accuracy and rationality of forecasts. The framework in this literature

differs however from ours in several aspects, and in particular by focusing on the evolution over time of forecasts.
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Finally, in a particular case, our test reduces to the naive test of E(Y ) = E(ψ). When Y is

a binary outcome and ψ ∈ [0, 1], one can easily show that as long as δ = 0, the inequalities

E
[
(y − Y )+ − (y − ψ)+] ≥ 0 automatically hold for all y ∈ R. This applies to expectations

about binary events, such as, e.g., being employed or not at a given date. This also applies

to situations where expectations about the distribution of continuous outcomes Y are elicited

through questions of the form “what do you think is the percent chance that [Y] will be

greater than [y]?”, for different values y. We refer the reader to Manski (2004) and Delavande

(2014) for discussions of papers analyzing this type of probabilistic expectations data. In

such cases, one can apply our analysis after replacing, for the different values y at which the

subjective beliefs were elicited, Y by 1{Y > y}, and defining ψ as the subjective survival

function evaluated at y.

Interpretation of the boundary condition Finally, to provide a deeper understanding

of our test and of the interpretation of H0, it is instructive to derive the distributions of Y |ψ
that correspond to the boundary condition (∆(y) = 0). The proposition below shows that, in

the presence of rational expectations, agents whose beliefs ψ lies at the boundary of H0, i.e.

ψ ∈ {y : ∆(y) = 0}, have perfect foresight, i.e. ψ = E[Y |I] = Y . For any cdf F , we let below

F−1 denote its quantile function, namely F−1(τ) = inf{x : F (x) ≥ τ}.

Proposition 1 Suppose that (Y, ψ) satisfies RE, u 7→ F−1
Y |ψ(τ |u) is continuous for all τ ∈

(0, 1), and ∆(y0) = 0 for some y0 in the interior of the support of ψ. Then Y |ψ = y0 is

degenerate.

2.2.2 Equivalence with covariates

In practice we may observe additional variables X ∈ RdX in both datasets. Assuming that

X is in the agent’s information set, we modify H0 as follows:4

H0X : there exists a pair of random variables (Y ′, ψ′) and a sigma-algebra I ′ such that

σ(ψ′, X) ⊂ I ′, Y ′|X ∼ Y |X, ψ′|X ∼ ψ|X and E
[
Y ′
∣∣I ′] = ψ′.

Adding covariates increases the number of restrictions that are implied by the rational ex-

pectation hypothesis, thus improving our ability to detect violations of rational expectations.

Proposition 2 below formalizes this idea and shows that H0X can be expressed as a system of

many conditional moment inequalities and equalities.

Proposition 2 Suppose that Assumption 1 holds. The following two statements are equiva-

lent:

(i) H0X holds;

4See complementary work by Gutknecht et al. (2018), who use subjective expectations data to relax the ra-

tional expectations assumption, and propose a method allowing to test whether specific covariates are included

in the agents’ information sets.
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(ii) Almost surely, E
[
(y − Y )+ − (y − ψ)+

∣∣X] ≥ 0 for all y ∈ R and E [Y − ψ|X] = 0.

Moreover, if H0X holds, H0 holds as well.

2.2.3 Equivalence with unpredictable aggregate shocks

There may be cases where the restriction E [Y |ψ] = ψ (or, in the presence of covariates,

E [Y |ψ,X] = ψ) is too strong, in the sense that such a restriction may be violated, even

though the rational expectations hypothesis (ψ = E [Y |I]) holds. This occurs in particular in

situations where the outcome Y is affected by unpredictable, aggregate shocks. While these

types of shocks arise in a variety of contexts, we consider in the following the particular case

of individual income.

Suppose that the logarithm of income of individual i at period t, denoted by yit, satisfies a

Restricted Income Profile (MaCurdy, 1982) model:

yit = αi + βt + εit,

where βt capture aggregate (macro) shocks, εit is distributed following a zero-mean random

walk, and αi, (βt)t and (εit)t are assumed to be mutually independent. Let Iit−1 denote indi-

vidual i’s information set at time t−1, and suppose that Iit−1 = σ (αi, (βt−k)k≥1, (εit−k)k≥1).

If individuals form rational expectations on their future outcomes, their beliefs in period t−1

about their future log-income in period t, are given by

ψit = E [yit|Iit−1] = αi + E [βt|(βt−k)k≥1] + εit−1.

Thus, yit = ψit + ct + εit − εit−1, with ct = βt − E [βt|(βt−k)k≥1]. It follows that, under

the previous assumptions and although individuals form rational expectations, E [yit|ψit] =

ψit + ct 6= ψit.
5 In this setting it is therefore natural to test instead for E [y|ψ] = c0 + ψ, for

some c0 ∈ R.

A similar reasoning applies to the case of multiplicative aggregate shocks. In those cases,

we would like to test for E(y|ψ) = c0ψ, for some c0 > 0. Note that in these two examples,

c0 is identifiable, by c0 = E(y) − E(ψ) in the additive case, and by c0 = E(y)/E(ψ) in the

multiplicative case. Generalizing these examples, we consider the following null hypothesis

for testing RE in the presence of aggregate shocks:

H0S : ∃
(
Y ′, ψ′, I ′

)
: σ(ψ′) ⊂ I ′, Y ′ ∼ Y, ψ′ ∼ ψ and E

[
q
(
Y ′, c0

)∣∣I ′] = ψ′.

where q(., .) a known function such that q(y, .) is strictly monotonic. In the two previous

cases of additive and multiplicative aggregate shocks, we have respectively q(y, c) = y − c
and q(y, c) = y/c. Theorem 1 then implies directly the following result. Similarly to δ =

E(Y )− E(ψ), we define hereafter δc = E(q(Y, c))− E(ψ).

5Note that, since ct is common to all individuals, the expectation we are considering here is implicitly

conditional on ct.
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Assumption 2 q(y, .) is strictly monotonic, and for all c, E (|q (Y, c) |) < +∞ and E (|ψ|) <
+∞.

Proposition 3 Suppose that Assumption 2 holds. Then c0 is identified as the unique c

satisfying E [q(Y, c)] = E[ψ]. Moreover, the following statements are equivalent:

(i) H0S holds;

(ii) E
[
(y − q (Y, c0))+ − (y − ψ)+] ≥ 0 for all y ∈ R and δc0 = 0.

A couple of remarks are in order. First, in the two particular cases above, the condition

δc0 = 0 is satisfied by construction of c0. It follows that, in those cases, testing for H0S is

equivalent to testing for the moment inequalities E
[
(y − q (Y, c0))+ − (y − ψ)+] ≥ 0. Second,

a clear limitation of the naive test (E(Y ) = E(ψ)) is that, unlike our test, it is not robust

to aggregate shocks. In this case, rejecting the null could either stem from violations of the

rational expectation hypothesis, or simply from the presence of aggregate shocks.

2.2.4 Measurement errors

We have assumed so far that Y and ψ were perfectly observed; yet measurement errors in

survey data are pervasive (see, e.g. Bound et al., 2001). We explore in the following the extent

to which our test is robust to such measurement errors. Specifically, assume that the true

variables (ψ, Y ) are unobserved. Instead, we only observe ψ̂ and Ŷ , which are affected by

classical measurement errors. Namely

ψ̂ = ψ + ξψ with ξψ ⊥⊥ ψ, E[ξψ] = 0

Ŷ = Y + ξY with ξY ⊥⊥ Y, E[ξY ] = 0.
(1)

Then one can show that if RE holds, so that E [Y |ψ] = ψ, it is nevertheless the case that

E
[
Ŷ
∣∣∣ψ̂] 6= ψ̂, as long as Cov(ξY , ψ̂) =Cov(ξψ, Y ) = 0 and V(ξψ) > 0. In other words, the

direct test is not robust to any measurement errors on ψ. Even if individuals are rational,

the direct test will reject in the presence of even a small degree of measurement errors on the

beliefs ψ. The following proposition shows that our test, on the other hand, is robust to a

certain degree of measurement errors on ψ. As above, we let ε = Y −ψ denote the uncertainty

shocks.

Proposition 4 Suppose that E [Y |ψ] = ψ and let
(
ψ̂, Ŷ

)
be defined as in (1). Suppose also

that ε+ ξY ⊥⊥ ψ and Fξψ dominates at the second order FξY +ε. Then ψ̂ and Ŷ satisfy H0.

The key condition is that Fξψ dominates at the second order FξY +ε, or, equivalently here,

that FξY +ε is a mean-preserving spread of Fξψ . Recall that in the case of normal variables,

ξψ ∼ N (0, σ2
1) and ξY + ε ∼ N (0, σ2

2), this is in turn equivalent to imposing σ2
1 ≤ σ2

2.

Thus, even if there is no measurement error on Y , so that ξY = 0, the condition may hold

provided that the variance of measurement errors on ψ is smaller than the variance of the
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uncertainty shocks on Y . More generally, this allows subjective beliefs to be noisier than

realized outcomes, a setting which may be relevant in practice. Taken together, these results

support the use of our test rather than the direct test even in cases where realizations and

beliefs are observed in the same dataset.6

2.2.5 Other extensions

We briefly discuss here other directions in which Theorem 1 can be extended. Another source

of uncertainty on ψ is rounding. Rounding practices by interviewees are common in the case

of subjective beliefs. Under additional restrictions, it is possible in such a case to construct

bounds on ψ (see, e.g., Manski and Molinari, 2010) We show in Appendix B that our test can

be generalized to accommodate this rounding practice.

Finally, we have assumed implicitly so far that the two samples are drawn from the same

population. In Appendix C, we relax this assumption and show how to allow for sample

selection under unconfoundedness, by using an appropriate reweighting of the observations.

3 Statistical tests

In this section we propose a testing procedure for H0X , which can be easily adapted to the case

where no covariate is available to the analyst. To simplify notation, we use a potential outcome

framework to describe our data combination problem. Specifically, instead of observing (Y, ψ),

we suppose to observe only, in addition to the covariates X, Ỹ = DY +(1−D)ψ and D, where

D = 1 (resp. D = 0) if the unit belongs to the dataset of Y (resp. ψ). We assume that the two

samples are drawn from the same population, which amounts to supposing that D ⊥⊥ (X,Y, ψ)

(see Assumption 3-(i) below). In order to build our test, we use the characterization (ii) of

Proposition 2:

E
[
(y − Y )+ − (y − ψ)+

∣∣X] ≥ 0 ∀y ∈ R and E [Y − ψ|X] = 0.

Equivalently but written with Ỹ only,

E
[
W
(
y − Ỹ

)+
∣∣∣∣X] ≥ 0 ∀y ∈ R and E

[
WỸ

∣∣∣X] = 0,

where W = D/E(D) − (1 − D)/E(1 − D). This formulation of the null hypothesis allows

us to apply the instrumental functions approach of AS, who consider the issue of testing

many conditional moment inequalities and equalities.7 The initial step is to transform the

6Clearly, the naive test E(Y ) = E(ψ) is even more robust to measurement errors. The test will never reject

its null hypothesis under any kind of measurement errors, provided that they satisfy E(ξψ) = E(ξY ) = 0. On

the other hand, such a test is not robust to aggregate shocks. It is also unable to reject rational expectations

in several cases of interest, as discussed above.
7Other testing procedures could be used to implement our test, such as those proposed by Linton et al.

(2010) and Chernozhukov et al. (2014).
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conditional moments into the following unconditional moments conditions:

E
[
W
(
y − Ỹ

)+
h1(X)

]
≥ 0, E [(Y − ψ)h2(X)] = 0.

for all y ∈ R, and (h1, h2) in a suitable class of functions.

We suppose to observe here a sample (Di, Xi, Ỹi)i=1...n of n i.i.d. copies of (D,X, Ỹ ). For

notational convenience, we let X̃i denote the nontransformed vector of covariates and redefine

Xi as the transformed vector in the following way:

Xi = Φ0

(
Σ̂
−1/2

X̃,n

(
X̃i − X̃i

))
,

where Φ0(x) = (Φ(x1), . . . ,Φ (xdX )). Here Φ denotes the standard normal cdf, Σ̂
X̃,n

is the

sample covariance matrix of
(
X̃i

)
i=1...n

and X̃n its sample mean.

Now thatXi ∈ [0, 1]dX , we consider for h1 and h2 indicators of belonging to specific hypercubes

within [0, 1]dX . Namely, we consider the class of functionsHr = {ha,r, a ∈ Ar}, with ha,r(x) =

1l {x ∈ Ca,r} and

Cr =

{
Ca,r :=

dX∏
u=1

(
au − 1

2r
,
au
2r

]
∈ [0, 1]dX , a = (a1, ..., adX )> ∈ Ar ≡ {1, 2, . . . , 2r}dX

}
.

To define the test statistic T , we need to introduce additional notation. First, we define, for

any given y,

m
(
Di, Ỹi, Xi, h, y

)
=

 m1

(
Di, Ỹi, Xi, h, y

)
m2

(
Di, Ỹi, Xi, h, y

)  =

 wi

(
y − Ỹi

)+
h (Xi)

wiỸih (Xi)

 , (2)

where wi = Di/
∑n

j=1Dj−(1−Di)/
∑n

j=1(1−Dj). Then letmn(h, y) =
∑n

i=1m
(
Di, Ỹi, Xi, h, y

)
/n.

For any function h and any y ∈ R, let us also define, for some ε > 0,

Σn(h, y) = Σ̂n(h, y) + εDiag
(
V̂
(
Ỹ
)
, V̂
(
Ỹ
))

,

where Σ̂n(h, y) is the sample covariance matrix of
√
nmn (h, y) and V̂

(
Ỹ
)

is the empirical

variance of Ỹ .8 We then denote by Σn,jj(j = 1, 2) the j-th diagonal term of Σn.

Then the (Cramér-von-Mises) test statistic T is defined by:

T = sup
y∈Ŷ

rn∑
r=1

(2r)−dX

(r2 + 100)

∑
a∈Ar

(1− p)

−√nmn,1 (ha,r, y)

Σ
1/2
n,11

+2

+ p

√nmn,2 (ha,r, y)

Σ
1/2
n,22

2 ,

where Ŷ =

[
min

i=1,...,n
Ỹi, max

i=1,...,n
Ỹi

]
, p is a parameter that weights the moments inequalities

versus equalities and (rn)n∈N tends to infinity.

8As in AS, we fix ε to 0.05.
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Note that to test for rational expectations in the absence of covariates, one can use the for-

mulation (iii) of H0 given in Proposition 1, and simply omit the transformation of conditional

moments to unconditional ones in the derivation above.

The resulting test is of the form ϕn,α = 1l
{
T > c∗n,α

}
where the estimated critical value c∗n,α is

obtained by bootstrap using the Generalized Moment Selection (GMS) method (see Andrews

and Soares, 2010; Andrews and Shi, 2017). Specifically, we follow these three steps:

1. Compute the GMS function ϕn (y, h) =
(
ϕn,1 (y, h) , 0

)>
for (y, h) in Ŷ × ∪rnr=1Hr with

ϕn,1 (y, h) = Σ
1/2
n,11Bn1l

{
n1/2

κn
Σ
−1/2
n,11 mn,1(y, h) > 1

}
,

where Bn = b0 (ln(n)/ ln(ln(n)))1/2, b0 > 0, and κn = (0.3 ln(n))1/2.

