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Abstract

Renewable energy and ba�ery storage are seen as complementary technologies
that can together facilitate reductions in carbon emissions. We develop and esti-
mate a framework to calculate the equilibrium e�ects of large-scale ba�ery stor-
age. Using data from California, we �nd that the �rst storage unit breaks even
by 2024 when the renewable energy share reaches 50%. Equilibrium e�ects are
important: the �rst 5,000 MWh of storage capacity would reduce wholesale elec-
tricity prices by 5.7%, but an increase from 25,000 to 50,000 MWh would only
reduce these prices by 2.7%. Large-scale ba�eries will reduce revenues to dis-
patchable generators and renewable energy sources. �e equilibrium e�ects lead
ba�ery adoption to be virtually non-existent until 2030, without a storage man-
date or subsidy. A 30% capital cost subsidy—such as the one in the U.S. In�ation
Reduction Act—achieves 5,000 MWh of ba�ery capacity by 2024, similar to the
level required under California’s storage mandate.
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1 Introduction

Growth in renewable electricity generation has been dramatic over the past 10 years,
in the U.S. and worldwide. By displacing generation from fossil fuels, renewables re-
duce greenhouse gas emissions. However, almost all recent growth in renewables
comes from intermi�ent sources such as solar photovoltaics (PV): a solar farm cannot
generate electricity a�er the sun sets, or when a cloud passes overhead. Absent the
ability to store electricity, integrating these intermi�ent sources into the electricity
grid requires the capability both to produce electricity at times with low expected re-
newable production and to adjust production suddenly when renewable production
is unavailable. Intermi�ency reduces the bene�ts of renewables through the costs of
building, maintaining, and operating additional fossil fuel generators (Bushnell and
Novan, 2021; Gowrisankaran et al., 2016; Joskow, 2011). �us, ba�ery storage is a po-
tentially important complement to intermi�ent renewable energy: it can lower the
social costs of integrating renewables by storing energy when renewable production
peaks and releasing it when it plummets.

In tandem with recent growth in renewable energy investment, the capital costs of
lithium-ion ba�ery cells fell by 85% from 2010 to 2018 with projections of 50% further
cost drops over the next decade (Cole and Frazier, 2019; Goldie-Scot, 2019).1 Despite
these dramatic cost decreases, capital costs are still a central impediment to utility-
scale ba�ery storage. In addition, the equilibrium value of large-scale storage invest-
ment is limited because each additional storage unit acts as an arbitrageur, smoothing
price di�erentials across time and lowering the value of existing units. Finally, even
a�er capital costs reach a break-even point, companies may defer ba�ery investments
to exploit the option value of waiting for additional capital cost declines.

�is paper has three main goals related to understanding the economics of ba�ery
storage. First, we develop a framework to calculate the equilibrium e�ects of large-
scale ba�ery storage and the complementarities between ba�eries and renewable en-
ergy penetration, in a model that incorporates dispatchable generator market power
and the ramping costs that these generators bear when they raise or lower output.
Second, we use our methods to calculate which parties would gain and which would

1Other storage technologies are also expected to have up to 90% lower capital costs within the next
decade (U.S. Department of Energy, 2021).
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lose from large-scale ba�ery adoption. �ird, we evaluate the extent of expected equi-
librium ba�ery adoption and how this responds to di�erent policies.

Understanding the complementarities between ba�ery storage and renewable en-
ergy is particularly important because many policy proposals have paired renewable
energy standards with ba�ery mandates. For example, in conjunction with its ag-
gressive renewable energy standards, California’s 2010 AB 2514 requires utilities to
procure 1,300 MW of storage power capacity by 2024.2 �e state justi�ed the storage
mandate on the basis that storage resources can help optimally integrate renewable
energy resources and improve grid reliability (California Secretary of State, 2010). Ad-
ditionally, implementing a concurrent ba�ery mandate and renewable portfolio stan-
dard could be a cost-e�ective way to achieve renewable energy goals if there is the
potential for coordination failures at the investment stage due to these complemen-
tarities (Zhou and Li, 2018). More recently, the 2022 U.S. In�ation Reduction Act (IRA)
directly subsidized storage investments by providing federal investment tax credits
(House of Representatives, 2022).

