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Abstract

Using firm-level data from the US Census Longitudinal Business Database (LBD),

this paper exhibits novel evidence about a wave of specialization experienced by US

firms in the 1980s and 1990s. Specifically: (i) Firms, especially innovating ones, de-

creased production scope, i.e., the number of industries in which they produce. (ii)

Innovation and production separated, with small firms specializing in innovation and

large firms in production. Higher patent trading efficiency and stronger patent pro-

tection are proposed to explain these phenomena. An endogenous growth model is

developed with potential mismatches between innovation and production. Calibrat-

ing the model suggests that increased trading efficiency and better patent protection

can explain 25% of the observed production scope decrease and 58% of the innova-

tion and production separation. They result in a 0.64 percent point increase in the

annual economic growth rate. Empirical analyses provide evidence of causality from

pro-patent reforms in the 1980s to the two specialization patterns.
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1 Introduction

Profiting from innovation is vital for the survival of innovating firms and, therefore, eco-
nomic growth. However, it is not easy to monetize innovation using a firm’s own pro-
duction. First, ideas are random and are not always matched with a firm’s production.1

Second, the firm may lack the ability to mass-produce its innovation output.2 Strategies
to solve these problems within the firm include: spanning a large number of industries to
raise the opportunity of utilizing new inventions; doing innovation only when the firm
can produce and commercialize new inventions.

Surprisingly, this paper finds deviations from the aforementioned strategies among
US firms in the 1980s and 1990s using the Longitudinal Business Database (LBD) from the
Census Bureau—there is novel evidence of specialization trends.3 Specifically,

(i) US firms narrowed their production scopes, i.e., the number of industries in which
they produce. The scope shrinkage was driven by innovating firms.

(ii) Innovation shifted from large firms (firms with mass production) to small firms.
This study then asks: What are the driving forces of the observed specialization, and how
do they affect economic growth?

This paper proposes that higher patent trading efficiency and better patent protec-
tion contribute to the specialization patterns by allowing innovations to be traded and
utilized by other firms. To assess this new hypothesis in explaining the specialization
choices of US firms and economic growth, an endogenous growth model is built with
potential mismatches between innovation and production and firm heterogeneity in the
ability to monetize new inventions through production. Then, the model is calibrated to
rich firm-level data from the LBD, R&D data from the Survey of Industrial Research and
Development (SIRD), and patent data from the US Patent and Trademark Office (USPTO).
The model suggests that increased patent trading efficiency and patent protection can
jointly explain 25% of the production scope contraction and 58% of the shift of innovation
activities. They lead to a 0.64 percent point increase in the annual economic growth rate.

Here is a complete summary of the hypothesis. Increased patent trading efficiency
and patent protection made innovations more commodified and tradable. Trading of

1Akcigit, Celik and Greenwood (2016) provides evidence that firms may generate new inventions that
are far away from the firms’ primary line of business. In this case, the inventions have less value to the
firms.

2For example, RC Cola was a small beverage company that introduced the first cola in a can and the
first diet cola. However, it quickly lost the advantage to Coca-Cola and Pepsi. De Havilland, the world’s
first commercial jet airliner, invented the Comet I jet 2 years before Boeing introduced the 707. However,
de Havilland was not able to capitalize its early invention. For more examples, please see Teece (1986)

3The LBD covers all US firms with paid employees.
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innovations on the patent market allowed firms to sell the new inventions that fell outside
of their production scope and buy inventions that could be utilized by their production;
thus, making firms’ production scope contribute less to the value of their innovation.
This explains why innovating firms sharply decreased production scope in the 1980s and
1990s (Fact i). Small firms often have limited ability to monetize innovation through their
own production. Chances of selling innovation output on the patent market benefited
them more and incentivized them to increase innovation efforts. Large firms could rely
on small firms’ innovation by purchasing patents on the market and therefore decreased
innovation efforts. This explains why innovation activities shifted to small firms (Fact ii).

Two pieces of evidence provide direct support for the new hypothesis. First, the vol-
umes of patent trading activities ballooned after the early 1980s. According to the Patent
Assignment Dataset (PAD) from the USPTO, the share of patents ever traded increased
from 30.9% at the beginning of the 1980s to 44.1% at the end of the 1990s. This increase
shows that innovations have become more tradable. Second, the average matching rate
between the technology class of a patent and its inventing firm’s industry class declined
from 3.8% in 1981 to 2.2% in 2000.4 This decline suggests fewer innovations were utilized
by the firms that invented them.

This paper argues that the pro-patent reforms in the United States starting in the
1980s are important driving forces of higher patent trading efficiency and stronger pro-
tection, among other changes.5 The reforms include an extension of patentability to ge-
netic engineering and software and the creation of the Court of Appeals for the Federal
Circuit (CAFC) that vastly increased the winning opportunity of patent holders in legal
disputes by lowering invalidation rates. On the one hand, these reforms incentivized
firms to patent their inventions instead of hiding them as secrets, therefore, decreased in-
formation frictions in trading innovation. The effect of patent protection on patent trade
through information disclosure is discussed in Lamoreaux and Sokoloff (2001) using his-
torical data. On the other hand, those reforms allowed firms with new inventions to
extract more value in the trading process since it was less likely that the potential buyers
would use legal disputes to get the patent for free.

Other possible explanations are also considered for the observed specialization pat-
terns. First, the US government introduced a R&D tax credit in 1981 as part of the strate-

4The technology class of a patent is based on the 4-digit code of the International Patent Classification
(IPC); the firms’ industry class is based on the 6-digit NAICS code. This paper builds a concordance be-
tween the two using the method in Silverman (2002) and a link between the SIC and NAICS codes. Silver-
man (2002) bridges the patent technology classes with industries according to the usage of the technology.

5Improvement in information technology may also have contributed to more efficient trading of inno-
vations. The USPTO deployed the first automated search systems for trademarks and patents in the 1980s,
which significantly raised search capability and reduced information frictions.
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gies to increase the competency of US firms in the global market. The effective federal
subsidy rate increased from 5% before the 1980s to 24% in the 1990s, as documented in
Akcigit, Ates and Impullitti (2018). Combined with the booming patent trading market,
the R&D tax credit may have benefited small firms more as their R&D expense to do-
mestic sales ratio grew to be higher than large firms’ after 1985. Therefore, the tax credit
may have amplified the shift of innovation to small firms. Second, the cost structure of
production may have changed over time that directly affected firms’ production scope.
Recent papers like Hsieh and Rossi-Hansberg (2019) and De Ridder (2019) argue that the
rise of information technology increases the fixed cost for firms to enter new industries
but decreases the marginal production cost after entry. This may explain the observed
shrinkage of production scope.6 Third, good ideas may be getting harder to find, as ar-
gued by Bloom et al. (2020). This may have pushed innovating firms to focus efforts on
narrower fields of research and therefore production.

To evaluate the roles of the new hypothesis, as well as the aforementioned possi-
ble explanations in the specialization patterns and economic growth, a structural model
is built with endogenous decisions of production scope and innovation effort. Distinct
from existing theories about specialization, the model in this paper takes into account
potential mismatches between innovation output and production. A key tradeoff that
an innovating firm faces when choosing its production scope is that larger scope raises
the probability that the firm’s innovation output is better matched with its production
and, therefore, increases the firm’s ability to monetize its inventions; but at the same
time, larger scope increases the management cost of the firm. The patent trading market
provides another channel for firms to benefit from their innovation besides production
but is subject to search frictions. When the matching efficiency increases and the buyers’
value at the disagreement point decreases (which, as will be shown, is equivalent to an
increase in sellers’ bargaining power,) the relative importance of production versus trad-
ing in monetizing innovation changes. The effects are heterogeneous for small and large
firms. Small firms have limited production scope and benefit more from selling patents;
large firms have broader scope and benefit more from buying patents. The model also
entertains other explanations.

The developed model is first calibrated to an initial balanced growth path (1981-1985)
using the LBD, the SIRD, and the USPTO patent datasets. Key calibration targets include
production scope, the R&D expense-to-domestic sales ratio of large and small firms, the

6More specifically, their argument is that information technology makes production more scalable, but
adopting it is costly. This incentivizes firms to specialize in a narrow set of sectors and expand production
in their chosen sectors.
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share of patents traded, and the economic growth rate. Then, the model is recalibrated to
fit an ending balanced growth path (1996-2000), allowing changes in parameters relevant
to the new hypothesis and the three alternative explanations. A decomposition exercise
is conducted to explore the contribution of each possible explanation by looking at the
changes in the key moments due to each relevant parameter. The decomposition shows
that higher patent trading efficiency and better patent protection can jointly explain 25%
of the observed production scope decrease and 58% of the reallocation of R&D activities.
The remaining part of specialization is primarily due to changes in the production cost
structure. The increased efficiency and protection result in a 0.64 percent point increase
in the annual growth rate, which makes them the main drivers of economic growth in the
1980s and 1990s.

Finally, this study uses regional and sectoral differences in firms’ exposure to the pro-
patent policies to test whether the reforms are causes of the contraction in firms’ produc-
tion scope and the reallocation of R&D activities. The fraction of lawsuits invalidating the
patents involved in legal disputes varied much across the twelve regional circuit courts
before the establishment of the CAFC in 1982, as pointed out by (Henry and Turner (2006)
and Han (2018)). The establishment of the CAFC significantly lowered the regional inval-
idation rates and made them more uniform. So, regions with a higher invalidation rate
before the CAFC experienced a larger increase in the strength of patent protection. Using
a difference-in-difference (DiD) approach, it is found that firms in regions with a higher
pre-CAFC invalidation rate decreased production scope more. Using a triple difference
(DDD) approach with firm sizes being another dimension of the difference, it is found
that small firms in regions with a higher pre-CAFC invalidation rate increased R&D in-
tensity more, while large firms decreased it more. Furthermore, genetic engineering and
software were two of the most controversial fields of patentability in the 1970s. However,
shortly before the establishment of the CAFC, the Supreme Court approved patentability
in these two fields in two landmark cases, setting precedents for future cases. Therefore,
these two fields experienced the most increase in patent protection strength and consis-
tency in regional decisions. The share of firms’ employment in these two fields before
1982 is used as a proxy for the exposure to the change in patent protection. With a Triple-
Difference (DDD) approach, a finding is that firms with higher exposure were more likely
to shrink production scope. These empirical results provide evidence of causality from
the patent reforms to the two specialization patterns.
Related Literature
This paper is closely related to the literature on the impacts of patent trading and intel-
lectual property rights (IPR) protection. The structural model in this study is based upon

4



Akcigit, Celik and Greenwood (2016), which analyzes how the propinquity between the
technology class of a firm’s new patent and its past patents affects the value of the new
patent to the firm and how a patent trading market shortens the propinquity. This paper
extends this work in a variety of directions to address the newly observed specialization
patterns. First, the paper introduces (endogenous) production scope and highlights that
mismatches between innovation and production are critical to firms’ boundary choices.
The interaction between innovation and production scope decisions is new to the liter-
ature. Second, the paper introduces heterogeneity in firm production ability (reflected
by size), which matters for the impact of patent trading. Production ability affects the
expected value the firm can extract from new ideas through production and determines
whether a firm benefits more from buying or selling patents. Third, the paper links patent
trading to a wide range of changes in the 1980s and 1990s, e.g., production scope, realloca-
tion and targeting behaviors of R&D. These linkages are novel. Other literature about the
trading of knowledge (Eaton and Kortum (1996), Perla, Tonetti and Waugh (2021)) stud-
ies the impact of technology adoption on firms’ innovation and growth but not on firms’
boundaries. Most discussions about the influence of IPR protection focus on the trade-
off between innovation incentives and inventors’ monopoly power (Mukoyama (2003),
Acemoglu and Akcigit (2012)). Some empirical studies suggest that the strength of the
patent system facilitates the disintegration of the innovation industries by allowing trade
in knowledge (Arora and Ceccagnoli (2006), Gans, Hsu and Stern (2008), Han, Liu and
Tian (2020)).7 However, as mentioned by Hall and Harhoff (2012), research in this area is
still limited. There are few systematic theoretical and quantitative analyses about the role
of IPR protection in firms’ specialization decisions.

Theoretically, this paper contributes to the specialization literature by incorporating
a new form of friction that determines firm boundaries between innovation and produc-
tion. According to Coase (1937), a comparison between market transaction costs and
firms’ internal organization costs determines the scope of a firm. The literature about
specialization has studied various forms of external and internal costs. Williamson (1985)
considers problems of incomplete contracts. Grossman and Hart (1986) and Costinot,
Oldenski and Rauch (2011) emphasize the role of contractual frictions in determining
firms’ boundary.8 Atalay, Hortaçsu and Syverson (2014) studies the determinants and
effect of vertical integration and diversification. Grossman and Helpman (2002), Boehm
and Oberfield (2020), and Bostanci (2021) discuss factors that affects firms’ outsourcing
decisions. Some papers (Chiu, Meh and Wright (2017), Baslandze (2016), Han (2018))

7A summary of the relationship between patents and innovation can be found in Moser (2013).
8A summary of the literature on firms’ boundary can be found in Holmstrom and Roberts (1998).
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focus on frictions in the innovating sectors, but none of these papers considers how mis-
matches between innovation and production affect specialization.

Empirically, this research is related to the recent debates about US business dynamism.
Hsieh and Rossi-Hansberg (2019) find that the gap between the number of industries of
a top firm and that of an average firm is smaller in 2013 compared to 1977. They explain
these changes by introducing a new technology that raises the fixed costs but lowers the
marginal costs of production in the service industry. Related arguments about technolog-
ical changes are in Aghion et al. (2019), De Ridder (2019) and Autor et al. (2020). Inspired
by their research, the current study explores the specialization patterns more thoroughly
by looking at the number of industries per firm for all years from 1978 to 2016. Find-
ings are that all firms experienced a drop in the number of industries, and this drop was
mostly driven by firms that performed R&D activities. The quantitative analysis of this
paper supports the roles of both the increased tradability of intellectual properties and the
change in the production cost structure. Besides, the observation of scope shrinkage with
nearly constant average employment among the US firms in the 1980s and 1990s com-
plements the findings that the aggregate concentration of the US firms was stable (White
(2002)), but the within-industry concentration increased (Autor et al. (2020)).

This paper is also related to papers about growth slowdown after the 2000s (e.g., Ak-
cigit and Ates (2019) and Olmstead-Rumsey (2019)) by explaining why there was high
growth in the 1980s and 1990s. Consistent with a series of counterbalancing patent poli-
cies after 1999, the specialization patterns found in this paper also stabilized or reversed
after the 2000s.9 This may suggest that patent protection policies in the 1980s and 1990s
were good for economic growth.

The rest of the paper is organized as follows. Section 2 presents the specialization
patterns. Section 3 introduces the pro-patent policies. Section 4 shows evidence of a
rising patent trading market and a declining matching rate between firms’ innovations
and production scope. Section 5 constructs an endogenous growth model with poten-
tial mismatches between innovation and production. Section 6 calibrates the model and
evaluates the contribution of each possible explanation. Section 7 extends the model to
include basic and applied research. Section 8 shows evidence of causality from the patent
reforms to the specialization patterns. Section 9 concludes.

9For example, the American Inventor Protection Act in 1999 required patent applications to be made
public 18 months after being filed, regardless of whether patents were granted. This increased the risk of
patent infringement. In 2006, Justice Kennedy of the US Supreme Court cast aspersions on business method
patents, and the attitudes of the court system towards those patents became negative afterward.
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2 Specialization Patterns

This section exhibits the trends of production scope and R&D activities of US firms. The
datasets involved are the Longitudinal Business Database (LBD) constructed by the US
Census Bureau;10 the Survey of Industrial Research and Development (SIRD) collected
by the US Census Bureau and the National Science Foundation (NSF); the Patent Data
Project (PDP) collected and cleaned by the NBER.