2. Let (D∗i , Ỹ
∗
i , X

∗
i )i=1,...,n denote a bootstrap sample, i.e., an i.i.d. sample from the em-

pirical cdf of
(
D, Ỹ ,X

)
, and compute from this sample m∗n and Σ

∗
n. Then compute T ∗

like T , replacing Σn (y, ha,r) and
√
nmn (y, ha,r) by Σ

∗
n (y, ha,r) and

√
n (m∗n −mn) (y, ha,r) + ϕn (y, ha,r) .

3. The threshold c∗n,α is the (conditional) quantile of order 1 − α + η of T ∗ + η for some

η > 0, in practice set equal to 10−6.

We now turn to the asymptotic properties of the test. For that purpose, it is convenient to

introduce additional notation. Let Y and X denote the support of Y and X respectively, and

LF =

{
(y, ha,r) : y ∈ Y, (a, r) ∈ Ar × N : EF

[
W
(
y − Ỹ

)+
ha,r(X)

]
= 0

}
,

where, to make the dependence on the underlying probability measure explicit, EF denotes

the expectation with respect to the distribution F of
(
D, Ỹ ,X

)
. Finally, let F denote a

subset of all possible cumulative distribution functions of
(
D, Ỹ ,X

)
and F0 the subset of F

such that H0 holds. We impose the following conditions on F and F0:

Assumption 3

(i) For all F ∈ F , D ⊥⊥ (X,Y, ψ);

(ii) There exists M > 0 such that Ỹ ∈ [−M,M ] for all F ∈ F . Also, infF∈F VF
(
Ỹ
)
> 0

and 0 < infF∈F EF [D] ≤ supF∈F EF [D] < 1;

(iii) For all F ∈ F0, KF , the asymptotic covariance kernel of n−1/2Diag
(
VF
(
Ỹ
))−1/2

mn

is in a compact set K2 of the set of all 2 × 2 matrix valued covariance kernels on

Y × ∪r≥1Hr with uniform metric d defined by

d(K,K ′) = sup
(y,h,y′,h′)∈(Y×∪r≥1Hr)

2

∥∥K(y, h, y′, h′)−K ′(y, h, y′, h′)
∥∥ .
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The main result of this section is Theorem 2, which shows that, under Assumption 3, the test

ϕn,α controls the asymptotic size and is consistent over fixed alternatives.

Theorem 2 Suppose that rn →∞ and Assumption 3 holds. Then:

(i) lim supn→∞ supF∈F0
EF [ϕn,α] ≤ α;

(ii) If there exists F0 ∈ F0 such that LF0 is nonempty and there exists (j, y0, h0) in {1, 2}×
LF0 such that KF0,jj(y0, h0, y0, h0) > 0, then, for any α ∈ [0, 1/2),

lim
η→0

lim sup
n→∞

sup
F∈F0

EF [ϕn,α] = α.

(iii) If F ∈ F\F0, then limn→∞ EF (ϕn,α) = 1.

Theorem 2 (i) is closely related to Theorem 5.1 and Lemma 2 in AS, the main difference being

that, in our case, one needs to account for the fact that the proportions E[Di] and E [1−Di]

are estimated. It shows that the test ϕn,α controls the asymptotic size, in the sense that the

supremum over F0 of its level is asymptotically lower or equal to α. Using arguments from

Hsu (2016), we then exhibit cases of equality in Theorem 2 (ii), showing that, under mild

additional regularity conditions, the test has asymptotically exact size. Finally, Theorem

2 (iii), which is based on Theorem 6.1 in AS, shows that the test is consistent over fixed

alternatives.

Extensions This testing procedure can be easily modified to accommodate unanticipated

aggregate shocks. Specifically, using the notation defined in Section 2.2.3, we consider the

same test as above after replacing Ỹ by Ỹĉ, where ĉ denotes a consistent estimator of c0. The

resulting test is given by ϕn,α,ĉ = 1l
{
T (ĉ) > c∗n,α

}
. Such tests have the same properties as

those above under some mild regularity conditions on q(·, ·), which hold in particular for the

leading example of additive shocks (q(y, c) = y − c). We refer the reader to Appendix A for

a detailed discussion of this extension.

This testing procedure can also be modified to handle the case where both Yi and ψi are

observed for a subset of the population. In such a case, let D̃ denote the dummy variable

equal to one if we observe (Y, ψ), and suppose that conditional on X, D̃ is independent of

(Y, ψ). Then, under rational expectations, the following conditional moment condition also

holds:

E
(
D̃(Y − ψ)ψ

∣∣∣X) = 0. (3)

In practice, this only requires augmenting m2 defined in (2) with this additional moment

function. The rest of the procedure remains identical.9

9By adding (3) to the set of conditional moment equalities, we consider, as is common in the literature

(see, e.g., Arcidiacono et al., 2017), the implication of rational expectations that the slope of the (conditional)

linear regression of Y on ψ is equal to one. But other implications, such as E
(
D̃(Y − ψ)q(ψ)

∣∣∣X) = 0 for any

q(.) such that E[|(Y − ψ)q(ψ)|] < +∞, could be easily added as well.
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4 Minimal deviations from rational expectations

In this section we introduce the concept of minimal deviations rom rational expectations, and

build on optimal transport methods to provide conditions under which these minimal devia-

tions exist and are unique. We first consider in Section 4.1 such deviations while remaining

agnostic on the information set of the agents. Then, in Section 4.2, we characterize such de-

viations when the information set is known, as is typically the case in behavioral models. We

show therein how these deviations can be used to assess the sensitivity of structural models

to violations of rational expectations.

4.1 Unconstrained information set

4.1.1 Existence and uniqueness

For the cases where H0 is rejected, we propose a way to quantify the degree to which subjective

expectations differ from rational expectations. To do so, we consider the minimal modifica-

tions - in a sense to be made precise below - to the distribution of subjective beliefs ψ that

are such that the modified distribution of beliefs is compatible with the rational expectations

hypothesis. We refer to these as the minimal deviations from rational expectations. In the

same spirit as in Section 2, we first consider such deviations without imposing any constraints

on the information set of the agents.

Formally, let us define the set:

Ψ =
{

(Y ′, ψ′, ψ′′) : Y ′ ∼ Y, ψ′ ∼ ψ and E(Y ′|ψ′′) = ψ′′
}
. (4)

In this set, (Y ′, ψ′) corresponds to a vector that is compatible with the data, whereas ψ′′

correspond to possible individual expectations, in a counterfactual situation where people

would form rational expectations on their future outcomes. Thus, the subset of Ψ for which

ψ′ = ψ′′ corresponds to the set of random variables (Y ′, ψ′) that are compatible with the data

and with the rational expectations hypothesis. However, if H0 does not hold - which is the

relevant situation here - such a subset is, by definition, empty. The idea is then to try and

find the vector (Y ′, ψ′, ψ′′) ∈ Ψ such that ψ′ and ψ′′ are closest, in the sense of a family of

metrics defined below.

The following theorem shows that there exists a solution to this problem. Importantly, this

solution is, for a large class of metrics, independent of the specific metric considered. This

solution is also unique.

Assumption 4 E(Y 2) < +∞, E(ψ2) < +∞, and Fψ has no atom.

Theorem 3 Suppose that Assumption 4 holds. Then there exists a unique function g∗ such

that:

(i) g∗(ψ) is consistent with RE (namely, there exists Y ′ such that (Y ′, ψ, g∗(ψ)) ∈ Ψ);
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(ii) for any convex function ρ : R+ → R+ satisfying ρ(0) = 0,

E[ρ(|ψ − g∗(ψ)|)] = inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)]. (5)

Moreover, g∗ is non-decreasing.

Theorem 3 shows that there exists a (unique) transformation of the subjective beliefs (ψ) that

is such that i) the transformed beliefs g∗(ψ) are consistent with RE, and, remarkably, ii) this

transformation is minimal for all metrics (indexed by ρ) used to measure the distance between

the true and modified beliefs distributions. Moreover, under this minimal modification, the

modified beliefs are obtained as a monotonically increasing change of the original beliefs.

These minimal modifications can be geometrically interpreted as the projections, in the sense

of the family of metrics defined in Equation 5, from the set of true beliefs to the set of beliefs

that are consistent with RE.10

The proof of Theorem 3 can be summarized as follows. We first show, using in particular

Theorem 1 in our paper and Proposition 3.1 in Gozlan et al. (2018), that

inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)] = inf
(Y ′,ψ′):Y ′∼Y, ψ′∼ψ

E
[
ρ
(∣∣ψ′ − E

[
Y ′|ψ′

]∣∣)] .
The optimization problem on the right-hand side is an optimal transport problem, in the

sense that it corresponds to an optimization over probability measures whose marginals are

fixed. Though non-standard, as it involves E [Y ′|ψ′], this problem has been recently studied

by Gozlan et al. (2018). In particular, it follows from their results that there exists a cdf G∗

such that

inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)] = inf
(ψ′,ψ′′):ψ′∼ψ,ψ′′∼G∗

E
[
ρ
(
|ψ′ − ψ′′|

)]
.

Then, by a strict convexity argument based on Theorem 1 again and Pass (2013), we show

that such a G∗ is unique. Finally, using standard results in optimal transport, we show that

g∗ = G∗−1 ◦ Fψ is the unique function satisfying (5).

4.1.2 Consistent estimation

Though g∗ does not have a simple form in general, we propose in the following a simple

procedure to construct a consistent estimator of it, based on i.i.d. copies (Yi)i=1...L and

(ψi)i=1...L of Y and ψ. For simplicity, we suppose hereafter that the two samples have equal

size.11

10Another interpretation of g∗(ψ) is the following. One may wonder how large measurement errors on

the subjective beliefs would need to be in order for the measurement-error free beliefs to remain consistent

with RE. Assume that, instead of observing measurement error-free beliefs ψ̃, we only observe ψ = ψ̃ + ν,

where ν denotes the measurement error. Then Theorem 3 ensures that ψ− g∗(ψ) corresponds to the minimal

measurement error ν in the Lp sense (for any p ≥ 1) that are needed to rationalize RE.
11If both samples do not have equal size, one can first apply our analysis after taking a random subsample

of the larger one, with the same size as the smaller one. Then we can compute the average of the estimates

over a large number of such random subsamples.
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To define our estimator, note first that from the proof of Theorem 3, we have

g∗ = arg min
g∈G0

E
[
(ψ − g(ψ))2

]
, (6)

where the set G0 is defined by

G0 =
{
g non-decreasing : E

[
(y − Y )+ − (y − g(ψ))+

]
≥ 0 ∀y ∈ R, E[g(ψ)] = E[Y ]

}
.

In other words, g∗ is the (increasing) function such that (i) g∗(ψ) is closest to ψ for the L2

norm; (ii) g∗ belongs to G0, which means by Theorem 1 that we can rationalize E(Y |g∗(ψ)) =

g∗(ψ).

To estimate g∗, we basically replace expectations and cdfs by their empirical counterpart, in

(6) and in G0. Let us denote by (Y(i))i=1...L and (ψ(i))i=1...L the ordered statistics of (Yi)i=1...L

and (ψi)i=1...L. We first focus on the estimation of
(
g∗(ψ(1)), ..., g

∗(ψ(L))
)
. The empirical

counterpart Ĝ0 of G0 is

Ĝ0 =

{(
ψ̃(1), ..., ψ̃(L)

)
: ψ̃(1) < ... < ψ̃(L),

L∑
i=1

(y − Y(i))
+ −

(
y − ψ̃(i)

)+
≥ 0 ∀y ∈ R,

L∑
i=1

Y(i) − ψ̃(i) = 0

}
. (7)

Here we consider vectors
(
ψ̃(1), ..., ψ̃(L)

)
instead of functions g as in G, since g may be as-

similated with a vector when ψ has a finite support. On the surface, the set Ĝ0 appears to

be complicated because of the infinitely many inequalities. However, one can show (see, e.g.,

Proposition 2.6 in Gozlan et al., 2018) that Ĝ0 actually boils down to the following set, which

only involves a finite number of inequalities:

Ĝ0 =

(ψ̃(1), ..., ψ̃(L)

)
: ψ̃(1) < ... < ψ̃(L),

L∑
i=j

Y(i) − ψ(i) ≥ 0 j = 2, ..., L,

L∑
i=1

Y(i) − ψ̃(i) = 0

 .

Our estimator of
(
g∗(ψ(1)), ..., g

∗(ψ(L))
)

is the empirical counterpart of (6), which is the

solution of a convex quadratic programming problem:

(
ĝ∗(ψ(1)), ..., ĝ

∗(ψ(L))
)

= arg min
ψ̃(1)<···<ψ̃(L)

L∑
i=1

(
ψ(i) − ψ̃(i)

)2
s.t.

L∑
i=j

Y(i) − ψ̃(i) ≥ 0, j = 2...L,

L∑
i=1

Y(i) − ψ̃(i) = 0. (8)

Finally, for any t ∈ R, we let

ĝ∗(t) = ĝ∗
(
min{(ψi)i=1...L : ψi ≥ min{t, ψ(L)}

)
.

Theorem 4 shows that ĝ∗ is consistent.
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Theorem 4 (Convergence of empirical minimal deviations) Suppose that Assumption 4

holds. Then, for all t that is a continuity point of g∗ and such that Fψ(t) ∈ (0, 1),

ĝ∗(t)→ g∗(t) a.s.

Program (8) is a particular convex quadratic programming problem, which turns out to be

solvable very efficiently. Indeed, the following algorithm, devised by Suehiro et al. (2012),

shows that
(
ĝ∗(ψ(1)), ..., ĝ

∗(ψ(L))
)

can be obtained with only O(L2) elementary operations.

This implies that g∗ can be estimated simply and at a fairly low computational cost.

Computation of
(
ĝ∗(ψ(1)), ..., ĝ

∗(ψ(L))
)
.

1. Let t = 0 and i0 = 0.

2. While it < L:

(a) Let t = t+ 1.

(b) Let Ct(i) =
∑L−it−1

k=L+1−i
(
Y(k) − ψ(k)

)
/(i − it−1), for i = it−1 + 1, ..., L and let it =

argmini∈{it−1+1,...,L}C
t(i). If there are multiple minimizers, choose the largest one

as it.

(c) Set ĝ∗(ψ(k)) = ψ(k) + Ct(it), for k ∈ {L+ 1− it, ..., L− it−1}.

The idea of the algorithm is to rely on the first-order conditions of the program, which

have a simple form. To provide some intuition, we illustrate this algorithm with L = 3,

(Y(1), Y(2), Y(3)) = (1, 2.5, 3), and (ψ(1), ψ(2), ψ(3)) = (0.75, 2.75, 2.95). The black curve in

Figure 1 corresponds to y 7→
∑L

i=1(y − Yi)+ − (y − ψi)+. In view of (7), any negative value

thus corresponds to violations of the constraints. Also, for y large, this function should be

equal to 0, in view of the equality constraint on the means. In the first step (t = 1), the

algorithm picks i1 = 2, corresponding to the negative value C2 = (Y(2) − ψ(2))/2 = −0.125.