We illustrate the complementarities between renewable energy and storage with
California data. Figure 1a displays median electricity demand and Figure 1b displays
median solar generation, over the hours of the day and separately for 2015 and 2019.
Solar generation in California increased dramatically over this period, but this gener-
ation typically occurs in the middle of the day and not in the evening, when demand
is highest. Figure 1c displays median net load, which is the di�erence between total
demand and intermi�ent renewable generation, and hence the electricity that is sup-
plied by dispatchable generators.3 Net load in 2019 plummets in the middle of the day
but rises again in the early evening to a similar level as in 2015, resulting in a curve
with two humps. �is change in the shape of the net load curve has at least two im-
plications for costs. First, it implies that solar PVs are not producing in the evening
when net load, and hence marginal costs, are highest. Second, it increases dispatch-
able generators’ ramping costs, as they would need to change production levels more
o�en (Cullen, 2010; Jha and Leslie, 2021; Mansur, 2008; Reguant, 2014). Finally, Fig-

2�is size is similar to a large natural gas power station, and could serve about 6% of the typical
California Independent System Operator (CAISO) load. For the most common 4-hour duration ba�eries,
this corresponds to 5,200 MWh of stored energy capacity.

3Unlike intermi�ent generators like wind and solar PV power plants, dispatchable generators,
which include natural gas and hydroelectric plants, can be started on demand.
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Figure 1: Electricity Demand, Solar Generation, and Prices by Year in California

(a) Electricity Demand (Load) (b) Solar Generation

(c) Net Load (d) Wholesale Price

Notes: Each panel shows the hourly median, 25th percentile, and 75th percentile of electricity demand
(load), solar generation, net load, and real-time wholesale market price, respectively. Figures calcu-
lated by authors from California Independent System Operator data. All prices are for the California
South Hub Trading Zone (SP15).

ure 1d displays median wholesale electricity prices. Despite the similarity in evening
load between 2015 and 2019, median wholesale prices are substantially higher in 2019,
suggesting the importance of increased ramping costs and the potential of storage to
mitigate these costs.

We address our main goals by developing a new theoretical and estimation frame-
work to understand equilibrium ba�ery operations. Our model incorporates what we
believe are key features of the electricity market: equilibrium e�ects of utility-scale
ba�ery �eets reducing the peaks and valleys of prices, ramping costs—where past gen-
eration by dispatchable generators reduces current marginal costs, and dispatchable
generator market power. Beyond this, we incorporate predictable within-day �uc-
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tuations in net load; a non-linear dispatchable generator supply relationship for the
wholesale electricity market that evolves over time; serial correlation of the shocks
to net load and the supply relationship; a restriction that charge/discharge policies be
based on data that would have been available in real-time to a market participant; a
loss in energy from charging and discharging the ba�ery; and the depreciation of bat-
teries from operation, particularly with deep cycles. We estimate electricity demand
and supply relationships using data from the California Independent System Operator
(CAISO) from 2015-19.

�e ba�ery operations model allows us to address our �rst two main goals. To
address the third goal, we link this model with a dynamic competitive equilibrium
ba�ery adoption model by leveraging additional assumptions. Our ba�ery adoption
model solves for an equilibrium of investment decisions of potential ba�ery operators.
Each year, potential ba�ery operators make an optimal stopping decision, choosing
whether to install capacity or wait, given ba�ery installation costs, current and future
renewable energy standards, and the mass of existing ba�ery capacity. We use the
solutions to the operations model—evaluated at counterfactual ba�ery storage levels—
to calculate pro�ts for potential ba�ery operators deciding whether to adopt a new
system. To compute the adoption model, we estimate expected future ba�ery capital
costs using data compiled by the National Renewable Energy Laboratory.

Our results depend crucially on three main identifying assumptions. First, we as-
sume that the net loads and supply relationships that we identify from the market data
are structural and hence would continue to hold given counterfactual large-scale bat-
tery operations. Our rich speci�cation of the supply relationship—with market power,
ramping costs, and serial correlation of the residuals—adds to the credibility of this
assumption.4 Second, we assume that di�erences between wholesale day-ahead mar-
ket and real-time market electricity prices re�ect changes in dispatchable generation
capacity unavailability—which storage can help mitigate—instead of common gener-
ator cost shocks.5 �ird, our adoption model—needed only for our third main result—
uses weeks in our sample with high renewable generation as a proxy for a future
with higher renewable penetration, a�er controlling for observable a�ributes of those

4However, this assumption implicitly rules out the possibility that large-scale ba�ery storage would
cause fossil fuel generators to retire.