The LBD covers the universe of business establishments with paid employees in the
U.S. It has a consistent 6-digit NAICS code constructed by Fort, Klimek et al. (2016) for
each establishment and each year. This study uses the firm ID variable that identifies
the ownership of each establishment to aggregate the number of the 6-digit NAICS codes
of each firm and defines it as the production scope of a firm. Information about firms’
patenting activities comes from the PDP. It records all patents issued by the U.S. Patent
and Trademark Office from 1976 to 2006. A firm is classified as an innovating firm if it
has ever been granted a patent between 1976 and 2006.11 The SIRD provides R&D infor-
mation of a nationally representative sample of for-profit R&D-performing firms. Using
the sample weights in the survey, the Census Bureau and the NSF calculate countrywide
statistics each year and publish them on the Industrial Research and Development Infor-
mation System (IRIS).

2.1 Production Scope

Since NAICS is constructed on a production-oriented framework and defines industries
according to the similarity in the technology used to produce goods and services, the
production scope captures the number of technologies a firm uses in production.12 Figure
1 shows the average production scope of US firms with paid employees from 1978 to
2006 by whether they have ever issued a patent recorded by the PDP (innovating firms
vs. others).13 The scale for innovating firms is shown on the left y-axis, while the scale
for other firms is shown on the right. Innovating firms produced in 3.07 6-digit NAICS
industries on average at the beginning of the 1980s. This number experienced a sharp

10Description of this dataset can be found in Jarmin and Miranda (2002).
11Although patenting is not the perfect measure of innovation activities, it is the best proxy in the data

that covers all US firms.
12NAICS is not market-oriented and thus does not capture the number of products produced by the same

technology. For more information about NAICS, see https://www.census.gov/naics/reference_files_

tools/2022_NAICS_Manual.pdf
13The data point for the year 2002 is omitted because, in the version of the LBD data available to the

author of this paper, there is a problem in the scope statistics in 2002. Economists from the Census Bureau
confirm that the newest version does not have the problem.
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Figure 1: Trend of Production Scope by Innovating Activities
Notes: This figure shows the average number of 6-digit NAICS codes owned by US firms by year and
innovating activities. The blue curve shows the trend for firms that have ever issued patents in the
sample years; the red curve shows the trend of firms that have never issued patents.
Sources: Longitudinal Business Database (LBD); the Patent Data Project (PDP).

decrease by one-third to around 2.05 at the end of 1990s and then rebounded slightly
after 2000. Other firms’ production scope also decreased, but to a much lesser extent.14

This paper does three checks. First, it looks at the trend of production scope with
firm-size controlled and finds that innovating firms had a larger drop in scope than non-
innovating firms of the same size.15 Second, the paper looks at the scope change in each
sector defined by a 2-digit NAICS code and finds that the same pattern holds for all sec-
tors (both tradable and nontradable) except for health care and public administration.
This indicates that the production scope shrinkage was a general phenomenon. Third,
the paper deletes the auxiliary establishments (establishments that perform management
and support services to other establishments) and repeats the exercises above. The results
are very similar.16

2.2 Innovation Activities

Figure 2a shows the ratio of total R&D spending by large firms to total R&D spending by
small and medium firms. Here, a firm is regarded as small or medium if it has no more
than 999 employees, while a large firm has at least 1000 employees. This ratio started to
drop after the early 1980s and stabilized after 2000, indicating that US R&D activities have
shifted from large to small and medium firms. To look at the intensive margin, Figure 2b

14Note that the average number of establishments per firm increased in the same period. So, the decrease
in the number of industries was not due to firms having fewer establishments.

15Section A.1 of the Appendix describes the methods and plots the trend in Figure 5.
16Figures of production scope after deleting auxiliary establishments are available upon request.
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displays the R&D intensity of US R&D performing firms by size. The R&D intensity is
defined by the ratio of the aggregate R&D cost (excluding the federally funded part) of
R&D performing firms to the net domestic sales of those firms. As shown in Figure 2b,
the R&D expense-to-domestic sales ratio of small and medium firms started to surge after
1980, and the rising trend stopped after 2000.17 In the same period, the ratio of large firms
slightly decreased. These diverging trends suggest that small and medium firms became
more focused on innovation, while large firms more focused on non-innovation activi-
ties. To address the potential misreporting problem of R&D expenses, this paper checks
another measure—the ratio of the number of citation-weighted patents to the number
of employees for large and small/medium firms with patents in the LBD. The trend is
shown in Figure 6 of the Appendix A.2, and the implications are very similar. According
to Baumol (2002) and Akcigit and Kerr (2018), small firms has a comparative advantage
in creating new ideas, while large firms are better at exploiting values from innovations
through production and commercialization. The two panels of Figure 2, therefore, sug-
gest that firms spent more efforts on areas where they had comparative advantage.18 This
paper also looks at R&D intensity by firm age and finds that the diverging patterns are
not as salient as the trends by size, showing that firm size is the main force behind the
divergence in R&D intensity.

3 Policy Reforms

The two decades (the 1980s and 1990s) that witnessed the specialization wave described
in the previous section also experienced important policy reforms in the United States.
In the 1970s, the innovation activities in the U.S. were thought to fall behind other in-
dustrialized countries (Meador (1992)), so a series of policies were adopted to stimulate
innovation and boost economic growth. Besides introducing the R&D tax credits at the
federal level in 1981, the US government adopted a series of pro-patent reforms starting at
the beginning of the 1980s that strengthened the protection of intellectual property rights.
The US legal environment towards patents became increasingly positive in the following
two decades until some counterbalancing new policies came out at the end of the 1990s.
This paper will describe two major pro-patent policies starting in the 1980s.19

Extension of Patentability to Genetic Engineering and Software. The US Supreme

17The increase in the R&D expense-to-domestic sales ratio was more salient for smaller firms (e.g., firms
with less than 100 employees or less than 50 employees).

18In the following sections, this paper will call all the non-innovation activities as production. Therefore,
production indicates all activities that are complementary to innovation.

19A thorough description of the policy changes can be found in Gallini (2002).
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(a) Total R&D Expense Ratio (b) R&D Intensity by Size

Figure 2: Trends of R&D Activities
Notes: This figure shows R&D spending by firm size. Panel (a) displays the ratio of total R&D spend-
ing by large firms to total R&D spending by small and medium firms. Panel (b) displays the R&D-
spending-to-domestic-sales ratios by firm size.
Source: Survey of Industrial Research and Development (SIRD).

Court’s decision in 1980 in the case between Diamond and Chakrabarty approved the patent-
ability of genetically engineered bacteria. The 1981 decision in Diamond v. Diehr affirmed
patent protection of software. Bioengineering and software became two heavily patented
areas then. The overall patent applications and issuances both doubled between 1980 and
2000 after a long stable phase before 1980.
Creation of the Court of Appeals for the Federal Circuit. Before 1982, legal disputes
of patents were heard at district courts or regional appellate courts, which did not have
consistent enforcement of the patent law across regions. The establishment of the Court
of Appeals for the Federal Circuit (CAFC) in 1982 provided centralized patent jurisdic-
tion. More importantly, it largely decreased the patent invalidation rates in legal dis-
putes (Henry and Turner (2006), Han (2018)). The fraction of lawsuits that invalidated
the patents involved plummeted from around 55% to 28% after the change in the court
system.20 The legal disputes of patents usually arise because one party is not willing to
pay for using the patents another party (the patent holder) created. The party that wants
the patents then sues the patent holder by claiming its patents are invalid. The invalida-
tion rates of the court therefore captures the probability that the plaintiff wins the case
and uses the patent for free. A lower invalidation rate indicates the court has stronger
protection toward the patent holders’ benefit.21

20The full trend of the invalidation rates is shown by Figure 7a in Appendix A.3.
21The ratio of the number of patent-related circuit court decisions to the number of patents-in-force have

remained constant since 1980 (Marco et al. (2015)), showing that there was no clear change in the propensity
of litigation (through circuit court decisions) after the reform.
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4 Trading of Innovations and Matching with Production

Following the pro-patent reforms, the patent trading market experienced a rapid growth,
a signal that innovations became more tradable. Combining the Patent Assignment Dataset
(PAD) with the LBD,22 this paper calculates the citation weighted fraction of patents
granted to US firms in each year that have ever been traded through sales or merger
& acquisitions (M&As).23 Patent sales constituted around 90% of the total transactions
and had very similar trends to M&As. As shown in Figure 3a, in the early 1980s, only
about 30.9% of patents had been transacted. This fraction climbed to around 44.1% at the
end of the 1990s and plateaued after 2000.24 Besides patent transactions, patent licensing
activities also ballooned after 1980, as indicated by the rising trends of licensing fees and
royalties presented in Arora and Gambardella (2010). Therefore, the increase in patent
transactions shown in Figure 3a should be viewed as a lower bound of the estimation for
the increase in trading activities of innovations. Regarding who traded the patents, the
main argument of this paper is consistent with the finding by Akcigit and Ates (2019) that
a larger share of patents were traded from small firms to large firms. This paper will not
repeat their exercise.

Accompanied by a more vibrant patent trading market was a declining trend in the
matching rate between patents’ technology classes and their inventing firms’ production
scope. The matching rate is defined as the ratio of the (citation weighted) number of
newly granted patents with technology classes matching their inventors’ industry classes
to the (citation weighted) number of all newly granted patents each year.25 As shown
in Figure 3b, in 1981, 3.8% of new patents fell inside of their inventing firms’ produc-
tion scope, while in 2000, the ratio decreased to 2.2%.26 This trend implies that a firm’s
production has become less of a restriction to the usage of its innovations.27

The increased trading of innovations and decreased matching rate between a firm’s
innovation and production show that the market provides another channel for firms to
monetize their R&D output.

22The PAD is collected by the USPTO. It maintains as much as possible a complete history of claimed
interests in a patent. Marco et al. (2015) has an introduction and shows various statistics of this dataset.

23The graph of the fraction not weighted by citations delivers very similar patterns.
24This rise was primarily due to increasing transactions at an early stage, as shown by Figure 7b in

Appendix A.4. This is another evidence of increased patent trading efficiency.
25The definitions of the technology and industry classes are shown in Footnote 4.
26The unweighted ratio has the same trend and is available upon request.
27The decrease in the matching rate should not be due to changes in definitions of technology classes and

industries over time versus the invariant concordance used. The concordance built by Silverman (2002) is
based on the technology classes and industries in the early 1990s. So, if the invariant concordance used has
any effect, we should predict the matching rate to be the highest in the early 1990s.
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(a) Fraction of Patents Involved in Trading (b) Trend of the Matching Rate

Figure 3: Trading of Innovations and Matching with Production
Notes: This figure shows supporting evidence for the new hypothesis. Panel (a) displays the share of
patents issues in each year that has ever been traded through sales or M&A. Panel (b) displays the
average likelihood that a firm’s innovation output matches its production in each year.
Source: Patent Assignment Dataset (PAD); Longitudinal Business Database (LBD).

5 Model

To explore the driving forces of the observed specialization phenomena and their effects
on economic growth, a model is constructed in this section. In the model, there are po-
tential mismatches between a firm’s innovations and its production. Firms endogenously
choose their production scope, R&D intensity, and whether to buy or sell innovation out-
put on the patent market. The patent market is subject to search frictions, the efficiency
of which and the bargaining power between buyers and sellers depend on the legal envi-
ronment towards patents. There are two types of production ability, which reflect firms’
comparative advantage in innovation or production. Firms with a high production ability
can extract higher value from new inventions through production and, on average, have
larger size. Decisions of different types of firms are affected differently by patent trading,
R&D tax credit rates, production cost structure, as well as the cost of new ideas.

5.1 Setup

There is a unit measure of firms in this economy, and each is exogenously and uniformly
centered at a point on the industry circle shown in Figure 4. The industry circle contains
all the industries in the economy and is assumed to have a radius of 1

2π . At the beginning
of each period, a firm chooses its production scope (ω)—the set of industries in which it
will produce goods and services. Figure 4 shows an example of a firm that is centered at
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the top of the circle and chooses the arc ω as its production scope.28 The absolute value
of ω, |ω|, stands for the number of industries the firm produces in and will be used in the
following analysis. As the model only focuses on the symmetric equilibrium, the location
of the center turns out to be irrelevant to firms’ decisions.

Figure 4: Schematic Diagram of the Industry Circle and Production Scope

A firm goes through two major stages of operation after the scope is determined:
innovation and production.29 The key assumptions of the model are twofold. First, the
location of the innovation output cannot be entirely controlled by the firm, and therefore
it may not necessarily fall inside the firm’s production scope. Second, the firm cannot
adjust its scope after the innovation stage and can only utilize the innovation output that
matches its production scope. Between the two stages, firms can trade innovations on
the patent market subject to a search and matching process. They can sell the innovation
that is useless to them and buy patents that match their production scope. There are
two exogenous changes in the search and matching process. (i) The matching efficiency
increases. (ii) The buyers’ value at the disagreement point decreases, which, as will be
shown later, is equivalent to a rise in the bargaining power of the patent sellers.

Each firm in this economy is characterized by production ability (m) and an inno-
vation level (z). The production ability has two statuses, high (mH) and low (mL). The

transition of statuses across periods is subject to a Markov process, Qmm′ =

[
qHH qHL

qLH qLL

]
.

In the stationary distribution, the shares of firms that have high and low production abil-
ity are respectively αH and αL. The innovation level is updated in each period according
to the law of motion,

z′ = z + γ(1(RD∈ω) +B)z, (1)

28Whether the set of industries is connected is not assumed ex-ante, but will be solved from the model
based on assumptions that will be unfolded later.

29The model can add a non-innovating sector whose productivity is dragged by the innovating sector,
as what is done for the non-VC sector in Greenwood, Han and Sanchez (2022). The non-innovating sector
captures firms that only adopt existing technology (they do not need to buy patents since most of the
technology they use has passed the patent term.) The results in this paper will not change.
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where 1(RD∈ω) is an indicator of whether the firm’s innovation output falls inside of its
production scope; B is an indicator of whether the firm buys a patent that matches its
scope. It is assumed that: (i) At most one idea can be implemented in each period, so
1(RD∈ω) and B are exclusive. (ii) Regardless of a firm’s production ability, an idea gen-
erates higher value to a firm if it falls inside of the firm’s production scope compared to
outside. This implies that whenever a firm has an in-scope innovation, the firm uses it
in its own production.30 γ is a constant lock-step growth of the innovation level. z is the
employment-weighted average innovation level of the economy, defined by,

z =

∫ ∫
mzdF(m, z; z)

αHmH + αLmL
, (2)

where F(m, z; z) is the joint distribution of production ability and innovation levels among
all firms at the end of the previous period.

The timing of events in each period is shown as follows:

m, z

Choose ω R&D with i

1(RD∈ω) realizes

Search ideas

z′ realizes

Production

A firm starts a period with the newly realized production ability (m) and the innova-
tion level (z) inherited from the end of the previous period. The value of the firm at this
stage is denoted as V(m, z; z). The firm chooses the production scope ω according to an
increasing and convex management cost function in the number of industries,

Ce(ω; z) = µ|ω|1+ιzζ/(ζ+λ)/(1 + ι), ι > 0. (3)

where µ and ι capture the shape of the cost function and are exogenous. ζ and λ are
respectively the profit and labor share in the production function, as will be shown later.

After the scope is chosen, the firm begins to do R&D. This innovation process has a
success rate of i, which is endogenously determined by the firm and also subject to an
increasing and convex cost function,

Ci(i; z) = χi1+ρzζ/(ζ+λ)/(1 + ρ), ρ > 0. (4)

30This is captured by a weak mathematic condition, shown in the proof of Proposition 5.1 in Appendix
B.1. A more general setting that allows firms with an in-scope innovation to search on the patent market
with the intention to sell is available upon request. Whether the firm decides to search depends on the
production ability difference between the high- and low-type firms. Calibrating the more general setting
with the same classification of high- and low-type firms as in Section 6.1 shows that firms with an in-scope
innovation always use it and do not search.
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where χ and ρ capture the shape of the cost function and are exogenous. Both the man-
agement and innovation cost functions rise with the economy-wide innovation level, z.