It then adds this value to ψ(2) and ψ(3). In the second step, it modifies the value of ψ(1),

ensuring that the equality constraint on the means holds. The modification on ψ(2) and ψ(3)

in the first step also ensures that the green curve is always positive.
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Figure 1: Illustration of the construction of
(
ĝ∗(ψ(1)), ..., ĝ

∗(ψ(L))
)
.

4.2 Constrained information set and sensitivity analysis in structural mod-

els

4.2.1 Existence and uniqueness

We now consider minimal deviations from rational expectations in the presence of constraints

on the information set. Such constraints are typically imposed in structural models, along

with the rational expectations hypothesis. An important motivation for considering minimal

deviations in this setting, then, is to assess the sensitivity of structural models to the RE

hypothesis. A more direct way of evaluating how critical the rational expectations hypothesis

is for a given model would be to solve it and estimate it, using elicited beliefs about future

outcomes both on and off the agent’s actual choice path. However, the data requirements

are formidable, and, as a consequence, this approach has only been pursued in relatively few

studies (see, e.g., Arcidiacono et al., 2014; Stinebrickner and Stinebrickner, 2014a,b; Wiswall

and Zafar, 2015, 2018). We propose here an alternative approach that can be used in a less

demanding setting, that is when the data used to estimate the structural model do not include

elicited beliefs, but such beliefs are observed in an auxiliary dataset.

Specifically, consider a structural model that imposes both a rational expectation formation

process and an information set IM of the agents, such that individual rational expectations

about the outcome Y are given by E
[
Y |IM

]
. Hereafter, we refer to this assumption (ψ =

E
[
Y
∣∣IM]) as the restricted RE hypothesis. Note that with auxiliary data on ψ, we can test

for the restricted RE by simply testing whether Fψ = FE[Y |IM ].

Suppose that such a test is rejected. Then, consider the set

ΨM =
{

(ψ′, ψ′′) : ψ′ ∼ ψ, ψ′′ ∼ E
[
Y
∣∣IM]} .
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As with the set Ψ in the unconstrained case, if the test above is rejected, there is no couple of

the form (ψ′, ψ′) in ΨM . The goal here is then to find a pair (ψ′, ψ′′) ∈ ΨM such that ψ′ is as

close to ψ′′ as possible. Such a ψ′ corresponds to the minimal deviations from the restricted

RE that are consistent with the data on subjective beliefs. Similarly to Theorem 3 in the

absence of constraints on the information set, Theorem 5 shows that there exists a solution

to this problem, which is moreover independent of the metric. To define this solution, we

introduce hM = F−1
ψ ◦ FE[Y |IM ].

Theorem 5 Suppose that FE[Y |IM ] has no atom. Then, for any convex function ρ : R+ → R+

satisfying ρ(0) = 0, we have(
hM

(
E
[
Y
∣∣IM]) ,E [Y ∣∣IM]) ∈ arg min

(ψ′,ψ′′)∈ΨM
E[ρ(|ψ′ − ψ′′|)]. (9)

Moreover, if ρ is strictly convex, hM
(
E
[
Y
∣∣IM]) is unique in the sense that for any other ψ′

such that (ψ′,E
[
Y
∣∣IM]) ∈ ΨM satisfying (9), ψ′ = hM

(
E
[
Y
∣∣IM]) almost surely.

Theorem 5 implies that among all random variables that are consistent with the true subjec-

tive beliefs, hM
(
E
[
Y
∣∣IM]) is closest to the rational expectations E

[
Y
∣∣IM], for any metric

indexed by ρ. Theorem 5 relies on results on optimal transport on the real line. In such

a case, the optimal map has been shown to be independent of the cost function (see, e.g.,

Rachev and Rüschendorf, 1998, Chapter 3), which is why here the minimum deviations from

RE do not depend on the specific metric considered.

A couple of remarks are in order. First, hM
(
E
[
Y
∣∣IM]) is simply obtained by an equiper-

centile mapping from the distribution of rational expectations to the distribution of the true

subjective beliefs. It follows that the minimal deviations can be easily estimated, as we will

discuss in more detail below. Second, hM
(
E
[
Y
∣∣IM]) is also IM -measurable, which implies

that it is compatible with the information set IM imposed by the model. Finally, by construc-

tion, hM
(
E
[
Y
∣∣IM]) is consistent with the observed subjective beliefs, since their marginal

distributions coincide.

Hence, given the data and the constraints imposed by the model on the information set,

we can rationalize that ψ = hM
(
E
[
Y
∣∣IM]).12 For this reason, we refer to hM

(
E
[
Y
∣∣IM])

as pseudo-beliefs. We use the term pseudo-beliefs here to emphasize that hM
(
E
[
Y
∣∣IM])

does not correspond in general to the true subjective expectations ψ. By construction, the

pseudo-beliefs are identifiable.

Having computed the pseudo-beliefs for a given structural model, we can then compare the

results obtained with these pseudo-beliefs with those obtained under the baseline RE model.

Importantly, this provides a way to assess the sensitivity of the findings to violations of RE,

holding fixed the restrictions on the information set implied by the model. Findings from the

baseline model that exhibit significant sensitivity to these minimal deviations should then be

interpreted with caution.

12On the other hand, it is generally impossible to rationalize the model-free beliefs generated from g∗, namely

(g∗)−1
(
E
[
Y
∣∣IM]). Their distribution does not coincide with Fψ in general.
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4.2.2 Consistent estimation

Estimation of hM is simpler than that of g∗, given its simple, explicit form. We suppose in the

following that FE[Y |IM ] is known. This includes cases where the parameters of the structural

model are known, or calibrated. Alternatively, FE[Y |IM ] may depend on unknown parameters

θ of the structural model that need to be estimated. In the latter case, FE[Y |IM ] remains a

known function of θ, and our reasoning holds conditional on θ. We consider the following

estimator of hM :

ĥM = F̂−1
ψ ◦ FE[Y |IM ]. (10)

where F̂−1
ψ denotes the empirical quantile function of the subjective beliefs ψ. Theorem 6

ensures that, under mild regularity conditions, ĥM is asymptotically normal, and, importantly

for practical purposes, also ensures the validity of the bootstrap.

Theorem 6 For all t such that FE[Y |IM ](t) ∈ (0, 1) is a continuity point of F−1
ψ ,

ĥM (t)→ hM (t) a.s.

Moreover, for all t such that Fψ is differentiable at hM (t) with positive derivative (F ′ψ), we

have
√
n
(
ĥM (t)− hM (t)

)
d−→ N

(
0,
FE[Y |IM ](t)(1− FE[Y |IM ](t))

F ′2ψ(hM (t))

)
.

Finally, conditional on the sample and with probability tending to one, the bootstrap counter-

part of
√
n
(
ĥM (t)− hM (t)

)
converges to the same limit.13

5 Monte-Carlo simulations

In this section we study the finite sample performances of the test without covariates through

Monte Carlo simulations. The finite sample performances of the version of our test that

accounts for covariates are reported and discussed in Appendix D.

We suppose that the outcome Y is given by

Y = ρψ + ε,

with ρ ∈ [0, 1], ψ ∼ N (0, 1) and

ε = ζ (−1l{U ≤ 0.1}+ 1l{U ≥ 0.9}) ,

where ζ, U and ψ are mutually independent, ζ ∼ N (2, 0.1) and U ∼ U [0, 1].

In this setup, expectations are rational if and only if ρ = 1. But given that we observe Y

and ψ in two different datasets, there are values of ρ 6= 1 for which we cannot reject our

test. More precisely, we can show that as n tends to infinity, we reject our test if and only

13For a formal definition of conditional convergence, see e.g. Van der Vaart (2000), Section 23.2.1.
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if ρ ≥ ρ∗ ' 0.616. In this context also, the naive test E(Y ) = E(ψ) always fails to reject

RE. The RE test based on variances is only able to detect a subset of violations of RE that

corresponds to ρ < 0.445.

Results reported in Figure 2 show the power curves of the test ϕα for five sets of sample sizes

(nψ = nY = n ∈ {400; 800; 1, 200; 1, 600; 3, 200}), using 800 simulations for each value of ρ.

We also rely on 500 bootstrap simulations to compute the critical values of the test. The test

statistic T involves the two tuning parameters b0 (in Bn = b0(ln(n) ln(ln(n)))1/2) and p. As

described p.644 of Andrews and Shi (2013), there exists in practice a large range of admissible

values for these parameters. Following Section 4.2 of Beare and Shi (2018), we choose them

as the smallest (resp. highest) value such that the rejection rate under the null is below the

nominal size 0.05, and obtain b0 = 0.3 and p = 0.05.

Note: The curves from right to left correspond to n = 400, 800, 1200, 1600 and 3200. The vertical

line correspond to the theoretical limit for the rejection of our test.

Figure 2: Power curves for the test without covariates.

Several remarks are in order. First, as expected, under the alternative (i.e. for values of

ρ ≤ ρ∗ = 0.616), rejection frequencies increase with the sample size n. In particular, for the

largest sample size n = 3, 200, our test always results in rejection of the RE hypothesis for

values of ρ as large as .45. Second, in this setting, our RE test is conservative in the sense

that rejection frequencies under the null are smaller than α = 0.05, for all sample sizes. Note

that this should not necessarily come as a surprise since the test proposed by AS has been

shown to be conservative in alternative finite-sample settings (see, e.g. Table 1 p.22 in AS for

first-order stochastic dominance tests). However, for the version of our test that accounts for

covariates and for the data generating process considered in Appendix D, rejection frequencies

under the null are close to the nominal level.
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Next, we report in Figure 3 below the estimated minimal deviations from rational expecta-

tions. Specifically, we plot the differences between the beliefs ψ and the modified beliefs ĝ∗(ψ),

where the transformation ĝ∗ is computed using the estimator of Section 4.1.2, for ρ = 0.3 and

n = 800. In the same figure, we also report the true minimal deviations ψ − g∗(ψ), obtained

by solving (8) with a large number of observations (n = 10, 000) as g∗ does not have a closed

form representation in this setting. Comparing these two curves shows that the estimator g∗

exhibits a small bias over the support of ψ. The 2.5% and 97.5% quantile of ψ − ĝ∗(ψ), in

dotted black lines, are also fairly close to each other, showing that the estimator is already

accurate with n = 800. Besides, the coverage of the bootstrap confidence intervals is generally

very close to the nominal rates. For ρ = 0.3 and n = 800, the mean coverage rates over values

of ψ in [−3, 3] are equal to 98.6% and 95.4% for nominal rates of 99% and 95%, respectively.

Noteworthy, we obtain very similar patterns on the accuracy of the estimator for alternative

values of ρ.

Note: The plain red curve corresponds to the average of ψ − ĝ∗(ψ) over 1, 000 simulations (with

n = 800), and the dotted black curves are the 2.5% and 97.5% quantiles of ψ − ĝ∗(ψ). The dotted

blue curve is the true g∗(ψ)− ψ, whereas the green line is the true function ψ − E[Y |ψ] = 0.7ψ.

Figure 3: Estimation and true value of ψ − g∗(ψ).

Finally, the discrepancy between the minimal and the true deviations from rational expecta-

tions ψ − E[Y |ψ], provides a graphical illustration of the loss of information induced by the

data combination problem. Whereas, by construction, the minimal deviations never exceed

in magnitude the true deviations from RE, it is interesting to note that, in this context, the

discrepancy between both deviations is much larger in the tails than in the center of the

distribution of beliefs.
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6 Application to earnings expectations

6.1 Data

We use data from the Survey of Consumer Expectations (SCE), a monthly household survey

conducted by the Federal Reserve Bank of New York since 2012 (see Armantier et al., 2017,

for a detailed description of the survey, and Kuchler and Zafar, 2017, and Conlon et al., 2018,

for recent articles using the SCE). The SCE is a rotating internet-based panel of about 1,200

household heads, in which respondents participate for up to twelve months.14 The SCE is

conducted with the primary goal of eliciting consumer expectations about inflation, household

finance, labor market, as well as housing market. Each survey takes on average about fifteen

minutes to complete, and respondents are paid $15 per survey completed.

Of particular interest for this paper is the supplementary module on labor market expec-

tations. This module is repeated every four months since March 2014. Since March 2015,

respondents are asked the following question about job earnings expectations (ψ) over the

next four months: “What do you believe your annual earnings will be in four months?”. In

this module, respondents are also asked about current job outcomes, and, among them, their

current annual earnings (Y ), through the following question: “How much do you make before

taxes and other deductions at your [main/current] job, on an annual basis?”.

Specifically, we use for our baseline test data on job earnings expectations (ψ), which are

available for three cross-sectional samples of household heads who were working either full-

time or part-time and responded to the labor market module in March 2015, July 2015, and

November 2015, respectively.15 We combine this data with current earnings (Y ) declared in

July 2015, November 2015 and March 2016 by the respondents who are working full-time or

part-time at the time of the survey. This leaves us with a final sample of 2,993 observations,

which is composed of 1,565 earnings expectation observations, and 1,428 realized earnings

observations, obtained from a total of 1,499 household heads.16

6.2 Are earnings expectations rational?

Using the SCE data and the rationality tests discussed in Section 3, we now investigate

whether household heads form rational expectations on their future earnings. In Table 1

below, we report the results from the naive test of RE (E(Y ) = E(ψ)), and our preferred

generalized test (“Full RE”).

Several remarks are in order. First, using our generalized test, we do reject for the whole

population the hypothesis that agents form rational expectations over their future earnings.

14Each month the panel consists of about 180 entrants, and 1,100 repeated respondents. While SCE entrants

are overall fairly similar to SCE repeated respondents, they are slightly older and have slightly lower incomes,

reflecting differential attrition (see Table 1 in Armantier et al., 2017).
15We use the monthly survey weights of the SCE in order to obtain an estimation sample that is representative

of the population of U.S. household heads. See Armantier et al. (2017) for more details on the construction of

these weights.
1651% (1,536) only of these observations correspond to the sub-sample of respondents who are reinterviewed.
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Second, we reject RE when we apply our test separately by college degree attainment, and

numeracy test score. We also reject the RE hypothesis for the subpopulation of females,

for workers who have spent six months or less in their current job, and for whites (at the

10% level only). Third, using the naive test of equality of means between earnings beliefs

and realizations would instead generally result in not rejecting the null at any standard

levels. The only exception being the subgroup of workers without a college degree, for whom

the naive test yields rejection of RE at the 5% level. While individuals as a whole form

expectations over their earnings in the near future - four months out - that are realistic

in the sense of not being significantly biased, the result from our preferred test shows that

earnings expectations are nonetheless not rational. Taken together, these results highlight

the importance of incorporating the additional restrictions of rational expectations that are

embedded in our test, using the full distributions of subjective beliefs and realized outcomes

to detect violations of RE.