5Section 3.2 provides evidence supporting this point using auxiliary data on fuel prices, which a�ect
costs similarly across many generators.
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weeks.
Relation to literature: Our study builds on three main literatures. First, it relates

to an engineering and economics literature that investigates the value of storage in
wholesale electricity markets. Early engineering papers in this literature modeled the
storage decision using a �nite-horizon framework and assumed that the storage device
operator had perfect foresight about future prices or relied on historical prices when
making discharge and charge decisions (e.g. Sioshansi et al., 2009). Other engineering
studies relax the perfect foresight assumption and model storage decisions given un-
certainty about future prices (e.g. Mokrian and Stephen, 2006). Our operations model
extends this framework by considering the equilibrium e�ects of large-scale storage
in competitive storage markets. It also relates to several recent economics papers.
Kirkpatrick (2018) estimates the e�ect of recent utility-scale ba�ery installations on
electricity market prices and transmission line congestion in California. Lamp and
Samano (2022) �nd that ba�ery operators respond to price incentives at certain hours
of the day, which has led to less wholesale electricity price variation. Holland et al.
(2022) and Karaduman (2021) also consider the economics of grid-scale energy storage,
employing di�erent modeling approaches and data from ours.6

Second, we contribute to an economics literature that explores the market impacts
of new energy technologies. Wolak (2018) and Bahn et al. (2021) measure the environ-
mental and market e�ects of increases in renewable energy generation. Feger et al.
(2022), Langer and Lemoine (2022), and De Groote and Verboven (2019) evaluate the
impact of solar subsidies on adoption, while Gonzales et al. (2023) show how invest-
ments in transmission infrastructure increase the value of solar energy. Our results on
the distributional impacts of renewable and ba�ery adoption and market power add
to a literature that includes Bushnell and Novan (2021), Jha and Leslie (2021), and Liski
and Vehviläinen (2020), with our dynamic equilibrium framework.

�ird, our work also relates to the literature on electricity forecasting (Kanamura
and Ōhashi, 2007; Kni�el and Roberts, 2005; Weron, 2014) and commodity storage
(Deaton and Laroque, 1992; Pirrong, 2012). Based on this literature, we develop and
estimate a model of electricity demand and supply that allows for seasonal pa�erns,
dynamics from ramping costs, and high-frequency cost volatility arising from unan-

6Andrés-Cerezo and Fabra (2023) investigate the in�uence of market structure on ba�ery invest-
ment levels, and subsequent e�ects on social welfare.
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ticipated shocks to available generation.
Summary of Results: We �nd that a very small ba�ery �eet would break even

on the wholesale electricity market—i.e., earn enough revenues in the energy market
to cover costs—if capital costs were to fall to $264/kWh and renewable energy share
were to increase from 40% (the share in 2019) to 50%, which are both expected to
occur by 2024. �is break-even �gure incorporates both capacity depreciation and
uncertainty, which signi�cantly limit the expected future pro�ts that ba�eries can
earn as arbitrageurs.

As the ba�ery �eet expands in size, ba�ery operations signi�cantly lower the vari-
ation in mean equilibrium prices across hours of the day, in particular lowering prices
in the evening peak. However, the marginal e�ects diminish as the ba�ery �eet in-
creases in size. For instance, the �rst 5,000 MWh of storage capacity would reduce
prices by 5.7% but an increase from 25,000 to 50,000 MWh would only reduce prices
by 2.7%. Large ba�ery �eets also allow dispatchable generators to ramp more slowly,
and thereby shi� the peak production hour from 7 PM to 8 PM. �e lower equilibrium
prices imply that ba�ery �eets of 10,000 MWh or higher would not be pro�table as
arbitrageurs by 2024 without subsidies or unless capital costs were to fall far below
current expectations. Turning to the distributional consequences of ba�eries, utility-
scale ba�ery storage would decrease total revenues of dispatchable generators by $126
million per year. More surprisingly, they would also decrease solar and wind genera-
tor revenues by $13 million annually, as they reduce prices from 3 PM to 5 PM when
many solar generators in California are still producing.

Finally, our adoption model—which incorporates the option value of waiting for
future cost declines—shows that an ambitious renewable energy standard is not su�-
cient to encourage large-scale ba�ery adoption on its own. Speci�cally, ba�ery invest-
ment would be negligible until 2030 without storage subsidies or mandates. However,
a 30% capital cost subsidy—as speci�ed by the 2022 IRA—yields approximately 5,000
MWh of ba�ery capacity by 2024. �is �gure is very similar to the capacity required
under California’s storage mandate.
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2 Data and Institutional Setting

2.1 Storage Resources in the Electricity Market

Recognizing the complementarities with renewable energy, regulators nationally and
in California have enacted new policies to increase electricity storage investment.
In early 2018, the Federal Energy Regulatory Commission (FERC) issued Order 841,
which requires independent system operators (ISO) to remove any existing barriers
that would inhibit participation of storage resources in wholesale markets.