Whether the innovation process succeeds realizes then, together with the location of
the output. The output is useful to the firm’s own production only if it locates inside the
scope. Firms that fail to innovate search on the patent market as potential buyers. At
the same time, firms that successfully innovate, but the innovation output is useless, also
search on the market, as both potential buyers and sellers. They want to sell the useless
patent at hand and buy a patent that matches their production scope. It is assumed that
each seller and buyer have one unit of search effort. Sellers spend their whole effort
searching at the location of their patents; buyers evenly distribute their effort over their
production scope. For any arc, d, on the industry circle, this paper denotes the total search
effort on the arc by sellers and by buyers respectively as ns(d) and nb(d). The total number
of matches on the arc is subject to,

M(ns(d), nb(d)) = φns(d)νnb(d)1−ν, (5)

where φ represents the matching efficiency, which is subject to exogenous changes. ν is
the exponent. The odds of a successful match for a potential seller can be expressed as

s = lim
|d0|→0

φ
(nb(d0)

ns(d0)

)1−ν. (6)

where d0 is the neighborhood that spans symmetrically around the location of the seller’s
patent. Since the model will only focus on the symmetric equilibrium, the location of the
patent is not tracked. The odds of a successful match for a potential buyer depend on a
function of the arc it searches over (its production scope, ω),

b(ω) = φ
(ns(ω)

nb(ω)

)ν. (7)

Finally, the new innovation level of the firm realizes according to the law of motion
in (1). At the production stage, a firm maximizes its overall profit by choosing capital
and labor in each industry within its production scope. The production function exhibits
decreasing return-to-scale with regard to capital and labor. The profit, capital, and labor
shares sum up to 1 (ζ + η + λ = 1). Capital is hired at the rental rate r̃, and labor is hired
at the wage rate w. It is assumed that goods in different industries are perfect substitutes
and industries are symmetric. Denote the capital and labor in each industry as k and l.
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The firm’s optimization problem at the production stage is

π(ω, m, z′; z) = max
k,l

(mz′)ζ(|ω|k)η(|ω|l)λ − r̃(|ω|k)− w(|ω|l). (8)

The production function suggests that firms with a higher production ability (m) get more
profit at any given innovation level.

5.2 Consumer Preference

A representative household in this economy maximizes the lifetime utility,

∞

∑
t=0

βt c(t)1−ε

1− ε
.

where c(t) is consumption in period t, β is the discount rate of the future, and ε is the
degree of risk aversion of the household. The household owns and rents capital to all the
firms in this economy, which generates both a profit and a risk-free rate of capital return,
1
r , in each period. The depreciation rate of capital is δ. So, the rental rate of capital, r̃, is
1
r − 1 + δ. The household also provides one unit of labor to firms, from which it earns a
wage rate w(t). The government levies a lump-sum tax, T, on the household to sponsor
the R&D subsidy.

5.3 Firm Decisions

This section solves firms’ decisions in backward order. At the final production stage, the
first-order condition derives

k(ω, m, z′; z) =
mz′

|ω| (
η

r̃
)1+ η

ζ (
λ

w
)

λ
ζ ; (9)

l(ω, m, z′; z) =
mz′

|ω| (
η

r̃
)

η
ζ (

λ

w
)1+ λ

ζ . (10)

It is straightforward that the total amount of capital |ω|k(ω, m, z′; z) and the total amount
of labor |ω|l(ω, m, z′; z) a firm hires do not depend on the production scope. So does the
total profit, which equals to

π(m, z′; z) = mz′(1− η − λ)(
η

r̃
)

η
ζ (

λ

w
)

λ
ζ . (11)
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The independence of total input and output on the production scope implies that firms ei-
ther span a wide range of industries but only touch on each of them, or focus on a narrow
range of industries and deepen production in them. This independence is consistent with
observations in the data, that US firms deepened production in fewer industries without
changing much the total employment. The average employment of US firms was similar
between the beginning of the 1980s and the end of the 1990s, even though the average
number of industries was much lower at the latter period.31

The decision of R&D expenses is equivalent to determining the success rate (i) of
innovation, as there is a one-to-one mapping between the two. Denote the value of a firm
before the R&D decision as D(ω, m, z; z), taking the production scope as given. Then,

D(ω, m, z; z) =max
i
{iX(ω) [π(m, z′; z) + rEV(m′, z′; z′)]︸ ︷︷ ︸

Innovate within ω

+ (1− iX(ω)) [b(ω)(π(m, z′; z)− pb(m, z; z) + rEV(m′, z′; z′))]︸ ︷︷ ︸
Buy an idea within ω

+ (1− iX(ω)) [(1− b(ω))(π(m, z; z) + rEV(m′, z; z′))]︸ ︷︷ ︸
No idea within ω

(12)

+ i(1− X(ω)) sps︸︷︷︸
Sell an idea

−(1− σ)Ci(i; z)},

where the function X(ω) is the probability that the firm’s innovation output falls inside
its production scope, ω. It is assumed that (i) the closer an industry is to the firm’s core
business (center), the larger the probability the firm’s inventions match that industry and
generate value to the firm.32 (ii) X(|ω|) = ξ|ω|ψ with ξ > 0 and 0 < ψ < 1 if ω spans
symmetrically around the firm’s center.33 In the following analysis, X(|ω|) will denote
the relationship between the within-scope probability and the length of the production
arc, given that the arc is symmetric around the center.

D(ω, m, z; z) consists of five components, the first four of which describe the benefit
of innovation in four different scenarios, while the last one of which is the innovation
cost when the R&D tax credit rate equals to σ. The first scenario happens when the firm’s
innovation is successful, and the output falls within the firms’ production scope. So, the
probability of this scenario is iX(ω). The firm then updates its innovation level according

31To be more specific, the average employment of US firms first decreased in the 1980s and then re-
bounded in the 1990s. The levels at the start and the end were similar.

32This assumption is supported by the empirical findings in Akcigit, Celik and Greenwood (2016) that
the propinquity between a patent’s technology class and the firm’s main line of business positively affects
the value of the patent to the firm.

33As shown in Table 14 in Appendix D.2, the empirical estimation of X(|ω|) confirms this assumption.
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to the law of motion described in (1). π(m, z′; z) is the profit in the current period with the
updated innovation level (z′). rEV(m′, z′; z′) is the discounted future value of the firm at
the beginning of the next period. The second and third scenarios happen when the firm
does not develop useful innovation output through its own R&D process, either because
the innovation fails or because the innovation output does not match the firm’s produc-
tion scope. The firm then searches on the patent market as a potential buyer. With prob-
ability b(ω), the firm matches with a patent seller. It buys the patent at a price pb(m, z; z)
and updates its innovation level with the patent, as captured by the second scenario. With
probability, 1− b(ω), the firm cannot find a seller, and therefore, its innovation level is not
updated, as captured by the third scenario. The fourth scenario happens when the firm’s
R&D process succeeds, but the output falls outside the firm’s own production scope. In
this case, the firm searches on the patent market as a potential seller. With probability s,
the firm matches with a buyer and sells its innovation output at a selling price denoted
as ps. The model assumes that the patent expires in one period. So, the firm that does not
sell its patent in the current period have to dump it and earn nothing from its innovation.

The determination of the buying price of a patent, also the transaction price, is through
Nash bargaining, which can be described as follows,

pb(m, z; z) =arg max
pb

pθ
b[π(m, z′; z) + rEV(m′, z′; z′)− pb

− (π(m, z; z) + rEV(m′, z; z′))]1−θ.
(13)

The buyer and seller choose the transaction price (pb) to maximize the product of their
surplus. The surplus of the seller is simply the price, as the seller will earn nothing if
the patent is not sold. The surplus of the buyer is the difference between the firm value
with the updated innovation level minus the payment and the value with the original
innovation level. θ denotes the bargaining power of the seller in the transaction. Note
that the surplus of the buyer depends on the buyer’s type, and therefore, so does the
transaction price.

At the R&D stage, firms do not know what type of buyers they will meet if they have
a useless innovation to themselves and want to sell it on the market. So, ps should be
the expected price in transactions with all potential buyers. The distribution of types of
potential buyers on the market is denoted as G(m, z; z′) and will be determined endoge-
nously in the equilibrium. The selling price can be expressed as

ps(z) =
∫ ∫

pb(m, z; z)dG(m, z; z). (14)

18



The decision of the production scope at the beginning of each period is based on the
tradeoff between the benefit and cost. The production scope, on the one hand, affects the
ability that a firm monetizes its innovation output, and on the other hand, determines the
management difficulty. The optimal scope solves,

V(m, z; z) = max
ω

D(ω, m, z; z)− Ce(ω; z), (15)

where Ce(ω; z) is the management cost function as introduced in the model setup.
The government budget constraint can be expressed as the following,

T = σ
∫ ∫

Ci(i(ω(m, z; z), m, z; z); z))dF(m, z; z). (16)

5.4 Equilibrium

This paper focuses on a symmetric-balanced-growth-path (SBGP) equilibrium, where the
employment-weighted average growth rate of the innovation level in the economy and
the ratio of the average innovation level of firms with high production ability to that of
firms with low production ability are constants. The variables in this equilibrium can
be expressed as functions of the model parameters and are displayed in the following
proposition. The proof is unfolded in Appendix B.1.

Proposition 5.1 (Symmetric Balanced Growth Path). There exists a symmetric balanced growth
path of the following form:
1. The employment-weighted growth rate of the aggregate innovation level, g, and the ratio of the
average innovation level of firms with high production ability to that of firms with low production
ability, o, defined respectively by

g =

∫ ∫
m′z′′dF(m′, z′)/

∫ ∫
m′dF(m′, z′)∫ ∫

mz′dF(m, z)/
∫ ∫

mdF(m, z)
; o =

∫
z′dF(m, z)|m=mH∫
z′dF(m, z)|m=mL

,

are constants.
2. The interest factor r = β/gεζ/(ζ+λ); the rental rate on capital r̃ = gεζ/(ζ+λ)/β− 1 + δ.
3. The odds of a successful match for a potential buyer, b(ω), and for a potential seller, s, only
depend on the total number of patent buyers and sellers, i.e., b(ω) = φ( ns

nb
)ν, s = φ(nb

ns
)1−ν.

4. The production scope of each firm spans symmetrically around the center, and the length of the
scope depends only on the production ability of the firm, i.e., |ω(m, z; z)| = Ω(m).
5. The R&D success rate does not depend on the firm’s innovation level, z, or the economy-wide
innovation level, z, i.e., i(ω, m, z; z) = i(ω, m).
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6. The government budget constraint is,

T = σ(αHCi(i(Ω(mH), mH)) + αLCi(i(Ω(mL), mL))).

7. The value function V(m, z; z) is linear in z̃ and z̃, i.e., V(m, z; z) = v1(m)z̃ + v2(m)z̃, where
z̃ = z/zλ/(ζ+λ), z̃ = zζ/(ζ+λ).
8. The number of buyers of both types (nbH, nbL) and the number of sellers (ns) are

nbH = αH(1− i∗(ω∗(mH), mH)X(ω∗(mH))), nbL = αH(1− i∗(ω∗(mL), mL)X(ω∗(mL)));

ns = αHi∗(ω∗(mH), mH)(1− X(ω∗(mH))) + αLi∗(ω∗(mL), mL)(1− X(ω∗(mL))).

9. The buying price and the expected selling price of a patent is

pb(m, z; z) = θ(Am +
r

gλ/(λ+ζ)
E[v1(m′)|m])γz̃;

ps(z) =
nbH
nb

pb(mH, z; z) +
nbL
nb

pb(mL, z; z),

where A is a constant.

The intuition of the matching rate of a potential buyer only depending on the total
number of buyers and sellers is that firms are endowed with the same unit of search effort
and have to dilute their effort at each point of the arc they search over. Therefore, although
firms with different production scope have different chances of getting an in-scope idea
if their innovation succeeds, they have equal opportunities to get an idea on the market.
Besides, the matching rate of a potential seller is also the same for all firms, as on each
point of the industry circle, there are equal number of buyers and sellers.

The R&D success rate does not rely on individual and aggregate innovation levels
because both the benefit and the cost of R&D depend only on the aggregate innovation
level of the economy and the aggregate level cancels out in the calculation. The irrele-
vance of the R&D success rate with the innovation levels results in the production scope
only relying on firms’ production ability.

5.5 Relevant Parameters for Specialization

According to the analysis in the previous section, changes in the patent trading environ-
ment, the R&D tax credit rate, the production cost structure, and the difficulty in finding
good ideas may be potential reasons for the observed specialization patterns. Parameters
in the model that correspond to these changes are listed here.
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The matching efficiency of the patent market, φ, reflects information frictions in the
trading process. Policies that make inventions more commodified and visible on the mar-
ket are predicted to raise the matching efficiency. The bargaining power of patent sellers,
θ, reflecting protection towards patent holders, directly correlates with the invalidation
rate of patents. As shown in Section 3, the invalidation rate captures the probability that
a buyer gets a patent for free from a seller through legal disputes, which affects the value
of the buyer at the disagreement point. Denote the invalidation rate as f , then the actual
Nash bargaining problem becomes

pb(m, z; z) =arg max
pb

pθ
b{π(m, z′; z) + rEV(m′, z′; z′)− pb − [ f (π(m, z′; z)

+ rEV(m′, z′; z′)) + (1− f )(π(m, z; z) + rEV(m′, z; z′))]}1−θ.
(17)

Upon disagreement, the buyer can sue the seller in court, and with probability f , it wins
the case and can update its innovation level for free. The solution to this problem is
θ(1− f ) times the difference between the buyer’s value with and without the updated
innovation level. θ(1− f ) can be viewed as the new bargaining power of the seller. There-
fore, a lower invalidation rate is equivalent to higher sellers’ bargaining power. A partial
equilibrium analysis of the effect of φ and θ is in Appendix C.

The R&D tax credit is directly captured by σ. A higher fixed cost of entering new
industries corresponds to a larger scale and elasticity parameters in the management cost
function (µ and ι in equation (3)). As the production function at the final stage is DRS
to total production factors, and the total factors are the product of the number of indus-
tries and factors in each industry, decreasing the number of industries raises the marginal
benefit of scaling production in each industry. This indirectly captures the decreasing
marginal cost of production in an industry after entry, as proposed in the previous lit-
erature. Finally, the difficulty of finding good ideas is captured by the step size of new
inventions (γ) and the parameters (χ and ρ) in the R&D cost function.

6 Quantitative Analysis

The main goal of this section is to quantify the relative importance of the key drivers of
the specialization patterns and their effects on economic growth. In particular, this study
focuses on the four possible explanations: increased tradability of innovations (through
both higher trading efficiency and better patent protection), the rise in the R&D tax credit
rate, changes in the production cost structure, and changes in the difficulty of finding
ideas. The quantitative analysis is undertaken in the following steps. First, the parameters
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in the model are set to fit data moments in the initial balanced growth path period, 1981-
1985. Then, the relevant parameters as analyzed in Section 5.5 are changed to make the
model fit the moments in the ending balanced growth path period, 1996-2000, with other
parameters fixed in this process. Some untargeted moments are used to check the quality
of the calibration. Finally, changes in firms’ specialization decisions and the economic
growth rate are decomposed into the contribution of each relevant explanation.