Table 1: Tests of RE on annual earnings

E(Y − ψ)/E(Y ) Naive RE Full RE Nb. obs. Abs. Relat. Deviation (in %)

(p-val) (p-val) ψ Y Top 1%

All 0.034 0.19 0.000∗∗ 1,565 1,428 47.0

Women 0.059 0.11 0.000∗∗ 730 649 54.1

Men 0.025 0.46 0.513 835 779 35.9

White 0.031 0.27 0.088† 1,280 1,182 44.2

Minorities 0.047 0.45 0.268 285 246 71.2

Coll. Degr. -0.001 0.96 0.000∗∗ 1,106 1,053 51.1

No Coll. Degr. 0.090 0.04∗ 0.036∗ 459 375 45.7

High Num. 0.033 0.25 0.000∗∗ 1,158 1,070 51.4

Low Num. 0.055 0.27 0.026∗ 407 358 38.4

Exp ≤ 6 mth. 0.105 0.21 0.002∗∗ 271 180 48.5

Exp > 6 mth. 0.007 0.78 0.547 1,294 1,248 31.0

Notes: significance levels: †: 10%, ∗: 5%, ∗∗: 1%. Annual earnings = An. Earn, Low/high Num. =

low/high numerical ability, Exp ≤ 6 mth. = less than 6 months of experience in the current main job.

“Naive RE” denotes the naive RE test of equality of means between Y and ψ. “Full RE” denotes the

Generalized test without covariates, where we consider Yit = ctψit and test H′0 with E [Yit/ct|ψit] = ψit.

Distributions of realized earnings (Y ) and earnings beliefs (ψ) are both Winsorized at the 95% quantile.

We do not report in this table the results of the direct test of RE. Beyond the obvious

implication that restricting to the subsample of individuals who are followed over four months

results in a loss of statistical power, there are a couple of key issues associated with the direct

test. First, as already discussed in Appendix B, the direct test is not robust to measurement

errors on the subjective beliefs ψ. Second, and importantly, attrition from the survey may

be endogenous. We explore the issue of attrition in Table 2 below, where we report the

estimation results from a logit model of attrition on earnings beliefs, gender, race/ethnicity,

college degree attainment, numeracy test score, and tenure. The main takeaway from this
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table is that earnings beliefs are significantly associated with attrition, even after controlling

for this extensive set of characteristics.

These results suggest that attrition is endogenous, with individuals for whom we observe both

earnings expectations and realizations expecting to earn more than those who are not followed

across these two waves. Along the same lines, a Kolmogorov-Smirnov test rejects at the 1%

level the equality of the distributions of realized and expected earnings between the whole

sample, and the subsample used for the direct test (see Figure 4 for the estimated distribu-

tions).17 Taken together, these results indicate that the direct test of rational expectations is

unlikely to be valid.

Finally, going beyond testing, Figure 5 offers additional insights regarding the deviations from

rational expectations on earnings. We focus here on the whole population, for which, using our

test, we strongly reject (at the 1% level) the hypothesis of rational expectations (see Table 1).

This figure shows that, for these individuals, the deviations from rational expectations are

primarily due to the coexistence of over-pessimistic (i.e., individuals for whom ψ < E(Y |ψ))

and over-optimistic (individuals for whom ψ ≥ E(Y |ψ)) individuals. Both types of deviations

from rational expectations partially offset one another when computing the average across

all observations, so that the naive test fails to detect this pattern of violations from rational

expectations. In contrast, our test, which exploits the full distributions of earnings beliefs and

realizations, is able to detect these deviations from rational expectations. While our approach

is conservative in the sense that these are the minimal deviations from RE that are consistent

with the data, it is interesting to note that some of the deviations are quantitatively large.

This is illustrated in Table 1 above, where we report for each subgroup the 99th percentile of

the absolute relative minimal deviations from RE.18

Table 2: Logit model of no attrition on earnings expectations and demo-

graphics

Population Intercept ψ Male White Coll. Degree Low Num. Exp > 6

All individuals -1.054∗∗ 5.279e-06∗∗ -0.091 0.250 0.070 0.110 0.559∗∗

(0.226) (1.341e-06) (0.1080) (0.1697) (0.1191) (0.1253) (0.1407)

Notes: Number of observations 1,565. Significance levels: †: 10%, ∗: 5%, ∗∗: 1%.

17P-values are equal to 0.004 and 0.006 for the distributions of realized and expected earnings, respectively.
18This quantity can be interpreted as a maximin type of measure.
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Figure 4: Estimates of FY for the subset of individuals where the direct RE

test is possible (green) and all the population (black). Estimates of Fψ for

those subsets are represented in dotted.

Figure 5: Average estimated minimal deviations from RE ψ − ĝ∗(ψ) (plain

black) for annual earnings for the whole population. The shaded grey area

corresponds to the 95% bootstrap pointwise confidence interval. All results

are displayed in 2015 US dollars.
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6.3 Deviation from RE in a life-cycle consumption model

In this section, we revisit the life-cycle consumption model of Kaplan and Violante (2010)

(KV) by relaxing the assumption that individuals form rational expectations about their

future earnings.

A common feature of benchmark life-cycle standard incomplete market (SIM) consumption

models is that the rational expectation hypothesis is maintained, for both analytical tractabil-

ity and data availability reasons. However, if a substantial fraction of the individuals do not

form rational expectations on their future earnings, conclusions that one can draw from this

model can be misleading. In the following we address this issue using our methodology de-

veloped in Section 4 based on minimal deviations from rational expectations. Specifically, we

use the benchmark SIM model used in KV as a starting point, which we modify to account

for the fact that individuals may not form rational expectations about their income process.

Using this framework, we then illustrate how the type of deviations from rational expectations

which are consistent with the SCE data impacts self-insurance mechanisms, and in particular

the role played by transitory and permanent income shocks on consumption.

6.3.1 Model

Time is assumed to be discrete. The economy is constituted of agents (household heads) who

work for T ret periods, before retiring. For any given t > T ret, agents are characterized by

an unconditional probability of surviving until age t denoted by ξt and are all assumed to

die with probability 1 by t = T . We assume that income and death are the only sources of

uncertainty. Households have an expected lifetime utility given by:

E

[
T∑
t=1

βtξtu (Ci,t)

∣∣∣∣∣I0

]
, (11)

where E [·|I0] denotes the subjective expectation operator conditional on I0 the initial infor-

mation set, u(.) denotes the flow utility of consumption, for which we assume a quadratic

specification of the form u(C) = (C∗−C)2/2 (where C∗ is a constant), and β is the discount

factor. We assume that the subjective expectation operator satisfies the usual mathemati-

cal properties of expectations.19 Importantly though, this framework accommodates a wide

range of violations of rational expectations, since subjective expectations E [·|I0] may not

coincide with mathematical expectations E [·|I0]. In particular, unlike the benchmark model,

this specification allows for biased income expectations formation.

We now turn to the description of the income process. During worklife, realized log income

log(Yi,t) is supposed to be given by the sum of a deterministic experience profile, κi,t, a

19See also, e.g., Brunnermeier and Parker (2005) for a similar assumption.
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permanent component, zi,t−1, a permanent shock, ηi,t, and a transitory shock, εit:

log (Yi,t) = κi,t + yi,t

yi,t := zi,t + εi,t

zi,t = zi,t−1 + ηi,t,

where zi,0 is drawn from a normal distribution with mean zero and variance σ2
z0. The shocks

εi,t and ηi,t also have mean zero and are normally distributed with variances σ2
ε and σ2

η,

and are mutually independent and independent over time and across household heads in the

economy.20 As in KV, we assume that the information set at date t, It, is composed of the

permanent component zi,t−1, as well as past transitory shocks.

Next, before deriving the budget constraints, we need to introduce a couple of additional

notations. We denote by Ai,t+1 the amount of the tradable risk-free one-period bond which

pays rate of return (1 + r) detained by households, and assume that they begin their life with

Ai,0 drawn from a specific distribution H(Ai,0) and that they face a lower bound A ≤ 0 on

their assets. We also denote by Y S
i,t the post-retirement social security transfers, which are

computed as a function of the lifetime average individual labor income (see KV for additional

details).

Agents make their consumption choices by maximizing their present value of subjective ex-

pected lifetime utility, under the following budget constraints:

Ci,t +Ai,t+1 = (1 + r)Ai,t + Yi,t if t < T ret (12)

Ci,t +

(
ξt
ξt+1

)
Ai,t+1 = (1 + r)Ai,t + Y S

i,t if t ≥ T ret. (13)

Given these assumptions, we derive the optimal consumption paths in two situations, namely:

i) all individuals form rational expectations on their future outcomes (as in KV), and ii)

individual beliefs may deviate from rational expectations. We implement the latter scenario by

assuming that subjective expectations deviate minimally from rational expectations satisfying

model restrictions, following our discussion in Section 4.2. Specifically, using the notations

defined earlier, the (pseudo) subjective income beliefs are computed in this case as a function

of the rationally expected income:

E [Yi,t|Ii,t−1] = hM (E [Yi,t|Ii,t−1]) , (14)

where hM is estimated using the estimator of Section 4.2.2 defined in Equation (14).21 In

this estimation we use that log (E [Yi,t|Ii,t−1]) is normally distributed with mean κi,t and

20Note that with quadratic preferences, the variance of transitory shocks has no impact on consumption (see

Appendix E).
21We implicitly restrict the sensitivity analysis to a class of deviations of rational expectations that are such

that hM is constant over time. While it would be conceptually easy to extend our method and relax this

assumption by estimating and using instead a sequence of mappings (hMt )t, this is arguably the most natural

departure from the RE hypothesis, whereby hM = Id for all time periods. Restricting to time-invariant hM

also yields sizable precision gains, resulting in turn in a more informative sensitivity analysis.
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variance σ2
z0 + (t − 1)σ2

η and use a quantile regression estimator for the quantile of income

expectations conditional on age F−1
ψ|t . Since in KV, Yi,t is interpreted as household income

after taxes and transfers whereas we only have data on expectations about individual labor

earnings, we use an equipercentile mapping to generate from the distribution of either realized

or expected individual labor earnings a distribution of realized or expected household income.

We estimate this equipercentile mapping using the dataset from Blundell et al. (2008), built

from the PSID, that has both realized individual labor earnings and household income from

1989 to 1992. We use the same parameters for the income process as those used in KV and

estimated in Blundell et al. (2008), namely σ2
ε = 0.05, σ2

η = 0.01, and σ2
z0 = 0.15. We consider

alternative values on σ2
η and σ2

z0 as robustness checks.

6.3.2 Results

We use the main parameters chosen by KV to reproduce key features of the US economy.

Specifically, we assume that in the utility function, C∗ = 200, 000 and that the interest rate

r is 3%. As in KV, who based their estimates on the 1989 and 1992 Survey of Consumer

Finances data, the discount factor β is set to match an aggregate wealth-income target ratio

of 2.5.

Because we reject RE for all individuals, we consider in our second scenario deviations from RE

for the whole population. In other words, subjective expectations of individuals are computed

using (14). Figure 6 displays ĥM used in equation (14).22 Finally, following KV, we simulate

the model both with a borrowing constraint at 0, and without borrowing constraint, for an

artificial panel of 10,000 households for 70 periods. A Kolmogorov-Smirnov test rejects at the

1% level the equality of the distributions of simulated expected income and the subjective

expected income obtained using (14) (with a p-value lower than 10−5 for σ2
η = 0.01 and

σ2
η = 0.02), thus indicating that, consistent with the earlier findings discussed in Section 6.2,

RE does not hold in this context.

Our main object of interest is the insurance coefficient, namely the share of the variance of

the income shock xi,t (with x ∈ {η, ε}) that does not translate into consumption growth:

φx := 1− Cov(∆ log(Ci,t), xi,t)

V(xi,t)
,

where the variance and covariance are taken cross-sectionally over the entire population of

households. We also consider below φxt , which is the same quantity but computed condition-

ally on being of age t.

We report the estimates of φη and φε on the whole population in Table 3. In the baseline rows,

we reproduce the results of KV under rational expectations. We then display the results based

on minimal deviations of RE. Interestingly, some coefficients appear to be quite sensitive to

these minimal deviations. Shifting from RE to expectations based on (14), an important

22To account for the estimation error on hM and compute standard errors, we use 200 bootstrap replications.
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takeaway from this table is that, while φε (insurance coefficient to transitory shocks) does not

generally change much, φη (insurance coefficient to persistent shocks) is substantially affected.

This holds true in the baseline model both with and without borrowing constraints, as well

as for the alternative values of σ2
z0 and σ2

η.

These findings also have some implications regarding the link with previous empirical esti-

mates. In the baseline case with borrowing constraints, the estimate of model under RE

(φη = 0.22) is quite different from the Blundell et al. (2008, BPP hereafter) estimates based

on US data (φη = 0.34). Accounting for minimal deviations from RE using our method,

the insurance coefficients are then equal respectively to 0.33 and 0.38. Hence, even though

we still observe a gap between the estimates from the model and from the data, this gap is

much lower when we relax the assumption that agents form rational expectations on their

future outcomes. Overall, this suggests that a sizeable share of the discrepancy between

the estimates of the insurance coefficient, and the insurance coefficient obtained from the

consumption model, is in fact attributable to deviations from rational expectations.

We also observe significant differences between the model with RE, and the version of the

model that accounts for minimal deviations from RE in the profile of the insurance coeffi-

cients as a function of age under the different scenarii (Figure 8 in Appendix). In particular,

households save significantly more in the presence of permanent shocks when we allow for

deviations from RE and less in the presence of transitory shocks when they are between 35

and 50 years old.

Table 3: Insurance coefficients under RE or deviations from RE.

With borrowing constraints Baseline σ2
η = 0.02

φη φε φη φε

RE, Baseline 0.224 0.778 0.218 0.743

Deviation from RE, Baseline 0.330 0.682 0.383 0.473

(0.080) (0.032) (0.015) (0.024)

Without borrowing constraints Baseline σ2
η = 0.02

φη φε φη φε

RE, Baseline 0.114 0.938 0.069 0.937

Deviation from RE, Baseline 0.407 0.883 0.576 0.619

(0.038) (0.030) (0.041) (0.033)

Notes: the baseline case uses σ2
η = 0.01, σ2

ε = 0.05, σ2
z0 = 0.15, and an aggregate wealth-income ratio

of 2.5. “BPP estimates on US data” are the estimates of BPP using US data. “BPP estimates on the

model” are estimates based on BPP method using simulated data we obtain from the model.
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Figure 6: Average estimated function ĥM (ψ) (plain dark) for annual income

for the whole population. The shaded grey area corresponds to the 95%

bootstrap pointwise confidence interval. All results are displayed in 2015

US dollars.