In 2010, the California legislature authorized the California Public Utility Com-
mission (CPUC) to evaluate and determine energy storage targets for the state. Ac-
cordingly, the CPUC required the state’s investor-owned utilities to procure 1.3 GW
of storage power capacity by 2020,7 with installations required to be operational no
later than the end of 2024. Since this time, California’s utilities have been adding stor-
age capacity and, by 2019, utilities had at least 126 MW of operational ba�ery power
capacity.8

�ough energy storage technologies such as pumped hydroelectric storage have
been established for decades, the majority of recent utility storage installations use bat-
tery technologies. Our study focuses on one technology: lithium-ion ba�eries, which
account for over 90% of U.S. ba�ery storage capacity (EIA, 2020). A number of other
emerging technologies allow electricity to be stored, including thermal energy stor-
age, mechanical energy storage, and other forms of chemical energy storage, including
hydrogen storage. Today, both the high capital cost and low round-trip e�ciency of
hydrogen storage make this route much less a�ractive than ba�eries, except for very
long duration storage (Schmidt et al., 2019), though this may change in the future. Im-
portantly, our modeling framework could be used to assess the impact of alternative
storage technologies with di�erent physical parameters and cost projections.

Although the stock of utility-scale ba�eries is growing at a rapid rate, the overall
ba�ery �eet remains small. In 2018, there were only 900 MW of aggregate ba�ery
power capacity in the U.S., similar to that of two to three combined-cycle natural gas
generators (EIA, 2020).

7Power capacity is the amount of power that the ba�ery can supply to the grid at any point in time
while energy capacity is the maximum amount of energy that the ba�ery can store.

8Authors’ calculations based on maximum aggregate output reported by the California Independent
System Operators between May 2018 and December 2019.
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2.2 Battery Storage Costs, Technology, and Market Structure

Our adoption model relies on data on the capital costs of energy storage. Given the
large expected declines in utility-scale ba�ery capital costs, we use forward-looking
projections from the National Renewable Energy Laboratory (Cole and Frazier, 2019)
to model the evolution of future lithium-ion ba�ery costs. �ese data compile utility-
scale lithium-ion ba�ery cost projections from over 25 publications published between
2016 and 2018.

Figure 2a summarizes the cost projections for ba�ery storage over time in $/kWh.
Each point in the �gure represents a normalized cost projection from a single pub-
lication for one year (with gray solid lines connecting multi-year projections within
a publication), and the dashed line plots the mean projection by year. While most
projections anticipate continued declines in capital costs, there remains considerable
variation in just how much those declines are anticipated to be.

Ba�eries vary in their round-trip e�ciency and duration. A ba�ery’s round-trip
e�ciency measures the percentage of stored energy that is available for later usage.
A ba�ery’s duration indicates the amount of time the ba�ery is able to discharge at
its rated power capacity. For example, a 2-hour duration ba�ery could discharge at
full power capacity for 2 hours. Our study follows Cole and Frazier (2019) and focuses
on 4-hour ba�eries with 85% round-trip e�ciency. Four hours is the average duration
of ba�eries operating in California in 2019, though shorter ba�eries are prominent
within other ISOs (EIA, 2021). Our round-trip e�ciency �gure implies that a ba�ery
that draws 1 MW of power from the grid can return 0.85 MW of power. Importantly,
lithium-ion ba�eries depreciate from repeated use and particularly from deep cycles,
a factor that we incorporate in our model.

In general, ba�ery storage is a nascent industry both nationally and in California.
In this early stage, the ba�ery market in California has been relatively unconcen-
trated, with a 2018 Her�ndahl-Hirschman Index (HHI) of 1,347.9 �is feature of the
industry motivates our modeling assumption of a competitive ba�ery market, though
Section 6.1 examines the robustness of our results to ba�ery market power.