6.1 Calibration

There are eighteen parameters, {η, λ, ε, β, δ, αH, αL, χ, σ, mH, mL, ν, γ, ρ, θ, µ, ι, φ}, a transi-
tion matrix Qmm′ , and a function, X(ω), to be calibrated in the model. They are grouped
into three categories. The first category comes from a priori information, as shown in
Table 1. The capital and labor share (η and λ) are set respectively to be 0.28 and 0.57 (1/3
and 2/3 multiplied by a return to scale factor of 0.85). The profit share (ζ) is then 15%,
which is consistent with the discussion in Guner, Ventura and Xu (2008). The degree of
risk aversion for households (ε) is taken to be 2, a standard value in the literature. The
discount factor (β) is set as 0.99, such that the interest rate of the model economy is 7.5%,
a reasonable estimate for the early 1980s in the United States. The depreciation rate of
capital (δ) is chosen to be 0.07, consistent with the US National Income and Product Ac-
counts. The paper defines firms of high production ability as those at the top 10% of the
production ability distribution; firms of low production ability as the rest. This division
is to make the two types of firms respectively represent the large and small firms defined
earlier. Among all innovating firms between 1981 and 2000, around 9.1% are large firms
(firms with more than 1000 employees). 55.1% of large firms turned out to be of high pro-
duction ability, while only 5.5% of small and medium firms have high production ability.
Therefore, in the following analysis, firms of high and low production ability largely cor-
respond to large and small firms. The scale parameter in the R&D cost function (χ) is
normalized to be 1, which is irrelevant to the quantitative results, as the calibrated step
size of innovation (γ) will adjust to any changes in χ. The R&D tax credit rate (σ) is set at
the effective level before 1980 as calculated by Akcigit, Ates and Impullitti (2018).

Parameters in the second category are pinned down by direct estimation from the
data, as presented in Table 2. The sample used for estimation is all the firms in the Lon-
gitudinal Business Database (LBD) that have ever been granted a patent recorded in the
Patent Data Project (PDP). Therefore, it is all the innovating firms. The sample spans
from 1981 to 2000. Estimation of firms’ production ability is based upon the solution of
employment decisions in the model, l(m, z′) = mz′[(αhmh + αlml)z′]−1. By taking the nat-
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Table 1: Parameter Values from a Priori Information

Parameter Description Value Identification
η Capital Share 0.25 Guner et al. (2008)
λ Labor Share 0.60 Guner et al. (2008)
ε CRRA Parameter 2.00 Standard
β Discount Factor 0.99 Interest Rate
δ Depreciation Rate 0.07 NIPA
αH Share of High Type 0.10 Imposed
αL Share of Low Type 0.90 Imposed
χ R&D Cost, Scale 1.00 Normalization
σ R&D Tax Credit Rate 0.05 Akcigit et al. (2018)

Notes: The division of firm types (αH , αL) to a large extent overlaps the division of firm size in Figure 2.

Table 2: Parameter Values from Direct Estimations

Parameter Description Value Identification
mH Prod. Ability of High Type 24.43 Regression
mL Prod. Ability of Low Type 0.70 Regression

Qmm′ Type Transition Matrix
[

0.872 0.128
0.017 0.983

]
MLE

ν Matching Function, Exponent 0.70 Regression
X(ω) Within-scope Probability e−4.443 ∗ |ω|0.7643 Regression

Notes: The transition matrix reported is rounded to three decimal points to comply with the Census
disclosure requirement.

ural logarithm of both sides, it can be shown that the logarithm of a firm’s employment
equals the summation of the logarithm of its production ability, the logarithm of the in-
novation level, and aggregate factors. This study uses the accumulated citation-weighted
patent stock as a proxy for a firm’s innovation level and uses the time and industry fixed
effects as proxies for the aggregate factors. Then, the firm’s production ability is backed
out from the residual term of the regression,

ln(empijt) = β1 ln(patentstockijt)︸ ︷︷ ︸
ln(z′)

+β0 + ut + vj + residualijt︸ ︷︷ ︸
ln(m)

. (18)

The production ability of the high type (mH) and low type (mL) are respectively es-
timated by the average production ability of firms at the top 10% and bottom 90% of the
sample distribution. The transition matrix of production ability (Qmm′) is derived from a
maximum likelihood estimation.

The elasticity parameter (ν) in the matching function is estimated by running panel
regressions of the number of patent transactions on the number of potential sellers and
potential buyers in different layers of industries (i.e., different numbers of digits of the
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NAICS code). Taking the natural logarithm of both sides of the matching function derives

ln(match numjt) = α0 + νln(seller numjt) + (1− ν)ln(buyer numjt) + ut + vj + ejt,

where seller num is the number of firms whose patent has a technology class that does
not match any of the firm’s 6-digit NAICS industries. buyer sum is the number of firms
that do not have an in-scope patent.34 Whether the technology class of a patent matches
the firm’s industries is based on the concordance developed by Silverman (2002).35 The
results are shown in Table 13 in Appendix D.1. The value of ν is taken to be the average
of the estimates.

The within-scope probability function (X(ω)) is estimated as follows. Since it is op-
timal for firms to produce in industries close to its main line of business (center), this
paper assumes all firms do so and only estimates the relationship between a patent’s
within-scope probability and the number of industries of its inventor. The function form
is assumed to be X(|ω|) = ξ|ω|ψ. This paper groups firms with patents in the LBD by
the number of industries and regress the logarithm of the average fraction of patents that
match their firms’ production scope in each group on the logarithm of the industry num-
ber. ξ and ψ are estimated to be e−4.443 and 0.7643.36

The third group of parameters is disciplined by minimizing the sum of squares of the
distance between key moments in the data and the model-predicted values jointly in the
initial balanced growth path (1981-1985). The economic growth rate, after removing the
cyclical components through the HP filter, is primarily affected by the step size of growth
driven by innovations (γ). The R&D cost-to-domestic sales ratio of innovating firms with
high and low production ability are informative of both the elasticity of the R&D cost
function (1 + ρ) and the bargaining power of sellers on the patent transaction market (θ).
The average industry numbers of innovating firms with high and low production ability
are directly determined by the scale (µ) and elasticity (1 + ι) parameters in the manage-
ment cost function. They are also indirectly influenced by sellers’ bargaining power (θ).
The share of patents ever transacted is closely linked with the scale parameter (φ) in the
matching function. The estimated values of the relevant parameters are shown in Table
3. It is worth noting that both the R&D cost and management cost functions are convex,
as assumed by the model, although no restrictions are imposed in the estimation process.

34The potential buyers may also include non-innovating firms. Including them in the regression will not
change the results much.

35Silverman’s concordance links the International Patent Classification (IPC) system to the U.S. Standard
Industrial Classification (SIC) system. This study further links the SIC with the North American Industry
Classification System (NAICS).

36The full regression results are shown in Table 14 of Appendix D.2.
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Table 3: Parameter Values from the Minimum Distance Estimation

Parameter Description Value Identification
γ Step Size of Innovation 1.72 Growth Rate
1 + ρ R&D Cost Elasticity 1.79 R&D Cost/Sales
θ Bargaining Power 0.16 Ratio (H and L)
µ Management Cost, Scale 1.5E-4 Avg. Number of
1 + ι Management Cost, Elasticity 3.31 Industries (H and L)
φ Matching Function, Scale 0.19 Patent Traded Share

Notes: Parameters in this table are jointly calibrated to minimize the distance between the model and
data moments in the initial balanced growth path (1981-1985).

The model predicted moments are almost the same as in the data, as shown by Table 4,
attesting that the model fits the initial balanced growth path well.

Table 4: Model Fit for Key Moments in the Initial Balanced Growth Path

Targets Data Model
Economic Growth Rate (1981-1985) 3.05% 3.05%
R&D Cost/Sales of H Firms (1981-1985) 3.62% 3.62%
R&D Cost/Sales of L Firms (1981-1985) 2.83% 2.83%
Avg. Number of Industries of H Firms (1981-1985) 11.81 11.81
Avg. Number of Industries of L Firms (1981-1985) 1.92 1.92
The Share of Patents Transacted (1981-1985) 30.9% 30.9%

Notes: The model and data moments in the initial balanced growth path are almost the same, showing
the model fits the data well.

6.2 Recalibration to the Post-Reform Balanced Growth Path

As pointed out in Section 5.5, the set of parameters, {φ, θ, σ, µ, ι, γ, ρ}, corresponds to
the possible explanations for the specialization patterns. To match the ending balanced
growth path, this paper sets the new R&D tax credit rate as the actual effective rate, 24%,
in the 1990s. Other parameters in this set are recalibrated to make the model fit the eco-
nomic growth rate, the R&D cost-to-domestic sales ratio, the average industry numbers
of innovating firms with high and low production ability, and the fraction of patents ever
transacted in 1996-2000. The value of parameters out of this set is fixed in the recalibra-
tion process. The performance is displayed in Table 5, showing a good match between
the model and data.
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Table 5: Model Fit for Key Moments in the Ending Balanced Growth Path

Targets Data Model
Economic Growth Rate (1996-2000) 3.34% 3.34%
R&D Cost/Sales of H Firms (1996-2000) 3.15% 3.15%
R&D Cost/Sales of L Firms (1996-2000) 6.71% 6.71%
Avg. Number of Industries of H Firms (1996-2000) 6.31 6.31
Avg. Number of Industries of L Firms (1996-2000) 1.61 1.61
The Share of Patents Transacted (1996-2000) 44.1% 44.1%

Notes: The model and data moments in the ending balanced growth path are almost the same, showing
the model fits the data well.

Table 6: Model Fit for Untargeted Moments

Moments Data Model
Within-scope Prob. of H Firms (1981-1985) 6.65% 7.76%
Within-scope Prob. of L Firms (1981-1985) 2.92% 1.94%
Within-scope Prob. of H Firms (1996-2000) 3.79% 4.81%
Within-scope Prob. of L Firms (1996-2000) 2.25% 1.69%
Ratio of Bargaining Power 1.60 1.53

Notes: The model successfully captures the trend and magnitude of the within-scope probability of
innovations for the two types of firms. The ratio of bargaining power implied by the model is close to
the actual value. These moments are not targeted in calibration.

6.3 Untargeted Moments

To further check the quality of the calibration, this paper compares the model-predicted
values with the real values of some untargeted moments. First, the within-scope proba-
bilities for the two types of firms in the model (X(ωH) and X(ωL)) are compared with the
average matching rates between the firms’ industry classes and their patents’ technology
classes. As shown in Table 6, they are very close both before and after the reform. This
suggests that parameters estimated from changes in production scope and innovation
intensity successfully capture the declining matching rate between innovation and pro-
duction. Second, the ratio of the sellers’ bargaining power after the reform to the power
before the reform is compared with the ratio of (1-patent invalidation rate) after the re-
form to the counterpart before the reform.37 The underlying assumption is that nothing
else that determines the bargaining power has changed over the period. As shown in
Table 6, the ratio predicted by the model is close to the actual value.

37Section 5.5 shows a mapping between the sellers’ bargaining power and 1-patent invalidation rate.
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Table 7: Changes of Parameter Values

Old BGP New BGP Interpretation
φ 0.19 0.27 Matching efficiency increase
θ 0.16 0.22 Sellers’ bargaining power increase
µ 1.5E-4 1.7E-4 Higher costs of large scope
1 + ι 3.31 3.93 More DRS to scope
γ 1.72 1.73 Goods ideas rely more on
1 + ρ 1.79 1.56 R&D investment

Notes: This table compares the calibrated values of key parameters in the two balanced growth paths.
The last column interprets the parameter value change between the two BGPs.

6.4 Changes in Key Parameter Values

Comparison between the initial and ending values of the parameters are displayed in
Table 7. Although the direction of changes of these parameters is not restricted in the
recalibration process, it turns out to be consistent with the original predictions. There is
an increase in the matching efficiency, φ, of the patent market and the bargaining power, θ,
of patent sellers, confirming decreasing market frictions and stronger protection towards
patent holders. The scale and elasticity parameters in the management cost function (µ
and ι) are larger, implying that the cost of producing in multiple industries is higher.
The very slight change in γ shows the value of a successful R&D output remains nearly
the same, while the decrease in ρ suggests that the success rate of R&D relies more on
investment, reflecting that the generation of good ideas is more investment intensive. 38

6.5 Decomposition

To gauge the contribution of each possible explanation, this paper sets the parameters
that govern each explanation at the ending balanced-growth-path value while others at
the initial steady-state value. Hypothetical moments about specialization and economic
growth are derived in each case. Then the paper compares the hypothetical moments with
the moments in the initial balanced growth path. The difference between them measures
the effect of each mechanism. The decomposition process uses the formula,

Mi(Θ81−85, κ96−00)−Mi(Θ81−85, κ81−85)

Di,96−00 − Di,81−85
, (19)

where Mi is the ith moment in the model and Di is the corresponding value in the data.
κ is the set of key parameters that correspond to each explanation. Θ represents all pa-

38The elasticity of the R&D success rate with respect to investment can be expressed as 1
1+ρ .
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rameters in the model except for κ. This formula isolates the contributions of the key
parameters.39

Table 8 presents the decomposition results. The first row displays the direction of
changes in the data regarding the average production scope, the R&D intensity of firms
with high and low production ability, the share of patents traded, and the economic
growth rate. The direction of changes predicted jointly by higher matching efficiency
and better patent protection, is consistent with the direction of all the real changes.40

Quantitatively, the new hypothesis can jointly explain 25% of the decrease in production
scope of innovating firms; 232% of the decrease in R&D intensity for firms with high pro-
duction ability and 58% of the increase in R&D intensity for firms with low production
ability. It is responsible for the bulk of (90%) the rise in the trading share of patents and
221% of the rise in economic growth. Since the annual economic growth rate increases by
0.29 percentage points between the two periods, changes in invention tradability lead to
a 0.64 percentage points increase in growth. This study lists the respective contribution
of the matching efficiency and sellers’ bargaining power, finding that the former is the
main driving force. The R&D tax credit has little explanatory power for the specialization
patterns but significantly contributes to a higher growth rate. Most of the remaining part
of specialization is explained by the change in the production cost structure, although it
has little effect on the patent trading activities and contributes negatively to growth. In-
creased difficulty in finding good ideas contributes to a significant part of the decrease in
firms’ scope but is muted in explaining other dimensions of specialization. The subsec-
tions below will discuss the effects of each mechanism in detail.

6.5.1 Increased Tradability of Innovations

The effect of this mechanism on the specialization patterns is mostly driven by the rise
in the matching efficiency of the patent trading market. Both the buyers and sellers get
higher matching rates on the market. Higher chances of trading decrease R&D incentives
for potential buyers while increase R&D incentives for potential sellers. Since firms with
high production ability benefit more from buying patents on the market, the force that
decreases R&D intensity dominates. Firms with low production ability benefit more from
selling patents to other firms. Therefore, the force that increases R&D intensity dominates.

39Another decomposition method sets the parameters that govern each explanation at the initial
balanced-growth-path value while others at the ending steady-state value. The hypothetical moments
constructed in this way are compared with the data moments in the initial balanced growth path. The
decomposition results are similar and are available upon request.

40Starting from the second row, positive numbers mean the predicted change is consistent with the direc-
tion of the actual change; negative numbers mean otherwise.
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Table 8: Effects of Key Parameters

Prod. Scope R&D(H) R&D(L) Patent Trade Growth
Data - - + + +
Patent Market (φ, θ) 25% 232% 58% 90% 221%
Efficiency (φ) 26% 220% 15% 100% 151%
Bargaining Power (θ) -8% 11% 37% -6% 45%
Tax Credit (σ) 7% -265% 12% -8% 137%
Production Cost (µ, ι) 63% 287% 25% 3% -180%
Rare Good Ideas (γ, ρ) 43% -273% -32% 12% -27%

Notes: The first row shows the actual direction of changes in the data. In the second to seventh rows,
positive values indicate that the direction of changes due to the corresponding parameters is consistent
with the actual direction.