When looking at average lifetime net worth profiles implied by the model with RE or de-

viations from RE (Figure 9 in Appendix), households heads below 40 appear first to be

less indebted than households heads under RE. This comes from the fact that for 60% of

them, their income is between 40,000$ and 100,000$ and thus, from Figure 6, they are over-

pessimistic. If they are not constrained, they tend to insure more than rationally against

permanent shock. After 40, most of the households heads earn on average around or more

than 100,000$, which from Figure 6 implies that they are over-optimistic. This translates

into an “under-insurance” against transitory shocks (from 0.93 to 0.88 in the case without

borrowing constraints), as they have initially accumulated more assets than what would be

rationally optimal in order to face retirement. This over-optimism in turn results in a stepper

decay of the assets after retirement in Figure 9. Interestingly, our results are in line with

the findings of Kaufmann and Pistaferri, 2009 (see also Pistaferri, 2001) who show that using

subjective expectations available in the Survey of Household Income and Wealth (SHIW) in

Italy lowers the estimated degree of insurance against transitory shocks.

7 Conclusion

In this paper, we develop a new test of rational expectations that can be used in a wide range

of empirical settings. In particular, our test only requires having access to the marginal dis-

tributions of realizations and subjective beliefs, and, as such, can be applied in frequent cases

where realizations and subjective beliefs are observed in two separate datasets. We establish
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that whether one can rationalize rational expectations is equivalent to the distribution of

realizations being a mean-preserving spread of the distribution of beliefs, a condition which

can be tested using recent tools from the moment inequalities literature. We show that our

test can easily accommodate covariates and aggregate shocks, and, importantly for practical

purpose, is robust to some degree of measurement errors on the elicited beliefs.

Going beyond testing, we introduce the concept of minimal deviations from rational expec-

tations than can be rationalized by the data. Using recent tools from the optimal transport

literature, we show that, under fairly mild regularity conditions, these deviations exist, are

unique, and are also easily estimated. In the context of structural models, these deviations

offer a new way to conduct a sensitivity analysis on the assumed form of expectations. We

apply our method to test and quantify deviations from rational expectations about future

earnings. While individuals tend to be right on average about their future earnings, our

test rejects rational expectations. Using the deviations from rational expectations within the

life-cycle consumption model of Kaplan and Violante (2010), we provide evidence that the

behavioral responses of consumers to permanent income shocks are sensitive to departures

from rational expectations.
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A Statistical tests in the presence of aggregate shocks

In this appendix, we show how to adapt the construction of the test statistic and obtain

similar results as in Theorem 2 in the presence of aggregate shocks. As explained in Section

2.2.3, we mostly have to replace Ỹ by Ỹc = Dq
(
Ỹ , c

)
+ (1 − D)ψ. Because we include

covariates here, as in Section 3, c is actually a function of X. Also, the true function c0

has to be estimated. We let ĉ denote such a nonparametric estimator, which is based on

E(q(Y, c0(X))|X) = E(ψ|X). When q(y, c) = y − c or q(y, c) = y/c, we get respectively

c0(X) = E(Y |X) − E(ψ|X) and c0(X) = E(Y |X)/E(ψ|X), and ĉ is easy to compute using

nonparametric estimators of E(Y |X) and E(ψ|X).

We let hereafter mn(h, y) =
∑n

i=1m
(
Di, Ỹc,i, Xi, h, y

)
/n. In the test statistic T , we replace,

for (y, h) ∈ Y × ∪r≥1Hr, Σn(h, y) by Σn(h, y) = Σ̂n(h, y) + εDiag
(
V̂
(
Ỹĉ

)
, V̂
(
Ỹĉ

))
, where

Σ̂n(h, y) and V̂
(
Ỹĉ

)
are respectively the sample covariance matrix of

√
nmn (h, y) and the

empirical variance of Ỹĉ.

We obtain in this context a result similar to Theorem 2 above, under the regularity con-

ditions stated in Assumption 5. We let hereafter Cs
(
[0, 1]dX

)
denote the space of con-

tinuously differentiable functions of order s on [0, 1]dX that have a finite norm ‖c‖s,∞ :=

max
|k|≤s

supx∈[0,1]dX

∣∣c(k)(x)
∣∣. Also, when the distribution of

(
D, Ỹ ,X

)
is F , KF denotes the

asymptotic covariance kernel of n−1/2Diag
(
V
(
Ỹc0

))−1/2
m.

Assumption 5 (i) ĉ and c0 belong to Cs
(
[0, 1]dX

)
, with s ≥ dX .Moreover, ‖ĉ−c0‖[0,1]dX =

oP (1).

(ii) For all y ∈ Y, q is Lipschitz on Y × [−C,C] and sup(y,c)∈Y×[−C,C] |q(y, c)| ≤M0;

(iii) For all c ∈ R, the function q(·, c) : Y → Y is bijective and its inverse qI(·, c) is Lipschitz

on Y;

(iv) Fψ|X(·|x), FY |X(·|x) are Lipschitz on Y uniformly in x ∈ [0, 1]dX with constants QF,1

satisfying supF∈F0
QF,1 ≤ Q1 < +∞. Alson Fq(ψ,c(X)), Fq(Y,c(X)) are Lipschitz on

[−M0,M0] with constants QF,2 satisfying supF∈F0
QF,2 ≤ Q2 < +∞;

(iv) infF∈F VF
[
Ỹ 2
c

]
> 0 and ε0 ≤ infF∈F EF [D] ≤ supF∈F EF [D] ≤ 1 − ε0 for some

ε0 ∈ (0, 1/2). Also, V̂F
[
Ỹ 2
ĉ

]
is a consistent estimator of VF

[
Ỹ 2
c

]
.

Part (i) imposes some regularity condition on c0 and its nonparametric estimator ĉ. It is

possible to check such regularity conditions on ĉ with kernel or series estimators of E(Y |X)

and E(ψ|X). Parts (ii) and (iii) also hold when q(y, c) = y − c and q(y, c) = q(y)/c, by

imposing in the second case that c belongs to a compact subset of (0,∞). Proposition 5

shows that under these conditions, the test has asymptotically correct size.
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Proposition 5 Suppose that rn → ∞ and that Assumptions 3 and 5 hold. Then (i) in

Proposition 2 holds, replacing ϕn,α by ϕn,α,ĉ.

Results like (ii) and (iii) in Proposition 2 could also be obtained under the conditions of

Proposition 5, modifying directly the proof of Proposition 2.

B Tests with rounding practices

We have considered in Section 2.2.4 the possibility of measurement errors on ψ. Another

source of uncertainty on ψ is rounding. Rounding practices by interviewees are common. A

way to interpret these practices is that in situations of ambiguity, individuals may only be

able to bound the distribution of their future outcome Y (Manski, 2004). If individuals round

at 5 levels, for instance, an answer ψ = 0.05 for the beliefs about percent increase of income

should then only be interpreted as ψ ∈ [0.025, 0.075]. Another case where only bounds on

ψ are observed is when questions to elicit subjective expectations take the following form:

“What do you think is the percent chance that your own [Y ] will be below [y]?”, for a certain

grid of y. If 0 and 100 are always observed, or if we assume that the support of subjective

distributions is included in [y, y], we can still compute bounds on ψ.23 In such case,s we only

observe (ψL, ψU ), with ψL ≤ ψ ≤ ψU . For a thorough discussion of this issue, and especially

of how to infer rounding practices, see Manski and Molinari (2010).

Testable implications of rational expectations take different forms in this case. In this paper

we propose a test of the null hypothesis that the objective conditional expectation of Y concurs

with at least one distribution of ψ that is compatible with the observed bounds. Formally,

we consider the following null hypothesis:

H0B : ∃(Y ′, ψ′, I ′) : σ(ψ′) ⊂ I, Y ′ = Y when D = 1, ψ′ ∈ [ψL, ψU ],

D ⊥⊥ (Y ′, ψ′) and E(Y ′|I ′) = ψ′.

A naive extension of the previous results would suggest that one should test whether the

condition E [Y ′|ψ′] = ψ′ holds, for an infinite number of possible distributions of beliefs

Fψ′ such that FψU ≤ Fψ′ ≤ FψL . Importantly, we show in the following proposition that

it is in fact sufficient to check that this condition holds for a particular distribution Fψ′

satisfying the constraints FψU ≤ Fψ′ ≤ FψL . We define hereafter the random variable ψb =

ψU1l{ψU < b} + (b ∨ ψL)1l{ψU ≥ b}, which is distributed according to Fψb(t) = FψU (t)1l{t <
b}+ FψL(t)1l{t ≥ b}, and let ∆b(y) =

∫ y
−∞ FY (t)− Fψb(t)dt, and δb = E(Y )− E(ψb).

Proposition 6 Suppose that E(|Y |) < +∞, E(|ψL|) < +∞ and E(|ψU |) < +∞. The follow-

ing statements are equivalent:

(i) H0B holds.

23Note however that in this case, our approach does not take into account all the information on the subjective

distribution.

40



(ii) E[ψL] ≤ E[Y ] ≤ E[ψU ] and ∆b0(y) ≥ 0 for all y ∈ R, for the unique b0 satisfying δb0 = 0.

Note that b0 exists if and only if E[ψL] ≤ E[Y ] ≤ E[ψU ].

C Tests with sample selection in the datasets

We consider here cases where the two samples are not representative of the same population, or

formally, D is not independant of (Y, ψ). This may arise for instance because of oversampling

of some subpopulations or differences in nonresponse between the two surveys that are used.

We assume instead that selection is conditionally exogenous, that is to say:

D ⊥⊥ (Y, ψ)|X. (15)

We show how to use a propensity score weighting to handle such a selection. Denote by

p(x) = P (D = 1|X = x) = E [D|X = x] the propensity score and by

W (X) =
D

p(X)
− 1−D

1− p(X)
.

The law of iterated expectations combined with Proposition 2 directly yield the following

proposition:

Proposition 7 Suppose that (15) and Assumption 1 hold. Then H0X is equivalent to

E
[
W (X)

(
y − Ỹ

)+
|X
]
≥ 0

for all y ∈ R and E
[
W (X)Ỹ |X

]
= 0.

This proposition shows that under sample selection, we can build a statistical test of H0X

akin to that developed in Section 3, by merely estimating nonparametrically p(X). We could

consider for that purpose, as in e.g., Hirano et al. (2003), a series logit estimator. Validity of

such a test would follow using very similar arguments as for the test with aggregate shocks

considered above.

D Simulations with covariates

We consider here simulations including covariates. The DGP is similar to that considered in

Section 3. Specifically, we assume that

Y = ρψ +
√
Xε,

with ρ ∈ [0, 1], ψ ∼ N (0, 1), X ∼ Beta(0.1, 10) and

ε = ζ (−1l{U ≤ 0.1}+ 1l{U ≥ 0.9}) ,

where ζ ∼ N (2, 0.1) and U ∼ U [0, 1]. (ψ, ζ, U,X) are supposed to be mutually independent.
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Like in the test without covariates, we can show that the test with covariates is able to reject

RE if and only if ρ < 0.616. On the other hand, by construction E [Y |X] = E [ψ|X], so the

naive conditional test has no power. The test based on conditional variances rejects only if

ρ < 0.445. Finally, we can show that without using X, our test has power only for ρ < 0.52.

Hence, relying on covariates allows us to gain power for ρ ∈ [0.521, 0.616).

Again, we consider hereafter nψ = nY = n ∈ {400, 800, 1200, 1600, 3200}, use 500 bootstrap

simulations to compute the critical value, and rely on 800 Monte-Carlo replications for each

value of ρ and n. We use the same parameters p = 0.05 and b0 = 0.3 as above. Figure 7 shows

that the RE test with covariates asymptotically outperforms the RE test without covariates.

The test exhibits a similar behavior as that without covariates, though, as we could expect,

the power converges less quickly to one as n tends to infinity.

Note: The curves from right to left correspond to n = 400, 800, 1200, 1600 and 3200. The dotted

vertical lines correspond to the theoretical limit for the rejection of the test based on variance

(ρ ' 0.445) and our test without covariates (ρ ' 0.521). The plain vertical line at ρ = 0.616

corresponds to the same limit for our test with covariates.

Figure 7: Power curves for the test with covariates.

E Additional material on the application

E.1 Details on the life-cycle consumption model

We briefly illustrate how we can compute the optimal consumption path with quadratic

preferences and the individual expectations of future income. For simplicity of exposition, we
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assume here that there is no retirement. Let us denote by

vt(Ai,t+1, e
zi,t) = max

Ci,t
u(Ci,t) + E [βξt+1vt+1(Ai,t+2, e

zi,t+1)|It] ,

the recursive form of the problem with the two state variables (Ai,t+1, e
zi,t). Denoting by

C∗ the consumption reference point, at t = T we get, using that vT (Ai,T+1, e
zi,T ) = u(Ci,T ),

where Ai,T+1 = 0 (all assets are consumed in the last period),

v(Ai,T , e
zi,T−1) = max

Ci,T−1

u(Ci,T−1) + E
[
βξTu

(
(1 + r)Ai,T + Ỹi,T

)∣∣∣Ii,T−1

]
(16)

=
1

2

(
max
Ci,T−1

(C∗ − Ci,T−1)2 + βξTE
[(
C∗ − (1 + r)Ai,T − Ỹi,T

)2
∣∣∣∣Ii,T−1

])
and the first-order condition yields, using (13) and Ai,T+1 = 0,

(C∗ − Ci,T−1) = βξT

(
C∗ − (1 + r)Ai,T − E

[
Ỹi,T

∣∣∣Ii,T−1

])
. (17)

As long as E
[
Ỹi,T

∣∣∣Ii,T−1

]
is known, this allows us to compute the optimal consumption rule

at date T − 1, Ci,T−1(Ai,T , e
zi,T−1), as a function of the state variables. Then, by induction,

and using the following equations, for all 0 ≤ t ≤ T ,

∂1v(Ai,t+1, e
zi,t) = (1 + r)βξt+1E

[
u′ (Ci,t+1 (Ai,t+2, e

zi,t+1))
∣∣It]

u′(Ci,t) = ∂1v(Ai,t+1, e
zi,t)

we can compute the consumption rule Ci,t(Ai,t+1, e
zi,t) at date t.
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E.2 Additional results on the life-cycle consumption model

Figure 8: Age profiles of insurance coefficients.

(a) With borrowing constraints

(b) Without borrowing constraints

Notes: the curves in red (resp. in blue) correspond to insurance coefficients under RE (resp. minimal deviations

from RE). The dotted black curves are the 0.025 and 0.975 quantiles of the blue line, taking into account the

randomness of ĝ∗. They are obtained using 200 bootstrap samples.45



Figure 9: Average lifetime net worth profiles.

(a) With borrowing constraints

(b) Without borrowing constraints

Notes: the curves in red (resp. in blue) correspond to net worth under RE (resp. with deviation from RE). The

purple points correspond to the lifetime net worth for single individuals in the Survey of Consumer Finance

of 1992. The dotted black curves are the 0.025 and 0.975 quantiles of the blue line, taking into account the

randomness of ĝM . They are obtained using 200 bootstrap samples.
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Figure 10: Average estimated function ψ − ĝ∗(ψ) (plain black) for annual

earnings for those who do not have a College degree. The shaded grey area

corresponds to the 95% bootstrap pointwise confidence interval. All results

are displayed in 2015 US dollars.