We model ba�eries operating as arbitrageurs in wholesale energy markets. How-
ever, many of the earliest ba�ery operators earned pro�ts by supplying reserve capac-

9Online Appendix B provides more details on ba�ery market structure.
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Figure 2: Ba�ery Capital Cost Projections and Renewable Energy Trends

(a) Projected Ba�ery Capital Costs (b) Solar + Wind Market Share

Notes: �e authors constructed Figure 2a using data from Cole and Frazier (2019). Each gray transpar-
ent line represents a future cost projection from a single publication. �e blue dashed line plots the
mean cost projection. �e �gure re�ects all cost projections related to grid ba�ery applications (not
electric cars). �e authors constructed Figure 2b from CAISO data. It shows the share of electricity
generation coming from solar and wind generators for each week between 2015 to 2019.

ity in ancillary services markets, most commonly regulation up and down. Despite
this, three pieces of evidence lead us to believe that future ba�eries will largely earn
revenues from energy arbitrage. First, Figure A.1 in Online Appendix A shows that
CAISO procured an average of less than 1,000 MW of hourly regulation reserves in all
but three months of our �ve-year sample, and that the quantity was reasonably �at
over time despite the increase in renewable energy over this period (e.g., see Figure
2b). Second, industry experts state that ISOs typically require only limited ancillary
services capacity, on the order of 100-400 MW (Sackler, 2019). �ird, more than 80%
of the ba�ery capacity added in 2021 in CAISO was used for energy arbitrage (EIA,
2022a). We view our analysis as pertaining to additional ba�eries that will earn pro�ts
as arbitrageurs rather than existing ba�eries that operate in ancillary services markets.

2.3 Operations Model Data

We estimate the main parameters of our operations model with data from CAISO over
2016-19.10 California restructured its electricity sector in 1998, and consequently desig-
nated CAISO the state’s new independent system operator. CAISO dispatches over 200

10We obtained data from the CAISO Open Access Same-time Information System (OASIS) portal.
OASIS provides data related to the ISO transmission system and its markets. In some instances, we use
CAISO data from 2015 as a training sample.
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million megawa�-hours of electricity to 30 million consumers each year, accounting
for about 80% of electricity demand in California. CAISO runs two distinct wholesale
energy markets: a day-ahead market (DAM) and a real-time market (RTM).

On the day before power is delivered, CAISO conducts 24 DAM energy auctions,
one for each hour of the day, making available projections of net load prior to the
auction. Market participants then submit bids to either buy or sell energy and CAISO
computes market-clearing quantities and prices that meet the projected load at the
lowest cost.11 On the day of energy delivery, CAISO uses an RTM auction 75 minutes
before each delivery hour to adjust generator production in response to unplanned
outages or deviations. During the delivery hour, the system operator dispatches the
lowest-cost generators every �ve minutes. �e system operator uses reserve opera-
tions to meet any unanticipated imbalance within the �ve-minute interval.

Following FERC Order 841, CAISO has made e�orts to integrate new storage tech-
nologies into its wholesale markets. CAISO allows ba�eries to submit either demand
bids or supply bids in both day-ahead and real-time energy auctions. We focus on
storage operators’ �nal bids in the RTM, where the greatest arbitrage value lies, and
which operators make having observed DAM prices. A ba�ery can submit a set of
prices and associated quantities at which it is willing to discharge energy, with nega-
tive quantities when it would like to charge. We use wholesale electricity prices from
CAISO’s South-Zone hub (SP-15), because this zone covers the largest share of the Cal-
ifornia population and currently hosts the most ba�ery storage capacity. We augment
the electricity price data with other market data: total load from the CAISO territory,
generation by resource type, natural gas prices, and hydroelectric availability.

Notably, California’s grid is currently undertaking a dramatic transition away from
fossil fuel generation and towards renewable resources that will impact storage invest-
ment and operations. As of 2015, California already hosted the largest capacity of solar
PV panels in the United States. Figure 2b shows that during the sample period of our
study—January 2015 to December 2019—utility-scale solar and wind resources’ market
share doubled from 10% to 20%, and exceeded 30% during some weeks. Going forward,
state lawmakers have voted to boost renewable energy further under Senate Bill 100,
signed in September 2018, which establishes the state’s updated renewable portfolio

11CAISO also uses the day-ahead market to secure energy reserves.
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standard (RPS) (California Secretary of State, 2018). Figure A.2 in Online Appendix A
provides details on California’s RPS schedule. �e law speci�es the share of generation
that must come from renewable sources: 44% by 2024, 52% by 2027, 60% by 2030, and
100% by 2045. �e �gure also projects the share of energy that will come from solar
and wind together for each future year that we model—as required by our adoption
model—by linearly interpolating the RPS to intermediate years.