The effect of the matching efficiency on production scope also has two sides. On the one
hand, the trading channel makes the scope less critical in determining the value of a firm’s
innovation output, so there is a tendency to narrow the scope. On the other hand, the
scope becomes more important if the firm increases R&D intensity due to the efficiency
change. For firms with high production ability, the overall effect is unambiguous because
they decrease R&D intensity. For firms with low production ability, as it turns out, the
former force dominates. The fraction of patents traded is directly linked to the matching
efficiency, therefore, explained to a large extent.

The contribution of higher bargaining power mainly lies in the increase in the R&D
intensity of firms with low production ability. This is because higher bargaining power
increases the transaction prices of patents. A higher price raises the value of both in-
scope and out-of-scope innovation output and therefore increases R&D incentives. The
slight decrease of R&D intensity of firms with high production ability is mainly due to a
general-equilibrium effect.

Higher economic growth comes from two sources. First, fewer ideas are wasted as
out-of-scope innovations can be utilized through trade. Second, innovation activities are
reallocated to firms with a comparative advantage.

6.5.2 R&D Tax Subsidy

An increase in the R&D tax credit boosts the R&D intensity of both types of firms since the
innovation cost is lower. The effect on firms with high production ability turns out to be
more significant because these firms can better monetize innovation output through their
own production. Higher R&D intensity has a strong positive effect on economic growth.

29



6.5.3 Changes in the Production Cost Structure

Changes in the production cost structure can mainly explain the remaining part of the
specialization patterns. A higher cost of producing in multiple industries directly shrinks
firms’ production scope. Smaller production scope reduces the likelihood of matches be-
tween innovation and production, thus disincentivizing firms to do R&D. This explains
the decline in high-type firms’ R&D intensity. The slight increase in low-type firms’ R&D
intensity is mainly due to the general-equilibrium effect. This mechanism alone has min-
imal effects on patent trading activities. It negatively affects growth as mismatches be-
tween innovation and production increase, and more inventions are wasted.

6.5.4 Good Ideas are Harder to Find

As innovation becomes more investment intensive, there is a direct decrease in the incen-
tive to do R&D. Then, successful R&D output becomes scarcer and more valuable. So,
firms with higher production ability (the ones that benefit more from R&D output) invest
more in innovation. This predicts a shift of R&D activities to firms good at production,
contradictory to the trend in the 1980s and 1990s. The decrease in firms’ production scope
is mostly driven by a significant decrease in the scope of firms with low production ability.
This is because those firms sharply reduce their R&D effort and get lower benefits from
expanding production scope. The change in the R&D cost function contributes negatively
to growth as idea generation is more costly than before.

7 Extension

Besides adjusting production scope, firms may also target their innovation to their pro-
duction to improve matching between the two. In an extension shown in Appendix E,
this paper looks at changes in the targeting behaviors of firms’ R&D activities. One mea-
sure of the targeting behaviors of the innovation process is the share of basic research in
total R&D spending. Since basic research is defined as “an activity aimed at acquiring
new knowledge or understanding without specific immediate commercial application or
use,” higher basic research share implies less targeted innovation.41 This paper empiri-
cally finds that basic research’s share rose in the 1980s and 1990s, implying that R&D was
less targeted in this period. The baseline model is extended to allow firms to choose in-
novation intensity respectively in basic research and applied research, which differ in the

41This is the definition of basic research in the Survey of Industrial Research and Development (SIRD).
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likelihood that the innovation output matches the firm’s production scope. Quantitative
analysis shows that increased tradability of innovations is responsible for all (101%) of the
increase in the share of basic research. The intuition is that basic research benefits more
from patent trading as its output is harder to be utilized by the firm’s own production.

8 Empirical Analysis

This section empirically tests whether there is causality from the pro-patent reform to the
specialization patterns. The main idea is to exploit the regional and sector differences in
the exposure to policy changes and check whether they lead to different extents of the
drop in scope and reallocation of innovation and production.

8.1 Institutional Background

The US federal court system has three main layers: district courts, circuit courts, and the
Supreme Court of the United States. All patent-related cases are heard initially at one of
the ninety-four district courts across the country. If there are challenges to the decisions,
the case can be appealed to one of the circuit courts. Since the Supreme Court rarely hears
patent-related cases, the circuit courts usually have the final say on those cases.

Before 1982, twelve circuit courts divided the country into different regions. Atti-
tudes towards patents in the circuit courts had a significant discrepancy. Therefore, de-
cisions of district courts under different circuit courts varied much in the first place. The
second and fifth columns of Table 9 shows the fraction of lawsuits invalidating the in-
volved patents in district courts of different regions from 1940 to September 1982. The
legal environment towards patents was stable in this period.

In October 1982, Congress created the Court of Appeals for the Federal Circuit (CAFC).
It has nationwide jurisdiction to hear appeals involving patent laws. So, decisions of dis-
trict courts can be appealed to not only the twelve regional circuit courts but also the
CAFC. The CAFC was more positive towards patents and had a much lower invalidation
rate in its final decisions. Therefore, the decisions of district courts became lower and
more uniform across different regions in the first place, as shown in the third and sixth
columns of Table 9. Regions that had a higher patent invalidation rate before 1982 were
more strongly affected by the CAFC.42

42Although there are forum shopping behaviors, firms are more likely to bring their lawsuits to the dis-
trict court where they are located due to home-field advantage (Moore (2001)).
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Table 9: Patent Invalidation Rates in District Courts under Different Circuit Courts

Circuit Court Invalidation rate Circuit Court Invalidation rate
Before After Before After

Boston 0.64 0.18 Chicago 0.54 0.30
New York 0.58 0.28 St.Louis 0.49 0.33
Philadelphia 0.74 0.32 San Francisco 0.51 0.29
Richmond 0.47 0.26 Denver 0.27 0.22
New Orleans 0.36 0.20 Atlanta 0.41 0.28
Cincinnati 0.60 0.30 DC 0.59 −

Notes: A higher invalidate rate before the establishment of CAFC means a more negative attitude to-
wards patent holders. The circuit court of DC has too few observations after the CAFC era, so the
invalidation rate is omitted.

Precedents of court decisions in patent-related legal disputes often determine the
patentability of similar objects afterward. Genetic engineering and software are two of
the most controversial fields of patentability in the 1970s. In 1980, the Supreme Court
ruled in the case between Diamond and Chakrabarty that genetically engineered bacteria
involved in the case could be patented. This ruling was viewed as a turning point for the
biotechnology industry in the following decades. In 1981, the decision of the Supreme
Court in the dispute between Diamond and Diehr that software was not precluded from
patentability also had a profound impact on court decisions afterward. These two land-
mark cases happened just before the establishment of the CAFC, making these two used-
to-be controversial fields experience the most reduction of inconsistency among different
regions. This leads to another dimension of difference in firms’ exposure to policy shocks.

8.2 Estimation Strategy

The following Difference-in-Difference (DiD) regression explores whether regional differ-
ences in the change of patent protection led to different extents of contraction in firms’
production scope,

ln(indist) =αi + β ∗ invalc,pre ∗ postt + γXist + µt + εist, (20)

where the dependent variable, indist, is the number of 6-digit NAICS industries of the firm
i in the LBD. s is the state of its headquarters before the year of the CAFC establishment.
The headquarter is measured by the state where the firm has the most employment. t
is the year of the observation. The main explanatory variable is an interaction between
invalc,pre, the patent invalidation rate of the circuit court, c, that the state, s, belongs to
prior to the CAFC era, and a dummy variable, postt, that indicates whether the year is
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before or after the establishment of the CAFC. The control variables, Xist, include the
log of firm’s employment, the effective federal and state corporate income tax rates, and
R&D tax credit rates calculated by Wilson (2009), and the log of state-level real GDP. Firm-
fixed effects, αi, and year-fixed effects, µt, are also included in the regression to exclude
permanent cross-firm and time differences. The coefficient, β, captures the relationship
between the different changes in firms’ production scope and the different changes in
patent protection strength across regions.

Sectoral differences add another dimension of difference in the exposure to patent
protection. The following Triple-Difference (DDD) regression tests whether firms with a
higher exposure decreased production scope more,

ln(indist) =αi + β1 ∗ high treati ∗ invalc,pre ∗ postt + β2 ∗ invalc,pre ∗ postt+

β3 ∗ high treati ∗ postt + γXist + µt + εist,
(21)

where high treati is the firm’s share of employment in the NAICS code 541710 (Research
and Development in the Physical, Engineering, and Life Sciences)43 and 511210 (Software
Publishers) prior to the CAFC. The rest of the variables are the same as defined earlier.
The other interaction terms are omitted in the fixed effects. β1 captures the differential im-
pact of the change in patent protection for firms in the two most controversial industries
versus others; β2 shows whether the effect of the CAFC concentrates in the two industries
or stretches to more general industries.

To check whether regional differences in the change of patent protection resulted
in diverging trends of R&D activities by small and large firms, this paper designs the
following regression,

RD to salesist =αi + β1 ∗ smalli ∗ invalc,pre ∗ postt + β2 ∗ invalc,pre ∗ postt+

β3 ∗ smalli ∗ postt + γXist + µt + εist,
(22)

where RD to salesist is the the firm’s R&D expenses to domestic sales ratio, measuring
R&D intensity. smalli is a dummy variable indicating whether the firm had less than 1000
employees prior to the CAFC. The rest of the variables are the same as defined earlier.
β2 captures the impact of the change in patent protection on large firms’ R&D intensity;
β1 + β2 captures the impact on small firms.

The standard errors are clustered at the circuit court region by the post dummy level
in all specifications.

43Bioengeering is embodied in this code.
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8.3 Sample Description

The sample of the regression analysis for production scope is the innovating firms in the
LBD that existed before or in 1982, the year of the establishment of the CAFC. The sample
of the regression analysis for R&D intensity is all the firms in the SIRD that existed before
or in 1982. The requirement of existence before the reform is to avoid endogeneity issues
induced by changes in firms’ headquarters due to the policy change. To be representa-
tive for all the innovating firms, the R&D intensity regression is weighted by the sample
weight assigned to each observation in the SIRD. The sample period for all regressions
is from 1976 to 1989, 7 years before and after the reform.44 Summary statistics of the
main variables are presented in Table 19 in Appendix F.1. The number of observations
and the common control variables in the two samples (weighted for the SIRD sample) are
comparable in magnitude.

8.4 Regression Results

Table 10 displays the regression results of Equation (20) that exploits regional differ-
ences on production scope. The first two columns insert the post dummy in the regres-
sion instead of the year-fixed effects; the last two columns control the year-fixed effects.
Columns (2) and (4) control the state-level characteristics while columns (1) and (3) do
not. In all of the columns, there are negative and significant coefficients of the interac-
tion term, implying that firms located in regions with a larger change in patent protection
strength experience a larger drop in production scope.

Table 11 displays estimation of Equation (21) that includes sectoral differences. The
different controls across columns are the same as in Table 10. The negative and signif-
icant coefficient of the triple interaction term suggests that firms in the highly treated
industries (bioengineering and software) are more affected by the CAFC. The coefficient
of Invalidation Rate ∗ Post is still significantly negative, showing that the impact of the
CAFC is not limited to the two highly treated industries.

The average magnitude of the interaction term coefficient (−0.032) in Table 10 sug-
gests that the decrease in the patent invalidation rates (55% − 28%) resulted in 0.86%
decrease in firms’ production scope. The average sum of the triple and double interaction
term coefficients in Table 11 (−0.16) suggests that for firms fully exposed to the bioengi-
neering and software industries, the decrease in the patent invalidation rates (55%− 28%)

441976 is the earliest year of the LBD, so the longest period this study can explore before the establishment
of the CAFC is seven years. This study also runs the same regressions on the samples of six years and five
years before and after the reform. The results are very similar.
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Table 10: DiD Regression Results on Production Scope

Dependent Variable Ln(Number of Industries)
(1) (2) (3) (4)

Invalidation Rate*Post -0.0326 -0.0326 -0.0332 -0.0281
(0.014) (0.014) (0.014) (0.013)

Ln(Employment) 0.0888 0.0899 0.0893 0.0894
(0.007) (0.007) (0.007) (0.007)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations 268000 268000 268000 268000
R-squared 0.944 0.944 0.944 0.944

Notes: The dependent variable is the logarithm of the number of 6-digit NAICS codes owned by the
firm. The four columns have different control variables. Standard errors are clustered by circuit court
regions × the post dummy. The number of observations is rounded to the nearest 1000 to comply with
the disclosure requirement of the Census Bureau.

resulted in 4.32% decrease in firms’ production scope. Since the overall decrease of firms’
production scope is 11.8% in the period of the regression sample, the invalidation rate
decrease alone can explain 7.3% of the scope shrinkage for general firms and 36.7% for
firms in the bioengineering and software industries.

Table 12 displays estimation of Equation (22) that explores effect of the policy change
on the R&D intensity of small and large firms. The different controls across columns are
the same as in Table 10. The positive and significant coefficient of the triple interaction
term suggests that small firms increases R&D intensity relative to large firms due to the es-
tablishment of the CAFC. The coefficient of Invalidation Rate ∗ Post is negative, although
not significant, showing that the CAFC decreases the R&D intensity of large firms.

The average magnitude of the coefficient of InvalidationRate ∗ Post (−0.036) in Ta-
ble 12 suggests that the decrease in the patent invalidation rates (55% − 28%) resulted
in 0.97 percentage points decrease in large firms’ R&D intensity. The average sum of
the Small ∗ InvalidationRate ∗ Post and InvalidationRate ∗ Post coefficients in Table 12
(0.21) suggests that the decrease in the patent invalidation rates resulted in 5.67 percent-
age points increase in small firms’ R&D intensity. These numbers are comparable to the
overall changes in the large and small firms’ R&D intensity.

Placebo tests show there are no pre-trends for the observed regional and sectoral
differences. Appendix F.2 describes details about the tests.
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Table 11: DDD Regression Results on Production Scope

Dependent Variable Ln(Number of Industries)
(1) (2) (3) (4)

High treat*Invalidation Rate*Post -0.134 -0.132 -0.132 -0.128
(0.069) (0.069) (0.069) (0.069)

Invalidation Rate*Post -0.0301 -0.0301 -0.0307 -0.0257
(0.014) (0.014) (0.014) (0.013)

High treat*Post 0.0840 0.0833 0.0833 0.0829
(0.040) (0.041) (0.040) (0.040)

Ln(Employment) 0.0888 0.0899 0.0893 0.0894
(0.007) (0.007) (0.007) (0.007)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations 268000 268000 268000 268000
R-squared 0.944 0.944 0.944 0.944

Notes: The dependent variable is the logarithm of the number of 6-digit NAICS codes owned by the
firm. The four columns have different control variables. Standard errors are clustered by circuit court
regions × the post dummy. The number of observations is rounded to the nearest 1000 to comply with
the disclosure requirement of the Census Bureau.

9 Conclusion

This study finds novel patterns of firm specialization in the 1980s and 1990s in the US Cen-
sus data. (i) Firms, especially innovating ones, narrowed down their production scope.
(ii) Innovation activities shifted from large to small firms.

A new hypothesis is proposed to explain the observed phenomena—higher patent
trading efficiency and better patent protection increased the tradability of intellectual
properties, making production scope less critical in determining the value of a firm’s
innovations. Three major conclusions can be drawn in this paper. First, increased trad-
ability of innovations accounts for 25% of the production scope decrease and 58% of the
reallocation of innovation activities. Second, increased tradability of innovations leads to
a 0.64 percent point increase in growth rates. Third, there is evidence of causality from
the pro-patent reforms to the two specialization patterns.