Figure 11: Average estimated function ψ − ĝ∗(ψ) (plain black) for annual

earnings for those who have a College degree. The shaded grey area corre-

sponds to the 95% bootstrap pointwise confidence interval. All results are

displayed in 2015 US dollars.
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F Proofs

F.1 Notation and preliminaries

For any set H, let us denote by l∞(H) the collection of all uniformly bounded real functions

on H equipped with the supremum norm ‖f‖H = supx∈H |f(x)|. Denote by L2(F ) the

square integrable space with respect to the measure associated with F , and let ‖·‖F,2 be

the corresponding norm. We let N(ε, T , L2(F )) denote the minimal number of ε-balls with

respect to ‖·‖F,2 needed to cover T . An ε-bracket (with respect to F ) is a pair of real

functions (l, u) such that l ≤ u and ‖u− l‖F,2 ≤ ε. Then, for any set of real functions M,

we let N[](ε,M, L2(F )) denote the minimum number of ε-brackets needed to cover M. We

denote by H = (∪r≥1Hr). For x ∈ Rd, d > 1, we denote by ‖x‖∞ = maxj=1,...,d |x|.

For a sequence of random variable (Un)n∈N and a set F0, we say that Un = OP (1) uniformly in

F ∈ F0 if for any ε > 0 there exist M > 0 and n0 > 0 such that supF∈F0
PF (|Un| > M) < ε

for all n > n0. Similarly we say that Un = oP (1) uniformly in F ∈ F0 if for any ε > 0,

supF∈F0
PF (|Un| > ε)→ 0.

Finally, we add stars to random variables whenever we consider their bootstrap versions, as

with T ∗ versus T . We define oP ∗ and OP ∗ as above, but conditional on
(
Ỹi, Di, Xi

)
i=1...n

.

Convergence in distribution conditional on
(
Ỹi, Di, Xi

)
i=1...n

is denoted by →d∗ .

F.2 Proof of Lemma 1

Under H0, there exists Y ′, ψ′ and I ′ such that Y ′ ∼ Y , ψ′ ∼ ψ, σ(ψ′) ⊂ I ′ and E(Y ′|I ′) = ψ′.

Then, by the law of iterated expectations,

E[Y ′|ψ′] = E
[
E
[
Y ′
∣∣I ′]∣∣ψ′] = E

[
ψ′|ψ′

]
= ψ′.

Conversely, if there exists (Y ′, ψ′) such that Y ′ ∼ Y , ψ′ ∼ ψ and E[Y ′|ψ′] = ψ′, let I ′ = σ (ψ′).

Then ψ′ = E [Y ′|ψ′] = E [Y ′|I ′] and H0 holds.

F.3 Proof of Theorem 1.

(i) ⇔ (iii). By Strassen’s theorem (Strassen, 1965, Theorem 8), the existence of (Y, ψ) with

margins equal to FY and Fψ and such that E [Y |ψ] = ψ is equivalent to
∫
fdFψ ≤

∫
fdFY

for every convex function f . By, e.g., Proposition 2.3 in Gozlan et al. (2018) this is in turn

equivalent to (iii).

(ii)⇔ (iii). By Fubini-Tonelli’s theorem,
∫ y
−∞ FY (t)dt = E

[∫ y
−∞ 1l{t ≥ Y }dt

]
= E [(y − Y )+] .

The same holds for ψ. Hence, ∆(y) ≥ 0 for all y ∈ R is equivalent to E
[
(y − Y )+] ≥

E
[
(y − ψ)+] for all y ∈ R. The result follows.
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F.4 Proof of Proposition 1.

First, by Jensen’s inequality,

E[(y0 − Y )+|ψ] ≥ (y0 − E(Y |ψ))+ = (y0 − ψ)+.

Moreover, ∆(y0) = 0 implies that E((y0 − Y )+) = E((y0 − ψ)+). Hence, almost surely,

E[(y0 − Y )+|ψ] = (y0 − ψ)+.

Equality in the Jensen’s inequality implies that the function is affine on the support of the

random variable. Therefore, for almost all u, we either have S(Y |ψ = u) ⊂ [y0,+∞) or

S(Y |ψ = u) ⊂ (−∞, y0]. Because E [Y |ψ] = ψ, S(Y |ψ = u) ⊂ [y0,+∞) for almost all u > y0

and S(Y |ψ = u) ⊂ (−∞, y0] for almost all u < y0. Then, for all τ ∈ (0, 1), F−1
Y |ψ(τ |u) ≥ y0

for almost all u ≥ y0 and F−1
Y |ψ(τ |u) ≤ y0 for almost all u ≤ y0. Thus, for all τ ∈ (0, 1), by

continuity of F−1
Y |ψ(τ |·), F−1

Y |ψ(τ |y0) = y0. This implies that Y |ψ = y0 is degenerate.

F.5 Proof of Proposition 2.

We first prove that H0X is equivalent to the existence of (Y ′, ψ′) such thatDY ′+(1−D)ψ′ = Ỹ ,

D ⊥⊥ (Y ′, ψ′)|X and E(Y ′|ψ′, X) = ψ′. First, under H0X , there exists (Y ′, ψ′, I ′) such that

DY ′ + (1−D)ψ′ = Ỹ , D ⊥⊥ (Y ′, ψ′)|X, σ(ψ′, X) ⊂ I ′ and E(Y ′|I ′) = ψ′. Then

E[Y ′|ψ′, X] = E
[
E
[
Y ′
∣∣I ′]∣∣ψ′, X] = E

[
ψ′|ψ′, X

]
= ψ′.

Conversely, if there exists (Y ′, ψ′) such that DY ′ + (1 − D)ψ′ = Ỹ , D ⊥⊥ (Y ′, ψ′)|X and

E(Y ′|ψ′, X) = ψ′, let I ′ = σ (X ′, ψ′). Then ψ′ = E(Y ′|ψ′, X) = E(Y ′|I ′) and H0X holds. The

proposition then follows as Theorem 1.

F.6 Proof of Proposition 4

For all y, ξ 7→ E[(y−ψ− ξ)+] is decreasing and convex. Then, because Fξψ dominates at the

second order FξY +ε,∫
E
[
(y − ψ − ξ)+

]
dFε+ξY (ξ) ≥

∫
E
[
(y − ψ − ξ)+

]
dFξψ(ξ).

As a result, for all y,

E
[(
y − Ŷ

)+
]

=

∫
E
[
(y − ψ − ε− ξY )+ |ε+ ξY = ξ

]
dFε+ξY (ξ)

=

∫
E
[
(y − ψ − ξ)+

]
dFε+ξY (ξ)

≥
∫

E
[
(y − ξ − ψ)+

]
dFξψ(ξ)

=E
[
(y − ψ̂)+

]
.

Moreover, E
(
Ŷ
)

= E
(
ψ̂
)

. By Theorem 1 again, Ŷ and ψ̂ satisfy H0.
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F.7 Proof of Theorem 2.

(i) This is a particular case of Proposition 5 below, with q(Y, c0) = Y . The proof is therefore

omitted.

(ii) We show that equality holds for F0 ∈ F0 satisfying the conditions stated in (ii). The

proof is divided in three steps. We first prove convergence in distribution of T to S defined

below, and conditional convergence of T ∗ towards the same limit. Then we show that the

cdf H of S is continuous and strictly increasing in the neighborhood of its quantile of order

1− α, for any α ∈ (0, 1/2). The third step concludes.

1. Convergence in distribution of T and T ∗.

First, let us introduce some notation. Let Kj,j (j ∈ {1, 2}) be the j-th diagonal element

of the covariance kernel K, S : (ν,K) 7→ (1 − p)
(
−ν1/K

1/2
1,1

)+2
+ p

(
ν2/K

1/2
2,2

)2
, q(r) =(

r2 + 100
)−1

(2r)−dX , and

νn,F0(y, h) =
1√
n

n∑
i=1

Diag
(
VF0

(
Ỹ
))−1/2 (

m
(
Di, Ỹi, Xi, h, y

)
− EF0

[
m
(
Di, Ỹi, Xi, h, y

)])
.

Finally, we define kn,F0(y, h) = n1/2Diag
(
VF0

(
Ỹ
))−1/2

EF0

[
m
(
Di, Ỹi, Xi, h, y

)]
,

Kn,F0(y, h, y′, h′) = Diag
(
VF0

(
Ỹ
))−1/2

Ĉov
(√
nmn(y, h),

√
nmn(y′, h′)

)
Diag

(
VF0

(
Ỹ
))−1/2

Kn,F0(y, h, y′, h′) = Kn,F0(y, h, y′, h′) + εDiag
(
VF0

(
Ỹ
))−1/2

Diag
(
V̂
(
Ỹ
))

Diag
(
VF0

(
Ỹ
))−1/2

and use the notations Kn,F0(y, h) = Kn,F0(y, h, y, h) and Kn,F0(y, h) = Kn,F0(y, h, y, h).

With this notation, we have, by definition of T ,

T = sup
y∈Y

∑
(a,r):r∈{1,...,rn},a∈Ar

q(r)S
(
νn,F0(y, ha,r) + kn,F0(y, ha,r),Kn,F0(y, ha,r)

)
.

To characterize the distribution of T (resp. T ∗), we first prove the convergence of νn,F0 and

Kn,F0(y, ha,r) (resp. ν∗n,F0
and K∗n,F0

(y, ha,r)). For those purposes, we use a class of functions

which is a general form taken by m1 defined in (2), namely for any 0 < N1 < M1, the class

of functions

M0 = {fy,φ1,φ2,h (ỹ, x, d) =
(
dφ1 (y − ỹ)+ − (1− d)φ2 (y − ỹ)+)h(x),

(y, φ1, φ2, h) ∈ Y × [N1,M1]2 ×H}.

Remark first that this class is a particular case of classes M defined in (27) below. Then, by

the proof of Proposition 5 below, Assumptions PS1 and PS2 in AS are satisfied. Thus the

assumptions of Lemma D.2 in AS hold as well. This entails that Assumptions PS4 and PS5

in AS hold. Namely, there exists a Gaussian process νF0 such that

- νn,F0 →d νF0 and ν∗n,F0
→d∗ νF0 ;
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- For all r ∈ N and (y, h) ∈ Y ×Hr, Kn,F0(y, h)→P KF0(y, h) + εI2 and K∗n,F0
(y, h)→P ∗

KF0(y, h) + εI2, where I2 is the 2× 2 identity matrix.

Moreover, letting kF0(y, h) denote the limit in probability of kn,F0(y, h), we have kF0(y, h) = 0

if (y, h) ∈ LF0 and +∞ otherwise. Note that by assumption, the set LF0 is nonempty.

Thus, using Equation (D.11) in the proof of Theorem D.3. in AS, which is based on the

uniform continuity of the function S in the sense of Assumption S2 therein, we have, under

F0,

T →d sup
y∈Y

∑
(a,r)∈Ar×N

S (νF0(y, ha,r) + kF0(y, h),KF0(y, ha,r) + εI2)

= S := sup
y∈Y

∑
(a,r):(y,ha,r)∈LF0

q(r)S (νF0(y, ha,r),KF0(y, ha,r) + εI2) ,

where the equality follows by definition of S and kF0(y, h). Similarly, using Assumption PS5

and (D.11) in AS, replacing T by T ∗ and quantities νn,F0(y, ha,r) and Kn,F0(y, ha,r) by their

bootstrap counterparts (see the proof of Lemma D.4 in AS) we have T ∗ →d∗ S.

2. The cdf H of S is continuous and strictly increasing in the neighborhood of

any of its quantile of order 1− α > 1/2.

First, the cdf H of S is a convex functional of the Gaussian process νF0 . Then, as in the proof

of Lemma B3 in Andrews and Shi (2013), we can use Theorem 11.1 of Davydov et al. (1998)

p.75 to show that H is continuous and strictly increasing at every point of its support except

r = inf{r ∈ R : H(r) > 0}. Moreover, for any r > 0,

H(r) ≥ P

sup
y∈Y

∑
(a,r):(y,ha,r)∈LF0

q(r)S (νF0(y, ha,r),KF0(y, ha,r) + εI2) < r


≥ P

(
sup

j∈{1,2},(y,a,r):(y,ha,r)∈LF0

∣∣∣(K2,F0,j,j(y, ha,r) + ε)−1/2νF0,j(y, ha,r)
∣∣∣ < √

r/2

Q

)
> 0,

where Q =
∑

(a,r):(y,ha,r)∈LF0
q(r) <∞ and we use Problem 11.3 of Davydov et al. (1998) p.79

for the last inequality. Thus, r > r and H is continuous and strictly increasing on (0,∞).

Then, we show that for any α ∈ (0, 1/2), the quantile of order 1−α of the distribution of S is

positive. By assumption, there exists (y0, h0) ∈ LF0 such that either either KF0,11(y0, h0) > 0

or KF0,2(y0, h0) > 0. Then

P (S > 0) = 1− P

sup
y∈Y

∑
(a,r):(y,ha,r)∈LF0

q(r)S (νF0(y, ha,r),KF0(y, ha,r) + εI2) = 0


≥ 1− P (νF0,1(y0, h0) ≤ 0, νF0,2(y, h0) = 0)

≥ 1−min {P (νF0,1(y0, h0) ≤ 0) ,P (νF0,2(y0, h0) = 0)}

≥ 1/2. (18)
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The first inequality holds by definition of the supremum and because S is nonnegative. To

obtain the last inequality, note that either νF0,1(y0, h0) is non-degenerate, in which case the

first probability is 1/2 (since νF0,1(y0, h0) is normal with zero mean), or νF0,2(y0, h0) is non-

degenerate, in which case the second probability is 0.

Finally, using that H is strictly increasing on (0,∞), (18) ensures that any quantile of S of

order 1 − α with α ∈ [0, 1/2) is positive. Hence, H is continuous and strictly increasing in

the neighborhood of any such quantiles.

3. Conclusion.

Using T ∗ →d∗ S in distribution, Step 2 and Lemma 21.2 in Van der Vaart (2000), we have

that for η > 0, c∗n,α →d∗ c(1 − α + η) + η, where c(1 − α + η) is the (1 − α + η)-th quantile

of the distribution of S. Because T →d S and H is continuous at c(1 − α + η) + η > 0, we

obtain that

lim
η→0

lim sup
n→∞

PF0

(
T > c∗n,α

)
= α.

Combined with the inequality of Part (i) above, this yields the result.

(iii) This results Theorem E.1 in AS. First, Assumption SIG2 in AS holds for σ2
F = VF

(
Ỹ
)

,

following the proof of Lemma 7.2 (b) under Assumption 3-(ii). Second, Assumptions PS4 and

PS5 are satisfied using the point (ii) above. Third, Assumptions CI, MQ, S1, S3, S4 in AS

are also satisfied by construction of the statistic T . Thus, we can apply Theorem E.1 in AS

and the result follows. �

F.8 Proof of Theorem 3.

For any positive convex function ρ, we let

Wρ(F,G) = inf
FU,V ,U∼F,V∼G

E [ρ (|U − V |)] .