This paper also finds in the data that the R&D activities of US firms became less
targeted in the 1980s and 1990s. The baseline model is then extended to include two types
of research that differ in the probability of matching the inventor’s production scope.
Quantitative results of the extended model show that increased tradability of innovations
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Table 12: DDD Regression Results on R&D Intensity

Dependent Variable R&D Expenses to Domestic Sales Ratio
(1) (2) (3) (4)

Small*Invalidation Rate*Post 0.266 0.223 0.267 0.223
(0.091) (0.105) (0.093) (0.105)

Invalidation Rate*Post -0.0456 -0.0215 -0.0544 -0.0215
(0.036) (0.055) (0.035) (0.055)

Small*Post -0.177 -0.111 -0.136 -0.111
(0.057) (0.066) (0.058) (0.066)

Ln(Employment) -0.0049 -0.00189 -0.00121 -0.00189
(0.024) (0.022) (0.022) (0.022)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations (Weighted) 220000 220000 220000 220000
R-squared 0.719 0.72 0.72 0.72

Notes: The dependent variable is the firm’s R&D-expenses-to-domestic-sales ratio. The four columns
have different control variables. Standard errors are clustered by circuit court regions × the post
dummy. The number of observations is rounded to the nearest 1000 to comply with the disclosure
requirement of the Census Bureau.

can explain 101% of the decrease in the R&D targeting behavior.
Using the regional and sectoral differences in the exposure to patent policy changes

in the early 1980s, this paper provides empirical support for causality from the pro-patent
reform to contraction in firms’ production scope and the shift of innovation activities.

The findings of this paper suggest that innovation and production become more sep-
arate when patent trade is more prevalent. A potential extension is to allow firms to
endogenously choose their production ability at some costs. Mirroring the result that
firms with high production ability choose to do less innovation, it is predicted that firms
with high innovation levels will spend fewer resources improving their production abil-
ity. This may provide a new explanation for the phenomenon found in Pugsley, Sedlacek
and Sterk (2019) that high-growth startups (”gazelles”) have grown less rapidly in size
since the mid-1980s.

An important policy implication of this paper is that stronger intellectual property
rights protection has an impact that is often neglected—reducing mismatches between
innovation and production through a market approach. It spurs specialization and pro-
vides a strong engine for economic growth. Specialization resulting from patent trade
should be considered when optimizing the IPR protection policies.
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For Online Publication

A More Empirical Evidence

A.1 Production Scope with Firm Size Controlled

To control the firm size, a regression of firms’ production scope is run each year on a
dummy variable of whether the firm is innovating or not, employment, and their inter-
action. Then the predicted production scope of innovating and other firms is calculated
based on the estimated parameters when fixing the employment level at 20 and 1000, re-
spectively. As shown in the two panels of Figure 5, at both employment levels, innovating
firms shrank production scope more than other firms.

(a) 20 Employees (b) 1000 Employees

Figure 5: Trends of Production Scope with Fixed Firm Size
Notes: This figure shows the average number of 6-digit NAICS codes owned by US firms when control-
ling firm size. This is created by running regressions of firms’ production scope each year on a dummy
variable of whether the firm is innovating or not, employment, and their interaction. Panel (a) shows
predictions of a firm’s production scope if the firm has 20 employees. Panel (b) shows predictions of a
firm’s production scope if the firm has 1000 employees.
Sources: Longitudinal Business Database (LBD); the Patent Data Project (PDP).

A.2 Another Measure of Innovation Intensity

Figure 6 shows the (citation-weighted) number of patents per employee for small/medium
firms and large firms. They both increased starting from the early 1980s, but the increase
was more salient for small/medium firms. The rising trends are partly due to the ex-
tension of patentability, but the different slopes of them reflect that small/medium firms
engaged in more R&D activities.
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Figure 6: Patents per Employee by Size
Notes: This figure shows the ratio of the number of citation-weighted patents to the number of employ-
ees for large and small/medium firms with patents in the LBD. This provides another measure of R&D
intensity by firm size that avoids the misreporting issue.
Sources: Longitudinal Business Database (LBD); the Patent Data Project (PDP).

A.3 Patent Invalidation Rates

As shown by 7a, the invalidation rates of patents in legal disputes experienced a sharp
decrease after the establishment of the CAFC in 1982.

(a) Patent Invalidation Rates in Lawsuits (b) Patent Trade by Gaps from the Grant Year
Notes: Panel (a) displays the average patent invalidation rates of the regional circuit courts by year.
The red vertical line indicates the year of CAFC establishment. Panel (b) displays the share of patents
traded at different time windows.
Sources: Henry and Turner (2006); Patent Assignment Dataset (PAD).

A.4 Timing of Patent Trade

Figure 7b shows the timing of the patent trade. The blue, red, green, and yellow curves
display, respectively the fraction of patents (citation-weighted) traded within four years
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before issuance, one to five years after issuance, six to ten years after issuance, and more
than ten years after issuance. It should be noted that the descending trend of the yellow
curve after 2000 is due to the right censoring issue. A comparison of the four curves
suggests that most of the increase happened between 1980 and 2000, consistent with the
timing of the pro-patent reforms; earlier transactions occurred more often, evidence that
the patent market has become more efficient.

B Proof of the Theory

B.1 Proof of Proposition 5.1

Proof. Denote the distribution of production ability and innovation levels among all firms
at the end of the current period as F(m, z′; z). Equation (10) implies that the labor market
clearing condition can be written as

(
η

r̃
)

η
ζ (

λ

w
)1+ λ

ζ

∫ ∫
mz′dF(m, z′; z) = 1. (23)

Equation (23) can be transformed to

(
η

r̃
)

η
ζ (

λ

w
)1+ λ

ζ (αHmHz′H + αLmLz′L) = 1, (24)

where z′H and z′L are, respectively, the average innovation level of firms with high and
low production ability at the end of this period. They are defined by

z′H =
1

αH

∫
z′dF(mH, z′; z); (25)

z′L =
1

αL

∫
z′dF(mL, z′; z). (26)

The economy-wide average innovation level at the end of the previous period, z, can then
be expressed as

z =
αHmHzH + αLmLzL

αHmH + αLmL
. (27)
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Assume z grows at a constant rate, g, across periods. Then, the labor market clearing
condition can be further transformed to

(
η

r̃
)

η
ζ (

λ

w
)1+ λ

ζ (αHmH + αLmL)gz = 1. (28)

The wage rate, w, can then be expressed as

w = λ(
η

r̃
)

η
ζ+λ [(αHmH + αLmL)gz]

ζ
ζ+λ , (29)

which implies that it grows at a rate of g
ζ

ζ+λ . The total output and capital of the economy

also grow at g
ζ

ζ+λ , since

∫ ∫
Y(m, z′; z)dF(m, z′; z) = (

η

r̃
)

η
ζ (

λ

w
)

λ
ζ (αHmH + αLmL)gz; (30)∫ ∫

K(m, z′; z)dF(m, z′; z) = (
η

r̃
)1+ η

ζ (
λ

w
)

λ
ζ (αHmH + αLmL)gz, (31)

where w grows at the rate g
ζ

ζ+λ , z grows at the rate, g, and all the other parameters are
fixed.

A firm with production ability m and an innovation level z at the beginning of the
period may or may not update its innovation level through R&D or trade. If it updates
the innovation level, the profit of the current period is

π(m, z′; z) = ζm(
η

r̃
)

η
ζ (

λ

w
)

λ
ζ (z + γz). (32)

Otherwise, the profit is

π(m, z; z) = ζm(
η

r̃
)

η
ζ (

λ

w
)

λ
ζ z. (33)

Denote z̃ = z

z
λ

ζ+λ

, z̃ = z

z
λ

ζ+λ

. Plugging the expression of w in (29) into (32) and (33) derives

π(m, z′; z) = Am(z̃ + γz̃), π(m, z; z) = Amz̃, (34)

where A = ζ( η
r̃ )

η
ζ+λ [(αHmH + αLmL)g]−

λ
ζ+λ . So, the difference of firm profit with the

updated and non-updated innovation levels is Amγz̃, which is not a function of the firm’s
current innovation level, z.

Next, a guess-and-verify procedure is used to derive the value of the firm at the
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beginning of the period, V(m, z; z). Conjecture

V(m, z; z) = v1(m)z̃ + v2(m)z̃. (35)

Then, the surplus of the firm if being a buyer in the Nash bargaining problem (13) is

[π(m, z′; z) + rEV(m′, z′; z′)]− [π(m, z; z) + rEV(m′, z; z′)] = [Am + rE(v1(m′))g−
λ

ζ+λ ]γz̃,
(36)

which is not a function of the firm’s innovation level, z, either. Denote this surplus as
∆ψ(m; z) and use B(m) as an abbreviation for [Am + rE(v1(m′))g−

λ
ζ+λ ]. We have

∆ψ(m; z) = B(m)γz̃. (37)

The price this firm has to pay to buy a patent can be expressed as (Point 9)

pb(m; z) = θ∆ψ(m; z) = θB(m)γz̃, (38)

i.e., the buying price is the bargaining power of the seller times the trading surplus of the
buyer. It only depends on the production ability of the buyer and the aggregate innova-
tion level. The expected price a firm gets if selling a patent on the market depends on the
shares of searching effort from high-type buyers and low-type buyers. Since we focus on
a symmetric equilibrium, the shares are constants on any arc of the technology circle, i.e.,

nbH(d)
nb(d)

=
nbH
nb

, ∀d, (39)

where nbH
nb

and nbL
nb

are the share of potential buyers with high and low production ability.
The expected selling price can be expressed as

ps = θ
∫ ∫

∆ψ(m; z)dG(m, z; z) = [
nbH
nb

B(mH) +
nbL
nb

B(mL)]θγz̃. (40)

To solve firms’ optimal innovation intensity, it is necessary to derive the expressions
of s and b(ω) in problem (12). Consider any arc on the circle. Without loss of generality,
Figure 7 shows an arc d with length |d|. The total search effort by potential sellers on
d equals to the number of potential sellers that have a patent located inside d. On a
symmetric balanced growth path, sellers’ patents are evenly distributed on the circle. So,
ns(d) = |d|ns.
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Figure 7: Schematic Diagram

Potential buyers that spend effort searching on d may have various scope. I classify
these buyers according to the length of their scope. For potential buyers with scope length
equal to |ω|, their locations may span from 1 to 3. Buyers at location 1 or 3 spend measure
0 of search effort on d, while buyers at location 2 spend measure |d||ω| of search effort on d.
The total measure of search effort on d conditional on the buyer having |ω| as the scope
length is an integral of effort from location 1 to 3, which can be expressed as

∫ |d|
0

i
|ω|di +

∫ |ω|
|d|

|d|
|ω|di +

∫ |d|+|ω|
|ω|

|d|+ |ω| − i
|ω| di = |d|, ∀|ω|, |d|. (41)

This conditional measure does not rely on the scope length. So, the unconditional total
measure of search effort on d is d times the total number of potential buyers, i.e., nb(d) =
|d|nb.
The number of matches on the arc d equals to

M(s(d), b(d)) = |d|φnν
s n1−ν

b , ∀d. (42)

Potential buyers with scope ω will only search within its scope, so, the probability of
meeting a seller is

b(ω) =
M(ns(ω), nb(ω))

nb(ω)
= φ

(ns

nb

)ν ≡ b, (43)

which is a constant and does not depend on the scope of the buyer. The probability for a
potential seller to meet a buyer is

s = lim
|d0|→0

M(ns(d0), nb(d0))

ns(d0)
= φ

(nb
ns

)1−ν, (44)

which is also a constant (Point 3). Plugging the matching probabilities b(ω) and s into
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problem (12) derives the solution of firms’ R&D success rate.

i∗(ω, m) ={ γ

(1− σ)χ
[X(ω)(1− (1− θ)b)B(m)

+ (1− X(ω))sθ(σHB(mH) + σLB(mL))]}
1
ρ ,

(45)

which only depends on the firm’s production scope and production ability (Point 5).
The firm’s value at the innovation stage, D(ω, m, z; z) is then

D(ω, m, z; z) = B(m)z̃ + [
(1− σ)ρ

1 + ρ
χi∗(ω, m)1+ρ + b(1− θ)B(m)γ + rEv2(m′)g

ζ
ζ+λ ]z̃.

(46)

D(ω, m, z; z) is larger when ω is closer to the center for any given length of ω if the fol-
lowing condition is fulfilled,

(1− (1− θ)b)B(m)− sθ(σHB(mH) + σLB(mL)) > 0, (47)

i.e., the value of a within-scope patent is larger than an out-of-scope patent.45 Firms
will always choose to span symmetrically around their center. The length of the firm’s
production scope (|ω|) is determined by problem (15),

i∗(ω, m)X′(|ω|)[(1− (1− θ)b)B(m)− sθ(σHB(mH) + σLB(mL))]γ = µ|ω|ι. (48)

The solution to (48) is only a function of m, i.e, |ω∗(m, z; z)| = Ω(m) (Point 4).
Plugging in the solution of i∗(ω, m) and ω∗(m, z; z) into the government budget con-

straint derives (Point 6)

T = σ(αHCi(i(Ω(mH), mH)) + αLCi(i(Ω(mL), mL))). (49)

The number of buyers of each type, (nbH, nbL), are the share of firms in each type that
do not get an innovation output matching their production scope. The total number of
buyers is the summation of the buyers of the two types. They are expressed as (Point 8)

nbH = αH(1− i∗(ω∗(mH), mH)X(ω∗(mH))); (50)

nbL = αH(1− i∗(ω∗(mL), mL)X(ω∗(mL))); (51)

bb = nbH + nbL. (52)

45The calibrated model confirms that this condition is satisfied.
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The number of sellers is the share of firms that successfully innovate, but the output falls
outside of their own production scope,

ns = αHi∗(ω∗(mH), mH)(1− X(ω∗(mH))) + αLi∗(ω∗(mL), mL)(1− X(ω∗(mL))). (53)

The value of the firm at the beginning of the period, V(m, z; z), can be expressed as

V(m, z; z) = D(Ω(m), m, z; z)− Ce(ω; z) ≡ v1(m)z̃ + v2(m)z̃, (54)

where

v1(m) = B(m); (55)

v2(m) = [
ρ

1 + ρ
χi∗(Ω(m), m)1+ρ + b(1− θ)B(m)γ + rEv2(m′)g

ζ
ζ+λ − µ|Ω(m)|1+ι

1 + ι
]. (56)

Since both v1(m) and v2(m) are only functions of m, the value function, V(m, z; z), is
consistent with the conjecture (Point 7).

The representative household’s problem can be expressed as

W(a; z) = max
c,a′

u(c) + βW(a′; z)

s.t., c + a′ =
1
r

a + Π,

where a is the asset holding of the household in the current period; 1
r is the capital return

rate, where its relationship with the capital cost, r̃, is r̃ = 1
r − 1 + δ; Π is the total profit

of firms in this economy. Because all firms are owned by the household, the total profit is
a part of the household’s income. Solving the problem derives the following relationship
on consumption across periods,

c′

c
= (

β

r
)

1
ε . (57)

Since consumption grows at the same rate, g
ζ

ζ+λ , as the total output, and the interest rate
is fixed over time, we have (Point 2)

r =
β

gεζ/(ζ+λ)
. (58)

The growth rate of the employment-weighted average innovation level of the econ-
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omy, g, can be expressed by the following equation according to the definition,

g ≡ αHmHzH
′ + αLmLzL

′

αHmHzH + αLmLzL
. (59)

In the balanced growth path equilibrium, the ratio of the innovation level of firms with
high production ability to that of the firms with low production ability should be stable
across periods, i.e.,

zH
′

zL′
=

zH

zL
≡ o, (60)

where o is a constant. Then (59) implies that

g =
zH
′

zH
=

zL
′

zL
. (61)

Equations in (61) show that the growth rate in the innovation level of the aggregate econ-
omy is the same as the growth rate of firms across types.

The change in the average innovation levels of high- and low-type firms consists of
two components.
(i) There is a reshuffling of firms at the beginning of each period because of the transition
of production ability.
(ii) Firms update their innovation level through R&D or trade of patents.

The average innovation level of each type of firms after the transition of production
ability but before the innovation stage in this period can be expressed as follows,

zHr ≡
αHqHHzH + αLqLHzL

αHqHH + αLqLH
; (62)

zLr ≡
αLqLLzL + αHqHLzH

αLqLL + αHqHL
. (63)

Firms update their innovation level in the R&D or trading process following the law of
motion in (1). So, the growth rate of each type of firms in this process (denoted as gH and
gL) depends on the share of them that successfully create an invention that matches their
scope and the share that successfully buy a patent on the market.

gH ≡
zH
′

zHr
= 1 + [i∗(ω∗(mH), mH)X(ω∗(mH))

+ (1− i∗(ω∗(mH), mH)X(ω∗(mH))mb)]γ
z

zHr
;

(64)
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gL ≡
zL
′

zLr
= 1 + [i∗(ω∗(mL), mL)X(ω∗(mL))

+ (1− i∗(ω∗(mL), mL)X(ω∗(mL))mb)]γ
z

zLr
.

(65)

Using the relationship zH
′ = gHzHr and plugging equations (60), (62), (63), (64) and (65)

into the first equation in (61) derive the solutions for g and o through the following system
of equations,

g =
gH(αHqHH + αLqLH

1
o )

αHqHH + αLqLH
; (66)

o =
gH(αHqHHo + αLqLH)

αHqHH + αLqLH

αLqLL + αHqHL

gL(αLqLL + αHqHLo)
. (67)

Since all of the other variables and parameters are fixed in the equation system, the solu-
tions of g and o are indeed both constants (Point 1).

C Partial Equilibrium Analysis

How do the two parameters related to the new hypothesis, matching efficiency (φ) and
sellers’ bargaining power (θ), affect firms’ R&D intensity and production scope? Partial
equilibrium analysis of the model sheds light on the directions and channels.

C.1 Impacts of the Matching Efficiency

According to the model solution (see proof of Proposition 5.1 in Appendix B.1), the suc-
cess rate of innovation given production scope can be expressed as

i∗(ω, m) ={ γ

(1− σ)χ
[X(|ω|) (1− (1− θ)b)B(m)︸ ︷︷ ︸

−

+ (1− X(|ω|)) sθ(σHB(mH) + σLB(mL))︸ ︷︷ ︸
+

]}
1
ρ .

(68)

where B(.) is a function of production ability with constants and aggregate variables. An
increase in the matching efficiency (φ) increases the matching rate of both potential buy-
ers (b) and potential sellers (s). Easier trading of patents for buyers decreases firms’ R&D
intensity as they can rely more upon other firms to do R&D (the first term in Equation
(68)). On the other hand, firms can better monetize their innovation output when it falls
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outside of their own scope and therefore have a stronger incentive to do R&D (the sec-
ond term in Equation (68)). The final direction of the effect will depend on which force
dominates.

Firms’ production scope is determined by the following equation,

X′(|ω|) i∗(ω, m)︸ ︷︷ ︸
+/−

[(1− (1− θ)b)B(m)− sθ(σHB(mH) + σLB(mL))︸ ︷︷ ︸
−

]γ = µ|ω|ι. (69)

The right-hand side is the marginal cost of production scope, which is not affected by
the efficiency change. The left-hand side is the marginal benefit of production scope,
which is a product of the marginal within-scope probability, the R&D success rate, and the
difference in the values between within-scope and out-of-scope successful R&D output.
On the one hand, an increase in φ has a direct negative effect through rises in b and s,
capturing that easier patent trading makes scope less relevant in determining the value
of a firm’s successful invention (the second term in Equation (69)). On the other hand,
φ also indirectly affects the marginal benefit by changing the success rate of innovation.
The direction of this indirect effect is ambiguous according to the discussion on R&D
intensity (the first term in Equation (69). So, the overall effect of the market efficiency on
production scope is ambiguous but is positive only if there is a large increase in the R&D
intensity.

C.2 Impacts of Sellers’ Bargaining Power

Unlike the matching efficiency, an increase in sellers’ bargaining power benefits the seller
at the cost of the buyer. Higher bargaining power of the seller increases the value of in-
scope innovation output (the first term in Equation (70)) because it becomes more costly
to buy patents from other firms. At the same time, it also increases the value of out-of-
scope innovation output (the second term in Equation (70)) because it is more rewarding
to sell patents to other firms. In both cases, firms are more encouraged to do R&D.

i∗(ω, m) ={ γ

(1− σ)χ
[X(|ω|) (1− (1− θ)b)B(m)︸ ︷︷ ︸

+

+ (1− X(|ω|)) sθ(σHB(mH) + σLB(mL))︸ ︷︷ ︸
+

]}
1
ρ

(70)

Higher bargaining power of sellers leads to higher transaction prices of patents,
which has an ambiguous direct effect on the production scope (the second term in Equa-
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Table 13: Estimation of the Elasticity in the Matching Function

Ln(Number of Matches)
(1) (2) (3) (4) (5) (6)

Raw Citation-Weighted
Ln(Num. of Sellers) 0.598 0.693 0.780 0.604 0.694 0.821

(0.006) (0.012) (0.049) (0.006) (0.012) (0.050)
Ln(Num. of Buyers) 0.0713 0.105 0.291 0.0698 0.102 0.222

(0.008) (0.018) (0.089) (0.008) (0.018) (0.090)
Observations 20000 5700 500 20000 5700 500
R-squared 0.873 0.936 0.984 0.871 0.935 0.983

Notes: The dependent variable is the logarithm of the number of matches at different level of sectors.
The numbers are at the 6-digit NAICS code level in columns (1) and (4); at the 4-digit NAICS code level
in columns (2) and (5); at the 2-digit NAICS code level in columns (3) and (6). Columns (1)-(3) use raw
numbers, while columns(4)-(6) use patent citation-weighted numbers. The number of observations is
rounded to the nearest 100 to comply with the disclosure requirement of the Census Bureau.

tion (71)). On the one hand, firms want to increase the likelihood that their innovation
output matches their production as buying patents is expensive. On the other hand, hav-
ing a smaller scope is beneficial as out-of-scope innovation output can be sold at a higher
price. As for the indirect effect, the increase in the R&D success rate due to higher bar-
gaining power of the seller raises the benefit of having a larger scope (the first term in
Equation (71)). The overall effect is ambiguous, depending on which force dominates.

X′(|ω|) i∗(ω, m)︸ ︷︷ ︸
+

[(1− (1− θ)b)B(m)− sθ(σHB(mH) + σLB(mL))︸ ︷︷ ︸
+/−

]γ = µ|ω|ι (71)

D Calibration

D.1 Estimation of the Matching Elasticity

Table 13 displays the estimation results of the elasticity in the matching function of the
patent trading market. The first three columns use raw numbers, while the last three
columns use patent citation-weighted numbers. The numbers are summed at the 6-digit
NAICS code level in columns (1) and (4); at the 4-digit NAICS code level in columns (2)
and (5); at the 2-digit NAICS code level in columns (3) and (6). In most columns, the
summation of the two coefficients is not far from 1, suggesting that the matching function
is close to being constant-return-to-scale. The coefficient of the number of sellers, which
corresponds to the matching elasticity(ν), is in the range of 0.598-0.821. The calibration
then sets the value of ν as 0.70.
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Table 14: Relationship between the Within-Scope Probability and the Number of Indus-
tries

VARIABLE Log(Within-Scope Probability)
Ln(Num. of Industries) 0.7643

(0.0134)
Constant -4.443

(0.0370)
Observations 150
R-squared 0.9547

Notes: Firms are grouped by the number of 6-digit NAICS codes they have. The dependent variable is
the average likelihood that firms’ patents match their production in each group. The independent vari-
able is the logarithm of the number of 6-digit NAICS codes in each group. The number of observations
is rounded to the nearest 50 to comply with the disclosure requirement of the Census Bureau.

D.2 Estimation of the Within-scope Probability Function

Table 14 shows the estimation of the within-scope probability function (X(ω)). To avoid
disclosure of the information of specific firms, firms are grouped by the number of 6-digit
NAICS codes they have. Then the average likelihood that firms’ patents match their pro-
duction is calculated for each group. Then, X(ω) is estimated by running regressions of
the likelihood on the number of industries. The high R-squared confirms that the function
form assumed in the model can capture the actual relationship.

E Discussion and Extension

Quantification of the baseline model shows that increased tradability of innovations can
explain a sizable share of the decrease in production scope and the reallocation of R&D
activities. However, this new hypothesis may be subject to several challenges. First, the
direction of causality is not clear. It is possible that the more vibrant patent trading ac-
tivities are the result of narrower production scope of firms, i.e., firms produce in fewer
industries due to changes in the cost structure and then have to depend on the market for
monetizing innovation as it becomes harder to match innovation output with their own
production. Second, the potential mismatch between innovation output and production
may not play an important role. Intellectual products may be similar to other goods in
the sense that the inventing process requires ingredients from other intellectual proper-
ties. Alleviation of the incomplete contract problem in the ingredient trading process may
also lead to more patent transactions and shrinkage in production scope.
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To check whether the new hypothesis holds in front of these challenges, this paper
looks at changes in the targeting behaviors of firms’ R&D activities. If the reverse causal-
ity is true, it should be predicted that R&D becomes more targeted as the firm spans
fewer industries. If there is no mismatch between innovation and production, but only
the incomplete contract problem in the ingredient trading process for new inventions, the
targeting behaviors of innovation will increase with patent trade since firms no longer
need to invent every ingredient. On the contrary, the new hypothesis in this study pre-
dicts the R&D activities to be less targeted, as the type of R&D that is less likely to match
the firm’s own production benefits more from the trade of intellectual properties.

E.1 Data Patterns

The targeting behavior of the innovation process can be measured by the expense shares
of different R&D types—basic research, applied research, and development. They differ
in the probability of being applied to a specific production process.46 This study uses the
ratio of basic research to basic plus applied research expenses (the red curve) and the ratio
of basic research to total R&D expenses (the blue curve) as proxies for firms’ targeting
behaviors in R&D. A higher share implies less targeting and broader R&D scope. Figure
8 shows the two ratios over the years.47 They both picked up at the beginning of the 1980s,
and the rising trends continued in the following two decades—the same period when the
patent market grew. The pattern of widening R&D scope in the 1980s and 1990s is also
supported by Akcigit and Ates (2019), in which the authors use the average length of
patent claims as a measurement of the R&D scope. This pattern suggests that the reverse
causality and the ingredient trading theory are insufficient to address the newly found
specialization wave.

E.2 Model Extension

The baseline model is extended to study the impact of the new hypothesis on firms’ tar-
geting behaviors in the innovation process. Now, firms choose the success rates (equiv-
alent to expense) of two types of research at the innovation stage—(a)pplied and (b)asic

46In the Survey of Industrial Research and Development (SIRD), basic research is defined as ”the activity
aimed at acquiring new knowledge or understanding without specific immediate commercial application
or use;” applied research is ”the activity aimed at solving a specific problem or meeting a specific commer-
cial objective;” development is ”the systematic use of research and practical experience to produce new or
significantly improved goods, services, or processes.” Therefore, basic research has the broadest targets.

47Only data before 1998 is shown because statistics for 1998 and later years are not directly comparable
to statistics for 1997 and earlier years, according to the statement made by the SIRD.
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Figure 8: Share of Research Spending on Basic Research
Notes: This figure shows the ratio of basic research to basic plus applied research expenses (the red
curve) and the ratio of basic research to total R&D expenses (the blue curve).
Sources: Survey of Industrial Research and Development (SIRD).

research. The two types of research differ in three dimensions: (i) the scale and elasticity
parameters in the R&D cost function. (i.e., χb 6= χa, ρb 6= ρa), (ii) the probability of the
innovation output falling inside the firm’s own production scope (i.e., Xb(.) 6= Xa(.)), and
(iii) the step size of successful inventions coming from basic research and from applied
research (i.e., γb 6= γa). Each firm is endowed with two units of search effort—one for
basic research output and the other for applied research output. The innovation level of
a firm is updated in each period according to the following law of motion,

z′ = z + ∑
j∈{a,b}

γj(1
j
(RD∈ω)

+B
j)z, (72)

where 1j
(RD∈ω)

is an indicator of whether the firm’s type-j (applied or basic) research
output falls inside its production scope. Bj is an indicator of whether the firm can buy a
type-j (applied or basic) patent that matches its scope.

The new timeline is shown as follows.
m, z

Choose ω R&D with ia, ib

1(RDa∈ω), 1(RDb∈ω)

Search ideas

z′ realizes

Production

The following proposition holds. Characterization and proof of Proposition E.1 are
presented in Appendix E.4 and E.5.

Proposition E.1 (Symmetric Balanced Growth Path). There exists a symmetric balanced growth
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path in the extended model.

E.3 Quantification of the Extended Model

Table 15 presents the explanatory power of the four mechanisms in the targeting behav-
iors of innovation and the other moments shown in the baseline calibration.48 As shown
by the first column, increased tradability of innovations is responsible for all (101%) of
the increase in the share of basic research. The R&D tax credit also contributes to part
of the increase. In contrast, changes in production cost structure make innovation more
targeted. The reason is that as firms span fewer industries due to higher fixed costs, they
also narrow R&D scope to improve matching between innovation and production. The
increased difficulty of finding good ideas also leads to a contraction in R&D scope. The
impacts of the mechanisms on other moments are very similar to the results in the base-
line model, confirming the robustness of the previous conclusions.

Table 15: Effects of Key Parameters

Basic Prod. R&D R&D Patent Growth
Research Scope (H) (L) Trade

Data + - - + + +
Patent Market (φ, θ) 101% 29% 205% 55% 93% 227%
Efficiency (φ) 26% 29% 194% 10% 102% 149%
Bargaining Power (θ) 56% -6% 7% 39% -5% 51%
Tax Credit (σ) 32% 7% -257% 12% -6% 132%
Production Cost (µ, ι) −17% 66% 223% 20% 2% -155%
Harder Ideas ({γj, ρj}j∈{a,b}) −35% 23% -168% -17% 9% -82%

Notes: The first row shows the actual direction of changes in the data. In the second to seventh rows,
positive values indicate that the direction of changes due to the corresponding parameters is consistent
with the actual direction.

In sum, the rise in the share of basic research spending provides evidence of the
important role of potential mismatches between innovation and production in explaining
the observed specialization wave.

E.4 Characterization of Proposition E.1

There exists a symmetric balanced growth path of the form:
1. The employment-weighted growth rate of the aggregate innovation level, g, and the ratio of the
average innovation level of firms with high production ability to that of firms with low production

48The calibration process of the extended model is shown in Appendix E.6.
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ability, o, defined by,

g =

∫ ∫
m′z′′dF(m′, z′)/

∫ ∫
m′dF(m′, z′)∫ ∫

mz′dF(m, z)/
∫ ∫

mdF(m, z)
; o =

∫
z′dF(m, z)|m=mH∫
z′dF(m, z)|m=mL

,

are constants.
2. The interest factor r = β/gεζ/(ζ+λ); the rental rate on capital r̃ = gεζ/(ζ+λ)/β− 1 + δ.
3. The odds of a successful match for a potential buyer, bj(ω), and for a potential seller, sj, on the
market of each type (basic or applied) of patents, only depend on the total number of patent buyers

and sellers on that market, i.e., bj(ω) = φ( nj
s

nj
b

)ν, sj = φ(
nj

b

nj
s
)1−ν, where j ∈ {a, b}.

4. The production scope of each firm spans symmetrically around the center, and the length of the
scope depends only on the production ability of the firm, i.e., |ω(m, z; z)| = Ω(m).
5. The success rates of applied and basic research do not depend on the firm’s innovation level, z,
or the economy-wide innovation level, z, i.e., ij(ω, m, z; z) = ij(ω, m), j ∈ {a, b}.
6. The government budget constraint is,

T = σ ∑
j∈{a,b}

(αHCij(ij(Ω(mH), mH)) + αLCij(ij(Ω(mL), mL))).