We also define

G =

{
G cdf :

∫ y

−∞
G(t)dt ≤

∫ y

−∞
FY (t)dt ∀y ∈ R,

∫
ydG(y) =

∫
ydFY (y)

}
.

The proof is divided in three steps. First, we prove that the initial infimum is equal to

infG∈GWρ(Fψ, G). Second, we prove that there is a unique G∗ that reaches this infimum for

all convex function ρ : R+ → R+ such that ρ(0) = 0. Third, we prove that there is a unique

function g∗ such that (5) holds, and that this function is increasing.

1. inf(Y ′,ψ′,ψ′′)∈Ψ E[ρ(|ψ′ − ψ′′|)] = infG∈GWρ(Fψ, G).

First, by definition of Wρ and because for all (Y ′, ψ′, ψ′′) ∈ Ψ Fψ′ = Fψ, we have

inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)] = inf
G:∃(Y ′,ψ′,ψ′′)∈Ψ:Fψ′′=G

Wρ(Fψ, G).

Thus, it remains to prove that

G′ ≡
{
G : ∃(Y ′, ψ′, ψ′′) ∈ Ψ : Fψ′′ = G

}
= G. (19)

52



First, let G ∈ G′. Let (Y ′, ψ′, ψ′′) ∈ Ψ be such that Fψ′′ = G. By definifion of Ψ, we have

E(Y ′|ψ′′) = ψ′′ and FY ′ = FY . Therefore, by implication (i)⇒ (ii) of Theorem 1 applied to Y ′

and ψ′′, G = Fψ′′ ∈ G. Hence, G′ ⊂ G. Conversely, let G ∈ G. Then, by implication (ii)⇒ (i)

of Theorem 1, there exists (Y ′, ψ′′) such that Y ′ ∼ Y , Fψ′′ = G and E(Y ′|ψ′′) = ψ′′. Define

ψ′ = ψ. Then (Y ′, ψ′, ψ′′) ∈ Ψ and G ∈ G′. Equation (19) follows.

2. There exists a unique G∗ such that for all ρ, Wρ(Fψ, G
∗) = infG∈GWρ(Fψ, G) .

Because Fψ has no atom, the distribution of H−1 ◦Fψ(ψ) is H, for any cdf H. Hence, the set{
Fg(ψ), g measurable

}
is actually the set of all cdf’s. Then, by Proposition 3.1 and Remark

3.2 in Gozlan et al. (2018), we have, for any convex function ρ : R+ → R+ such that ρ(0) = 0,

inf
G∈G

Wρ(Fψ, G) = inf
FY ′,ψ′ : FY ′=FY ,Fψ′=Fψ

E
[
ρ
(∣∣ψ′ − E

[
Y ′|ψ′

]∣∣)] . (20)

Third, by Theorem 1.4 in Gozlan et al. (2018), there exists a distribution G∗ such that

1. For all f convex,
∫
fdG∗ ≤

∫
fdFY ;

2. for any convex function ρ : R+ → R+ such that ρ(0) = 0,

inf
FY ′,ψ′ : FY ′=FY ,Fψ′=Fψ

E
[
ρ
(∣∣ψ′ − E

[
Y ′|ψ′

]∣∣)] = Wρ(Fψ, G
∗). (21)

By, e.g., Proposition 2.3 in Gozlan et al. (2018), Point (1) is equivalent to G∗ satisfying (iii)

in Theorem 1. Therefore, in view of Theorem 1, we have G∗ ∈ G. Combining (20) and (21),

we obtain:

G∗ ∈ arg min
G∈G

Wρ(Fψ, G).

Now, G is convex. Moreover, by Lemma 3.2.1 of Pass (2013) and because Fψ has no atom,

G 7→ Wρ(Fψ, G) is strictly convex for ρ(x) = x2. Therefore, G∗ is the unique minimizer of

G 7→ Wρ(Fψ, G) for this ρ. It is therefore the unique G ∈ G minimizing Wρ(Fψ, G) for all

convex function ρ : R+ 7→ R+ such that ρ(0) = 0.

3. There exists a unique g∗ such that E[ρ(|ψ − g∗(ψ)|)] = inf(Y ′,ψ′,ψ′′)∈Ψ E[ρ(|ψ′ − ψ′′|)]
and g∗ is increasing.

Let g∗ = G∗−1 ◦Fψ. g∗ is increasing. We now prove that it satisfies the equality above. First,

by construction, Fg∗(ψ) = G∗. Moreover, by e.g., Theorem 5.26 of Villani (2008), g∗ is the

unique function satisfying

E [ρ(|ψ − g∗(ψ)|)] = Wρ(Fψ, G
∗). (22)

This equation, together with the first and second steps, imply that

E [ρ(|ψ − g∗(ψ)|)] = inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)]. (23)
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Now, consider g 6= g∗ such that Fg(ψ) = G∗. By unicity of g∗ satisfying (22), we have

E [ρ(|ψ − g(ψ)|)] > Wρ(Fψ, G
∗). Finally, if g 6= g∗ is such that Fg(ψ) = G 6= G∗ for some

G ∈ G, we have, taking ρ(x) = x2,

E [ρ(|ψ − g(ψ)|)] ≥Wρ(Fψ, G) > Wρ(Fψ, G
∗).

Therefore, g∗ is the unique function satisfying (23) for all convex function ρ : R+ 7→ R+ such

that ρ(0) = 0.

F.9 Proof of Theorem 4.

First, in Step 1 of the proof of their Theorem 1.4, Gozlan et al. (2018) show that Ĝ∗L, defined

as the empirical distribution of
(
ψ̃1, ..., ψ̃L

)
satisfies

Ĝ∗L = arg min
G∈G

W2(F̂ψ, G),

where F̂ψ denotes the empirical cdf of ψ and for any q ≥ 1, Wp(F,G) = Wρq(F,G)1/q with

ρq(x) = |x|q. Given the definition of g∗, we also have ĝ∗ = Ĝ∗−1
L ◦ F̂ψ. Moreover, F̂ψ(x)

converges almost surely to Fψ(x).

Let us focus hereafter on the event of probability one for which F̂ψ and F̂Y converges to

Fψ and FY , respectively, for the W2 distance. On this event, consider any subsequence of(
Ĝ∗L

)
L∈N

. Following Step 2 of the proof of Theorem 1.4 in Gozlan et al. (2018), but replacing

|x| by x2 and using the fact that E(ψ2) < +∞ and E(Y 2) < +∞, there exists a further

subsequence converging for the W2 distance. Moreover, the corresponding limit G̃ satisfies,

for all convex function ρ : R+ → R+ such that ρ(0) = 0,

Wρ

(
Fψ, G̃

)
= inf

FY ′,ψ′ : FY ′=FY ,Fψ′=Fψ
E
[
ρ
(∣∣ψ′ − E

[
Y ′|ψ′

]∣∣)] .
Hence, by the proof of Theorem 3, Wρ

(
Fψ, G̃

)
= Wρ(Fψ, G

∗). Because

G∗ = arg min
G∈G

W2(Fψ, G),

we have G̃ = G∗. Hence, any subsequence of
(
Ĝ∗L

)
L∈N

admits a converging further subse-

quence converging to G∗. This implies that almost surely,
(
Ĝ∗L

)
L∈N

converges to G∗ for the

W2 distance. Because convergence for the W2 distance implies weak convergence,
(
Ĝ∗L

)
L∈N

converges weakly to G∗, almost surely. But then, by Lemma 21.2 in Van der Vaart (2000),(
Ĝ−1∗
L (x)

)
L∈N

converges almost surely to G∗−1(x), for all x that is a continuity point of G∗−1.

Finally, let us prove the almost sure convergence of ĝ∗(t) to g∗(t) for all t that is a continuity

point of g∗ and such that Fψ(t) ∈ (0, 1). Fix ε > 0 and let us prove that for all L large enough,

|ĝ∗(t) − g∗(t)| < ε with probability one. Because Fψ(t) is a continuity point of G∗−1, there

exists δ > 0 such that for all u satisfying |u− Fψ(t)| < δ, |G∗−1(u)−G∗−1(Fψ(t))| < ε/2. It
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is easy to see that the set of points of discontinuity of G∗−1 is at most countable. Thus, there

exists η ∈ (0, δ) such that Fψ(t) + η and Fψ(t)− η are continuity points of G∗−1. Moreover,

with probability one and for all L large enough, |F̂ψ(t) − Fψ(t)| ≤ η. Then, for all L large

enough and with probability one,

Ĝ∗−1
L ◦ F̂ψ(t) ≤ Ĝ∗−1

L ◦ [Fψ(t) + η] .

Because Fψ(t) + η is a continuity points of G∗−1, we have by what precedes that for all L

large enough and with probability one,

Ĝ∗−1
L ◦ F̂ψ(t) ≤ Ĝ∗−1

L ◦ [Fψ(t) + η]

≤ G∗−1 ◦ [Fψ(t) + η] + ε/2

≤ G∗−1 ◦ Fψ(t) + ε.

Similarly, for all L large enough and with probability one, Ĝ∗−1
L ◦ F̂ψ(t) ≥ G∗−1 ◦ Fψ(t) − ε.

The result follows by definition of ĝ∗(t).

F.10 Proof of Theorem 5.

Note first that because FE[Y |I] is continuous, FE[Y |I](E [Y |I]) is uniformly distributed (see,e.g.

Van der Vaart, 2000, p.305). In turn, this implies that the cdf of hM (E [Y |I]) is Fψ. Hence,

(hM (E [Y |I]) ,E [Y |I]) ∈ ΨM . If for all (ψ′, ψ′′), E[ρ(|ψ′ − ψ′′|)] = +∞, Equality (9) holds.

If not, let (ψ′, ψ′′) ∈ ΨM be such that E[ρ(|ψ′ − ψ′′|)] < +∞. Because ρ is convex, we have,

for all x′ ≥ x and y′ ≥ y,

ρ(|x′ − y′|)− ρ(|x− y′|)− ρ(|x′ − y|) + ρ(|x− y|) ≤ 0.

Then, by Theorem 3.1.2 in Rachev and Rüschendorf (1998),

E[ρ(|ψ′ − ψ′′|)] ≥
∫ 1

0
ρ
(∣∣∣F−1

ψ (u)− F−1
E(Y |IM )

(u)
∣∣∣) du.

=

∫
ρ
(∣∣∣F−1

ψ ◦ FE[Y |I](v)− F−1
E[Y |I] ◦ FE[Y |I](v)

∣∣∣) dFE[Y |I](v)

= E
[
ρ
(∣∣∣hM (E [Y |I])− F−1

E[Y |I] ◦ FE[Y |I](E [Y |I])
∣∣∣)] . (24)

Finally, note that F−1
E[Y |I] ◦ FE[Y |I](v) < v only if v is in the interior or at the right end of a

“flat” of FE[Y |I] (see, e.g., lemma 21.1 in Van der Vaart, 2000). Because the set of such right

end points is countable and FE[Y |I] has no atom, F−1
E[Y |I] ◦ FE[Y |I](E [Y |I]) = E [Y |I] almost

surely. Combined with Equation (24), this implies (9).

Now, let us suppose that ρ is strictly convex and let (ψ′,E [Y |I]) ∈ ΨM satisfy (9). We can

apply the first part of the proof of Theorem 2.2.1 in Santambrogio (2015), remarking that it

does not rely on the asssumption of compact supports. This implies that the distribution of

(ψ′,E [Y |I]) is equal to that of (hM (E [Y |I]),E [Y |I]). Hence, conditional on E [Y |I], ψ′ is

degenerate and equal to hM (E [Y |I]). The result follows.

55



F.11 Proof of Theorem 6.

The functional F 7→ F−1(t) is continuous with respect to the supremum norm at every F

such that F−1(t) is continuous. Therefore, by the Glivenko-Cantelli and continuous mapping

theorems, F̂−1
ψ ◦ FE[Y |I](t) converges almost surely to hM (t) for all t such that FE[Y |I](t) is a

continuity point of F−1
ψ . The second result follows from, e.g. Corollary 21.5 in Van der Vaart

(2000). Finally, the third follows from the functional delta method for bootstrap (see, e.g.,

Van der Vaart, 2000, example 23.11).

F.12 Proof of Proposition 5

We introduce EF,c := EF
[
m
(
Di, Ỹc,i, Xi, h, y

)]
and

νn,F (y, h) =
1√
n

n∑
i=1

Diag
(
V̂F
(
Ỹĉ

))−1/2 (
m
(
Di, Ỹĉ,i, Xi, h, y

)
− EF,ĉ

)
,

νn,F (y, h) =
1√
n

n∑
i=1

Diag
(
VF
(
Ỹc0

))−1/2 (
m
(
Di, Ỹc0,i, Xi, h, y

)
− EF,c0

)
.

The proof is based on Theorem 5.1 in AS, hence we have to check that the corresponding

assumptions PS1, PS2, and SIG1 hold. Namely, we have to ensure that

- PS1: for all sequence F ∈ F and all (d, y′, x, h, y, c, j) ∈ {0, 1} × Y × [0, 1]dX × Hr ×
Y × Cs

(
[0, 1]dX

)
× {1, 2}∣∣∣∣∣∣mj(d, y

′, x, h, y)

VF
(
Ỹc,i

)
∣∣∣∣∣∣ ≤Mj(d, y

′, x, h, y) and EF
[
Mj

(
Di, Ỹc,i, Xi, h, y

)2+δ
]
≤ C <∞,

where δ > 0 and for some functions Mj ;

- PS2: for all sequence Fn ∈ F and j ∈ {1, 2}, the i.i.d triangular array of processes

T 0
j,n =

{mj

(
Di, Ỹn,c(Xn,i), Xn,i, h, y

)
VFn

(
Ỹn,c(Xn,i)

) , (c, y, h) ∈ Cs
(

[0, 1]dX
)
× Y ×H, i ≤ n, n ≥ 1

}

are manageable with respect to some envelopes functions U1 and U2 (see Pollard, 1990,

p.38 for the definition of a manageable class);

- SIG1: for all ζ > 0, supF∈F ,c∈Cs([0,1]dX ) P
(∣∣∣V̂F (Ỹi,c) /VF (Ỹi,c)− 1

∣∣∣ > ζ
)
→ 0.

We proceed in two steps, to handle the fact that c0 and Diag
(
VF
(
Ỹc0

))−1/2
are estimated:

1. We first show that

sup
F∈F0

sup
h∈∪r≥1Hr,y∈Y

‖νn,F (y, h)− νn,F (y, h)‖∞ =oP (1), (25)

sup
F∈F0

sup
h∈∪r≥1Hr,y∈Y

∥∥ν∗n,F (y, h)− ν∗n,F (y, h)
∥∥
∞ =oP ∗(1). (26)
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2. Next, we show that m satisfies assumptions PS1, PS2, and that SIG1 in AS also holds

for σ2
F = VF

(
Ỹc0

)
, where F ∈ F and σ̂2

n = n−1
∑n

i=1

(
Ỹĉ,i − n−1

∑n
j=1 Ỹĉ,j

)2
.