7. The value function V(m, z; z) is linear in z̃ and z̃, i.e., V(m, z; z) = v1(m)z̃ + v2(m)z̃, where
z̃ = z/zλ/(ζ+λ), z̃ = zζ/(ζ+λ).
8. The number of buyers of both types (nj

bH, nj
bL) and the number of sellers (nj

s) for j (j ∈ {a, b})
type of patents are

nj
bH = αH(1− ij∗(ω∗(mH), mH)X j(ω∗(mH))), nj

bL = αH(1− ij∗(ω∗(mL), mL)X j(ω∗(mL)));

nj
s = αHij∗(ω∗(mH), mH)(1− X j(ω∗(mH))) + αLij∗(ω∗(mL), mL)(1− X j(ω∗(mL))).

9. The buying price and the expected selling price of a j-type (j ∈ {a, b}) patent is

pj
b(m, z; z) = θ(Am +

r
gλ/(λ+ζ)

E[v1(m′)|m])γjz̃;

ps(z) =
nj

bH

nj
b

pj
b(mH, z; z) +

nj
bL

nj
b

pj
b(mL, z; z),

where A is a constant.
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E.5 Proof of Proposition E.1

Proof. The proof is very similar to that of Proposition 5.1. One difference is that the profit
of each type of firms now have four possible cases. (i) The firm gets both applied and
basic R&D output (either through own innovation or purchasing them from the market).
The profit in this case is π(m, zab; z) = Am(z̃ + γaz̃ + γbz̃). (ii) The firm gets only applied
R&D output. The profit is π(m, za; z) = Am(z̃ + γaz̃). (iii) The firm gets only basic R&D
output. The profit is π(m, zb; z) = Am(z̃ + γbz̃). (iv). The firm gets neither R&D output.
The profit is π(m, z; z) = Am(z̃). A = ζ( η

r̃ )
η

ζ+λ [(αHmH + αLmL)g]−
λ

ζ+λ for all the four
cases.

Then, from the Nash bargaining problem between the buyer and the seller, it can be
derived that for a j-type patent (j ∈ {a, b}), the buying price can be expressed as

pj
b(m; z) = θB(m)γjz̃, (73)

where B(m) = [Am + rE(v1(m′))g−
λ

ζ+λ ]. The selling price is then

pj
s = [

nj
bH

nj
b

B(mH) +
nj

bL

nj
b

B(mL)]θγjz̃. (74)

The optimal success rate of the j-type R&D (j ∈ {a, b}) is

ij∗(ω, m) ={ γj

(1− σ)χj [X
j(ω)(1− (1− θ)bj)B(m)

+ (1− X j(ω))sjθ(σ
j
HB(mH) + σ

j
LB(mL))]}

1
ρ ,

(75)

which also only depends on the firm’s production scope and production ability.
The length of the firm’s production scope is determined by,

∑
j∈{a,b}

ij∗(ω, m)X j′(|ω|)[(1− (1− θ)bj)B(m)− sjθ(σ
j
HB(mH) + σ

j
LB(mL))]γ

j = µ|ω|ι.

(76)

The solution to the equation above is still only a function of m.
The growth rates of each type of firms in the R&D and search and matching stages
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are respectively

gH ≡
zH
′

zHr
= 1 + ∑

j∈{a,b}
[ij∗(ω∗(mH), mH)X j(ω∗(mH))

+ (1− ij∗(ω∗(mH), mH)X j(ω∗(mH))m
j
b)]γ

j z
zHr

;
(77)

gL ≡
zL
′

zLr
= 1 + ∑

j∈{a,b}
[ij∗(ω∗(mL), mL)X j(ω∗(mL))

+ (1− ij∗(ω∗(mL), mL)X j(ω∗(mL))m
j
b)]γ

j z
zLr

.
(78)

Still, the growth rate in the social innovation level and the ratio of the innovation levels
between high- and low-type firms are constants and equal to

g =
gH(αHqHH + αLqLH

1
o )

αHqHH + αLqLH
; (79)

o =
gH(αHqHHo + αLqLH)

αHqHH + αLqLH

αLqLL + αHqHL

gL(αLqLL + αHqHLo)
. (80)

E.6 Calibration of the Extended Model

This paper calibrates the newly added parameters, {χj, ρj, γj}, and the two probability
functions, X j(.), where j is an indicator of basic or applied research, in the following way.
The ratio of the step sizes, γb

γa
, is set to be consistent with Akcigit, Hanley and Serrano-

Velarde (2021). The within-scope probability functions are estimated by the same method
as the estimation of X(.) in the baseline model, except that the regression is run on two
separate samples—patents from basic research and patents from applied research or de-
velopment in the SIRD. The scale parameter of the applied research cost function (χa) is
normalized to be 1. The scale parameter of the basic research cost function (χb), the step
size of applied research (γa), and the two elasticities (ρa, ρb) are pinned down together
with {φ, θ, µ, ι} in the calibration. Two additional moments are added—the share of basic
research expense in total R&D expense, respectively, for firms with high and low produc-
tion ability. All the other parameters are disciplined by the method used to calibrate the
baseline model, and the decomposition method is the same as before. Table 16 shows the
results. The estimated within-scope probability functions suggest that when the industry
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Table 16: Parameter Values of the Extended Model

Parameter Description Value Identification
Priori Info.
γb
γa

Step Size Ratio 1.6 Akcigit et al. (2021)
χa Applied R Cost, Scale 1 Normalization
Estimation
Xa(ω) Applied R, Within-Scope Prob. e−3.837 ∗ |ω|0.602 Regression
Xb(ω) Basic R, Within-Scope Prob. e−4.944 ∗ |ω|0.932 Regression
Model
γa Applied R Step Size 1.46 Growth Rate
χb Basic R Cost, Scale 5.33 Basic Research Share,
1 + ρa Applied R Cost, Elasticity 1.90 R&D Cost/Sales
1 + ρb Basic R Cost, Elasticity 1.29 Ratio (H and L)

Notes: The newly added parameters are calibrated by a priori information, direct estimation, and mini-
mizing the distance between the model and data moments. When calculating the minimized distance,
the new parameters are jointly calibrated with the old parameters in Table 3.

Table 17: Model Fit for Key Moments in the Initial Balanced Growth Path

Targets Data Model
Economic Growth Rate(1981-1985) 3.05% 3.05%
R&D Cost/Sales of H Firms(1981-1985) 3.62% 3.62%
R&D Cost/Sales of L Firms(1981-1985) 2.83% 2.83%
Basic R Share of H Firms(1981-1985) 4.20% 4.20%
Basic R Share of L Firms(1981-1985) 3.73% 3.73%
Avg. Number of Industries of H Firms(1981-1985) 11.81 11.81
Avg. Number of Industries of L Firms(1981-1985) 1.92 1.92
The Share of Patents Transacted(1981-1985) 30.9% 30.9%

Notes: The model and data moments in the initial balanced growth path are almost the same, showing
the model fits the data well.

number of a firm is not too large, it is harder for basic research output to match the firm’s
production compared to applied research. In the calibration, the annual growth rate is
mostly affected by γa; the basic research share and the R&D cost to domestic sales ratio of
firms with high and low production ability are mostly governed by χb, 1+ ρa, and 1+ ρb.

The extended model is calibrated to both the initial and the ending balanced growth
paths. In this process, parameters corresponding to the four mechanisms, {φ, θ, σ, µ, ι, γa,
χb, ρa, ρb}, are changed to match the data moments in the two periods.

The model fit of the two balanced growth paths are shown respectively in Table 17
and Table 18. Overall, the model matches the data well.
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Table 18: Model Fit for Key Moments in the Ending Balanced Growth Path

Targets Data Model
Economic Growth Rate(1996-2000) 3.34% 3.34%
R&D Cost/Sales of H Firms(1996-2000) 3.15% 3.15%
R&D Cost/Sales of L Firms(1996-2000) 6.71% 6.71%
Basic R Share of H Firms(1996-2000) 4.61% 4.61%
Basic R Share of L Firms(1996-2000) 11.46% 11.46%
Avg. Number of Industries of H Firms(1996-2000) 6.31 6.31
Avg. Number of Industries of L Firms(1996-2000) 1.61 1.61
The Share of Patents Transacted(1996-2000) 44.1% 44.1%

Notes: The model and data moments in the ending balanced growth path are almost the same, showing
the model fits the data well.

F Supplementary Materials for Empirical Analysis

F.1 Summary Statistics

Panel A and B in Table 19 respectively show summary statistics of the regression samples
for production scope and R&D intensity.49 The number of industries per firm experiences
a decrease after the CAFC (Post=1), while the average employment remains at nearly
the same level. The average share of employment in the two highly treated industries is
around 2%. The overall R&D intensity increases after the CAFC (Post=1). The common
control variables are comparable in magnitude in the two panels. The average invalida-
tion rate across different regions is around 54%.50 There is a drop in the federal corporate
income tax rate and a rise in both the federal and state-level R&D tax credits.

F.2 Placebo Tests

It is possible that the differential changes in the number of industries and R&D intensity
across regions and firms are due to pre-trends instead of the policy impact. To check
whether there are pre-existing trends, this study runs the same regressions in Equation
(20)–(22) on the pre-CAFC sample (1976-1982). All variables are defined as the same as
before, except the post dummy. Now, the post dummy (written as post2) equals zero
if the observation year is before or in 1979; equals one if after 1979.51 If there are pre-
trends in production scope, β in Equation (20) and β1 and β2 in Equation (21) should still

49The number of observations is rounded to the nearest 1000 to comply with the disclosure requirement
of the Census Bureau.

50There is very little change in this rate before and after the CAFC because both of them are at the pre-
CAFC level.

51This study also tries other ways of segmenting the pre-CAFC sample. The results are similar.
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Table 19: Summary Statistics of the Regression Sample

Mean Standard Deviation
Sample All Post=0 Post=1 All Post=0 Post=1
Panel A
Observations 268000 131000 136000 268000 131000 136000
Number of Industries 3.066 3.074 3.058 6.722 6.952 6.494
Employment 1187 1187 1187 9670 10780 8467
Highly Treated Share 0.02101 0.01987 0.0221 0.1337 0.129 0.138
Pre-CAFC Invalid. Rate 0.5375 0.5381 0.5369 0.1082 0.1082 0.1083
Real GDP 144000 127200 160200 115000 95460 129100
Effective Federal Tax Rate 0.4105 0.4335 0.3883 0.0434 0.01645 0.04934
Effective State Tax Rate 0.07406 0.07325 0.07484 0.02676 0.0279 0.02558
Federal R&D Tax Credits 0.01443 0.004603 0.02388 0.01145 0.007372 0.004747
State R&D Tax Credits 0.0006073 0.0001753 0.001023 0.003604 0.002553 0.004343
Panel B
Observations 41000 20000 21000 41000 20000 21000
Sum of Weight 220000 100000 120000 220000 100000 120000
R&D Intensity 0.1268 0.06814 0.176 0.9789 0.4915 1.247
Employment 1355 1094 1574 13570 9913 16000
Small Firm Share 0.8989 0.8956 0.9017 0.3014 0.3058 0.2977
Pre-CAFC Invalid. Rate 0.5387 0.5446 0.5338 0.1103 0.1089 0.1113
Real GDP 146500 129300 161000 121600 99300 135900
Effective Federal Tax Rate 0.4068 0.4339 0.3839 0.04653 0.01692 0.05101
Effective State Tax Rate 0.07348 0.07321 0.0737 0.02763 0.02926 0.02617
Federal R&D Tax Credits 0.01473 0.004456 0.02336 0.01114 0.007208 0.004627
State R&D Tax Credits 0.0006286 0.0001987 0.0009896 0.002836 0.002718 0.002883

Notes: Panel A shows the summary statistics of the regression sample for production scope. The sample
contains the innovating firms in the LBD that existed before or in 1982, the year of the establishment
of the CAFC. Panel B shows the summary statistics of the regression sample for R&D intensity. The
sample contains all the firms in the SIRD that existed before or in 1982. the R&D intensity regression
is weighted by the sample weight assigned to each observation in the SIRD. The sample period for all
regressions is from 1976 to 1989, 7 years before and after the reform. The number of observations is
rounded to the nearest 1000 to comply with the disclosure requirement of the Census Bureau.

be significantly negative. However, as shown in Table 20 and Table 21, they are either
positive or tiny in absolute magnitude. None of them is significant, showing that the
differential changes in production scope are not due to pre-existing trends.

If there are pre-trends in the R&D intensity, β1 in Equation (22) should be still positive
while β2 still negative. However, as shown in Table 22, their signs are flipped, showing
that the differential changes in R&D intensity are not due to pre-existing trends. There-
fore, the empirical results in section 8.4 can be viewed as evidence of causality from the
policy reforms to firms’ shrinkage in production scope and reallocation of R&D activities.

62



Table 20: Placebo Test-DiD Regression on Production Scope

Dependent Variable Ln(Number of Industries)
(1) (2) (3) (4)

Invalidation Rate*Post2 0.00196 0.0206 0.000678 -0.00194
(0.013) (0.014) (0.013) (0.012)

Ln(Employment) 0.0539 0.0529 0.0526 0.0527
(0.003) (0.003) (0.003) (0.003)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations 131000 131000 131000 131000
R-squared 0.97 0.97 0.97 0.97

Notes: The dependent variable is the logarithm of the number of 6-digit NAICS codes owned by the
firm. The four columns have different control variables. Standard errors are clustered by circuit court
regions × the post dummy. The number of observations is rounded to the nearest 1000 to comply with
the disclosure requirement of the Census Bureau.

Table 21: Placebo Test-DDD Regression on Production Scope

Dependent Variable Ln(Number of Industries)
(1) (2) (3) (4)

High treat*Invalidation Rate*Post2 0.00965 0.00894 0.011 0.0121
(0.038) (0.038) (0.038) (0.039)

Invalidation Rate*Post2 0.00177 0.0204 0.000479 -0.00213
(0.012) (0.014) (0.012) (0.012)

High treat*Post2 -0.0094 -0.00877 -0.00935 -0.00908
(0.020) (0.020) (0.020) (0.020)

Ln(Employment) 0.0539 0.0530 0.0526 0.0527
(0.003) (0.003) (0.003) (0.003)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations 131000 131000 131000 131000
R-squared 0.97 0.97 0.97 0.97

Notes: The dependent variable is the logarithm of the number of 6-digit NAICS codes owned by the
firm. The four columns have different control variables. Standard errors are clustered by circuit court
regions × the post dummy. The number of observations is rounded to the nearest 1000 to comply with
the disclosure requirement of the Census Bureau.
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Table 22: Placebo Test-DDD Regression on R&D Intensity

Dependent Variable R&D Expenses to Domestic Sales Ratio
(1) (2) (3) (4)

Small*Invalidation Rate*Post2 -0.0467 -0.057 -0.0417 -0.057
(0.048) (0.052) (0.048) (0.052)

Invalidation Rate*Post2 0.0772 0.0994 0.0734 0.0994
(0.039) (0.049) (0.039) (0.049)

Small*Post2 0.042 0.0584 0.0497 0.0584
(0.028) (0.031) (0.029) (0.031)

Ln(Employment) 0.00197 0.0045 0.00435 0.0045
(0.024) (0.025) (0.025) (0.025)

Real GDP NO YES NO YES
Tax Rates NO YES NO YES
R&D Tax Credits NO YES NO YES
Post Dummy YES YES NO NO
Year-fixed Effects NO NO YES YES
Firm-fixed Effects YES YES YES YES
Observations (Weighted) 100000 100000 100000 100000
R-squared 0.853 0.853 0.853 0.853

Notes: The dependent variable is the firm’s R&D-expenses-to-domestic-sales ratio. The four columns
have different control variables. Standard errors are clustered by circuit court regions × the post
dummy. The number of observations is rounded to the nearest 1000 to comply with the disclosure
requirement of the Census Bureau.
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