1. Proof of (25)-(26).

We prove these results for each coordinates of νn,F (y, h) and ν∗n,F (y, h) separately. For that

purpose, we apply the uniform version over F ∈ F0 of Theorem 3 in Chen et al. (2003) to a

general class of functions to which pertain the moment conditions m (see (2), with Ỹ replaced

here by Ỹc = Dq
(
Ỹ , c

)
+ (1 −D)ψ). As the proof for the second coordinate is similar and

much simpler than for the first one, we give a detailed proof only for the latter. Hence, it

suffices to verify that Assumptions (3.2) and (3.3) of Theorem 3 in Chen et al. (2003) are

satisfied. Let us introduce, for any 0 < N1 < M1, the classes of functions

M1 =
{
fc,y,φ,h (ỹ, x) = φ (y − q (ỹ, c(x)))+ h(x), (c, y, φ, h) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1]×H

}
,

(27)

M2 =
{
fc,y,φ,h (ỹ, x) = φ (y − ỹ)+ h(x), (c, y, φ, h) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1]×H

}
,

M ={fc,y,φ1,φ2,h (ỹ, x, d) = (dgc,y,φ1,h − (1− d)qc,y,φ2,h) (ỹ, x) , g ∈M1, q ∈M2,

(c, y, φ1, φ2, h) ∈ Cs
(

[0, 1]dX
)
× Y × [N1,M1]2 ×H}.

Note that φ1, φ2, and c in the class M denote components of m1 that are estimated.

Consider the space Cs
(
[0, 1]dX

)
× Y × [N1,M1]2 ×H equipped with the norm

‖(c, y, φ1, φ2, h)‖ = max
{
‖c‖[0,1]dX , |y| , |φ1| , |φ2| , ‖h‖[0,1]dX

}
.

For v := (c, y, φ1, φ2, h), v′ := (c′, y′, φ′1, φ
′
2, h
′) ∈ Cs

(
[0, 1]dX

)
×Y×[N1,M1]2×H and (ỹ, x, d) ∈

Y × [0, 1]dX × {0, 1}, we have, by the triangular inequality and Assumptions 5-(i) and 5-(v),

|fv (ỹ, x, d)− fv′ (ỹ, x, d)| ≤
∣∣∣gc,y,φ1,h (ỹ, x)− gc′,y′,φ′1,h′ (ỹ, x)

∣∣∣
+
∣∣∣qc,y,φ2,h (ỹ, x)− qc′,y′,φ′2,h′ (ỹ, x)

∣∣∣
≤(M +M0)

(∣∣φ1 − φ′2
∣∣+
∣∣φ2 − φ′2

∣∣)
+ 2M1

[∣∣y − y′∣∣+
∣∣q (ỹ, c(x))− q

(
ỹ, c′(x)

)∣∣]
+ 2M0M1

[ ∣∣1l {q(ỹ, c(x)) ≤ y} − 1l
{
q(ỹ, c(x)) ≤ y′

}∣∣
+
∣∣1l{q (ỹ, c(x)) ≤ y′

}
− 1l

{
q
(
ỹ, c′(x)

)
≤ y′

}∣∣
+
∣∣h(x)− h′(x)

∣∣ ].
Since q(ỹ, .) is Lipschitz and by convexity of x 7→ x2, we obtain

|fv (ỹ, x, d)− fv′ (ỹ, x, d)|2 /7 ≤(M +M0)2
(∣∣φ1 − φ′1

∣∣2 +
∣∣φ2 − φ′2

∣∣2)
+ 4M2

1

[∣∣y − y′∣∣2 +Kq

∥∥c− c′∥∥2

[0,1]dX

]
+ 4(M0M1)2

[ ∣∣1l {q(ỹ, c(x)) ≤ y} − 1l
{
q(ỹ, c(x)) ≤ y′

}∣∣
+
∣∣1l{q (ỹ, c(x)) ≤ y′

}
− 1l

{
q
(
ỹ, c′(x)

)
≤ y′

}∣∣
+
∥∥h− h′∥∥2

[0,1]dX

]
.
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for some constant Kq > 0. Fix δ > 0. If ‖v − v′‖ ≤ δ, then

|fv (ỹ, x, d)− fv′ (ỹ, x, d)|2 /7 ≤δ2
(
2(M +M0)2 + 4M2

1 (1 +Kq) + 4(M0M1)2
)

+ 4(M0M1)2
[
1l {q(ỹ, c(x)) ≤ y + δ} − 1l {q(ỹ, c(x)) ≤ y − δ}

+
∣∣1l{ỹ ≤ qI (y′, c(x)

)}
− 1l

{
ỹ ≤ qI

(
y′, c′(x)

)}∣∣ ].
Next, by Assumption 5-(iv),

E
[
1l
{
q
(
Ỹ , c(X)

)
≤ y + δ

}
− 1l

{
q
(
Ỹ , c(X)

)
≤ y − δ

}]
=F

q(Ỹ ,c(X)) (y + δ)− F
q(Ỹ ,c(X)) (y − δ)

≤2Q2δ.

Finally,

E
[∣∣1l{Y ≤ qI (y′, c(X)

)}
− 1l

{
ỹ ≤ qI

(
y′, c′(X)

)}∣∣]
≤E

[
1l
{
Y ≤ qI

(
y′, c(X)

)
−QF,2δ

}
− 1l

{
ỹ ≤ qI

(
y′, c(X)

)
+QF,2δ

}]
≤E

[
FY |X

(
qI
(
y′, c(X)

)
−QqI δ

∣∣X)− FY |X (qI (y′, c(X)
)

+QqI δ
∣∣X)]

≤2QF,1QqI δ,

where QqI is the Lipschitz constant of qI . Thus, by Assumption 5, there exists Q > 0 such

that

sup
F∈F0

E

[
sup

‖v−v′‖≤δ

∣∣∣fv (Ỹ , X,D)− fv′ (Ỹ , X,D)∣∣∣2
]
≤ Qδ. (28)

Therefore the classM satisfies Condition (3.2) of Theorem 3 in Chen et al. (2003) uniformly

in F ∈ F0. Moreover, the class H is manageable and thus Donsker (see Lemma 3 in Andrews

and Shi, 2013). Finally, by Remark 3 (ii) in Chen et al. (2003), Cs
(
[0, 1]dX

)
is also Donsker.

Then, Cs
(
[0, 1]dX

)
, Y, [N1,M1], and H satisfy Condition (3.3) of Theorem 3 in Chen et al.

(2003). The result follows by Theorem 3 in Chen et al. (2003).

2. m satisfies PS1 and PS2 of AS and SIG1 of AS also holds for σ2
F and σ̂2

n.

From Assumption 5 (iii) and the proof of Lemma 7.2 (a) in AS, PS1 is satisfied replacing B

by max(M,M0) in the proof of Lemma 7.2-(a) in AS.

We now show that PS2 in AS also holds. As the result is uniform over F , we have to consider

sequences Fn in F that are cdfs of (Dn,i, Yn,i, Xn,i)i=1...n. We also define

Ỹn,c(Xn,i) = Dn,iq (Yn,i, c(Xn,i)) + (1−Dn,i)ψn,i,

Wn,i = Dn,i/EFn [Dn,i]− (1−Dn,i)/EFn [1−Dn,i] ,

σ2
Fn = VFn

(
Ỹn,c(Xn,i)

)
.

Note that by Assumption 3-(iii), σ2
Fn
≥ σ > 0 for all Fn ∈ F . Let (Ω,F, Fn) be a probability

space and let ω denote a generic element in Ω. Showing Assumption PS2 in AS then boils
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down to prove that for any 0 < N1 < M1 := 1/ infF σ
2
F , the i.i.d triangular array of processes

T1,n,ω =

{
Wn,iφ

(
y − Ỹn,c(Xn,i)

)+
h(Xn,i), (c, y, φ, h) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1]×H,

i ≤ n, n ≥ 1

}
T2,n,ω =

{
Wn,iφỸn,c(Xn,i)h(Xn,i), (c, y, φ, h) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1]×H, i ≤ n, n ≥ 1

}
,

are manageable with respect to some envelopes functions U1 and U2. Lemma 3 in Andrews

and Shi (2013) shows that the processes {h(Xn,i), h ∈ H, i ≤ n, n ≥ 1} are manageable with

respect to the constant function 1. Then, using Lemma D.5 in AS, it remains to show that

T ′1,n,ω =

{
Wn,iφ

(
y − Ỹn,c(Xn,i)

)+
, (c, y, φ) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1], i ≤ n, n ≥ 1

}
T ′2,n,ω =

{
Wn,iφỸn,c(Xn,i), (c, y, φ) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1], i ≤ n, n ≥ 1

}
,

are manageable with respect to some envelopes. For such envelopes, we can consider respec-

tively U ′1(ω) = (M0 + M)/(σε0) and U ′2(ω) = M0/(σε0). We only prove manageability of

T ′1,n,ω, as the reasoning is similar for T ′2,n,ω. Let us define

M′ = {fc,y,φ1,φ2 (ỹ, x, d) = dφ1 (y − q (ỹ, c(x)))+ − (1− d)φ2 (y − ỹ)+ ,

(c, y, φ1, φ2) ∈ Cs
(

[0, 1]dX
)
× Y × [N1,M1]2}.

Reasoning as for the class M defined in (27), and using the last equation of the proof of

Theorem 3 in Chen et al. (2003), p.1607, we have that for ε > 0,

N[·]
(
ε,M′, ‖ · ‖2

)
≤ N

(
ε′, [N1,M1]2, |·|

)
×N

(
ε′,Y, |·|

)
×N

(
ε′, Cs

(
[0, 1]dX

)
, ‖ · ‖[0,1]dX

)
,

with ε′ = (ε/(2Q))2 and Q is defined in (28). Using Theorem 2.7.1 page 155 in Van der Vaart

and Wellner (1996), there exists a constant Q2 depending only on s, dX , and [0, 1]dX such

that

log
(
N
(
ε′, Cs([0, 1]dX ), ‖ · ‖[0,1]dX

))
≤ Q2ε

′−dX/s.

Because Y and [N1,M1] are compact subset of two Euclidean spaces, there exist Q3, Q4 such

that

N
(
ε′, [N1,M1]2, |·|

)
≤ Q3ε

′−4 and N
(
ε′,Y, |·|

)
≤ Q4ε

′−2. (29)

This yields that,

log
(
N[·]

(
ε,M′, ‖ · ‖2

))
≤ (6 +Q2) max

(
− log(ε′), ε′−dX/s

)
+ log(Q3Q4). (30)

Let � denote element-by-element product and D
(
ε |α� U ′1(ω)| , α� T ′1,n,ω

)
denote random

packing numbers. By (A.1) in Andrews (1994, p.2284), we have

sup
ω∈Ω,n≥1, α∈Rn+

D
(
ε
∣∣α� U ′1(ω)

∣∣ , α� T ′1,n,ω) ≤ sup
F∈F0

N
( ε

2
,M′, ‖ · ‖2

)
,

≤ sup
F∈F0

N[·]
(
ε,M′, ‖ · ‖2

)
, (31)
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where the second inequality follows as in e.g., Van der Vaart and Wellner (1996, p.84). Then,

(30) ensures (see Definition 7.9 in Pollard (1990), p.38) that

sup
ω∈Ω,n≥1, α∈Rn+

D
(
ε
∣∣α� U ′1(ω)

∣∣ , α� T ′1,n,ω) ≤ λ(ε),

where λ(ε) = exp
(

(6 +Q2) max
(
−2 log (ε/(2Q)) , (ε/(2Q))−2dX/s

)
+ log(Q3Q4)

)
and using

that
√
a+ b ≤

√
a+
√
b for a, b ≥ 0,∫ 1

0

√
log(λ(ε))dε ≤

√
6 +Q2

∫ 1

0

[
max

(
−2 log (ε/(2Q)) , (ε/(2Q))−2dX/s

)]1/2
dε+

√
log(Q3Q4)

<∞.

Thus, T ′1,n,ω hence T1,n,ω are manageable. Therefore, m satisfies PS2 in AS.

Finally, in order to show that SIG1 in AS is satisfied, we use Assumption 5 (iii) and follow

the proof of Lemma 7.2 (b) in AS where we replace Y by q(Y, c(X)) and B by max(M,M0),

which yields the result.

F.13 Proof of Proposition 6

(ii) ⇒ (i). By construction and Theorem 1, Y and ψb0 satisfy H0. Moreover, ψb0 ∈ [ψL, ψU ].

Therefore, H0B holds as well.

(i) ⇒ (ii). Let us denote by D the set of all the cdfs for ψ such that H0B holds. By Theorem

1, these are cdfs F satisfying FψU ≤ F ≤ FψL ,
∫
ydF (y) =

∫
ydFY (y) and dominating at the

second order FY . We show below that all F ∈ D are dominated at the second order by Fψc0 .

Then, because FψU ≤ Fψc0 ≤ FψL and
∫
ydFψc0 (y) =

∫
ydFY (y), D is not empty only if Fψc0

dominates at the second order FY . The result then follows by Theorem 1.

Thus, we have to show that for all t ∈ R,

Fψc0 = argminFψ∈D

∫ t

−∞
Fψ(y)dy. (32)

Because FψU (y) ≤ Fψ(y) for all y < c0 and all Fψ ∈ D, we have, for all t < c0,∫ t

−∞
Fψc0 (y)dy ≤

∫ t

−∞
Fψ(y)dy.

We now prove that (32) holds also for t ≥ c0.

First suppose that t ≥ c0 ∨ 0. For all Fψ ∈ D,
∫
ydFY (y) =

∫
ydFψ(y)dy. As a result, by

Fubini’s theorem,

−
∫ 0

−∞
Fψc0 (y)dy +

∫ t

0
(1− Fψc0 (y)) dy +

∫ ∞
t

(1− Fψc0 (y)) dy

= −
∫ 0

−∞
Fψ(y)dy +

∫ t

0
(1− Fψ(y)) dy +

∫ ∞
t

(1− Fψ(y)) dy.
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Because Fψ ≤ FψL = Fψc0 on [c0,+∞], this implies that

−
∫ 0

−∞
Fψc0 (y)dy +

∫ t

0
(1− Fψc0 (y)) dy ≥ −

∫ 0

−∞
Fψ(y)dy +

∫ t

0
(1− Fψ(y)) dy

and thus (32) holds for t ≥ c0 ∨ 0. Now, if c0 < 0 and t ∈ (c0, 0), we have

−
(∫ t

−∞
Fψc0 (y)dy +

∫ 0

t
Fψc0 (y)dy

)
+

∫ ∞
0

(1− Fψc0 (y)) dy

= −
(∫ t

−∞
Fψ(y)dy +

∫ 0

t
Fψ(y)dy

)
+

∫ ∞
0

(1− Fψ(y)) dy.

Using agin Fψ ≤ FψL = Fψc0 on [t,+∞) yields

−
∫ 0

t
Fψc0 (y)dy +

∫ ∞
0

(1− Fψc0 (y)) dy ≤ −
∫ 0

t
Fψ(y)dy +

∫ ∞
0

(1− Fψ(y)) dy.

Therefore, the result also follows in this case.
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