Figure A.3 in Online Appendix A provides more details on market trends in CAISO
over our sample period. From Figure A.3a, average demand (load) for electricity has re-
mained relatively stable, falling by 7.5%. Figures A.3b, A.3c, and A.3d show the solar,
wind, and combined solar plus wind market shares over our sample period, respec-
tively. Average wind power production increased slightly from 5% to 7% of genera-
tion, while solar PV’s generation share rose from 6% to 14%. Figure A.3e shows that
prices for natural gas, the predominant fossil fuel generation source in CAISO, hov-
ered around $3/MMBtu for much of the sample period. Figure A.3f shows that mean
prices in the real-time market have also trended upwards by nearly 20%. Finally, Fig-
ure A.4 in Online Appendix A replicates Figure 1d but with data at the �ve-minute,
rather than hourly, level. It shows that real-time prices have become more volatile
within each hour of the day as intermi�ent renewable generation has expanded.

3 Battery Operations Framework

3.1 Model

In our se�ing, a �eet of ba�ery operators with total energy capacity K faces a �eet
of dispatchable (typically, fossil fuel) generators. �e decisions of dispatchable gener-
ators are dynamic due to ramping costs, which implies that lagged generation a�ects
current costs. We model and estimate a wholesale electricity pricing function for dis-
patchable generators that is consistent with generator market power and dynamics
from ramping costs. It allows price to be a function of both current and lagged pro-
duction.

Ba�ery operators (or just operators) buy and sell energy in the real-time electric-
ity market in every �ve-minute time interval, t, with the goal of maximizing their
expected discounted pro�ts from being arbitrageurs. Our base model assumes that
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operators are competitive and take wholesale electricity prices as given, unlike dis-
patchable generators, which potentially have pricing power.12 �us, we may think of
each ba�ery operator as having some small level of capacity. Consistent with a com-
petitive market and a large �eet of ba�eries, operators’ decisions a�ect equilibrium
prices. We use our estimated wholesale pricing function to evaluate the impact of
these charge and discharge decisions on the wholesale electricity price.

We de�ne electricity net load to be the electricity load (or demand) by �nal users
net of the amount produced by intermi�ent renewable sources (i.e., wind and solar).
We assume that net load at time interval t is perfectly inelastic, that it varies across
time, and that it is partly forecastable, including a term that is unobservable until t,
εLt . Similarly, the supply relationship at time t is partly forecastable, and includes an
unobservable, εPt .

Ba�eries are characterized by three technological a�ributes. First, a ba�ery’s power
capacity, F , determines what fraction of the ba�ery can be charged or discharged in
each �ve-minute interval and therefore how quickly the ba�ery can transition from
full to empty and vice versa. Second, the round-trip e�ciency of the ba�ery, υ2, is the
percentage of energy that is preserved during a full charge/discharge cycle. Finally, a
ba�ery’s energy capacity depreciates at a rate δ that depends on how and how much it
is used. We model the capacity depreciation rate δ using the Xu et al. (2016) algorithm,
which provides an engineering-based formula of the percent of a lithium-ion ba�ery
energy capacity that “fades” (or depreciates) over any time period as a function of the
ba�ery’s charges and discharges.

At every �ve-minute time interval t, each operator makes a charge/discharge de-
cision in order to maximize the sum of its expected discounted pro�ts over an in�nite
horizon, using an annual discount factor β. Its decisions are a function of its charge
level and the time-varying market state, which characterizes the current and expected
future electricity market prices.

We focus on a symmetric equilibrium, where all ba�ery operators start each time
interval with the same fraction already charged—which we denote f ∈ [0, 1]—and
then choose the same charge/discharge fraction each time interval—which we denote

12Section 6.1 examines robustness speci�cations where ba�ery operators have market power.
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q.13 Each day consists of S = 288 �ve-minute time intervals. LetD denote the number
of days within a year, d denote any day in our (multi-year) sample, and s ∈ 1, . . . , S

denote a particular time interval of a day.14 �e 5-minute interval discount factor is
then β 1

SD .
Let Q(q,K) be the net quantity of electricity supplied to the grid by ba�ery oper-

ators at a time interval where this (common) discharge fraction is given by q:

Q(q,K) = K ×
(
1{q > 0}qυ + 1{q < 0}q/υ

)
.

Because Q(q,K) is the net quantity supplied, it will be closer to 0 the lower is the
e�ciency parameter υ2, for a given charge fraction q and ba�ery capacity K . De�ne
Z to be the amount of electricity supplied by dispatchable generators. �en, we de�ne
a supply relationship for dispatchable generators (Bresnahan, 1982; Wolfram, 1999),
P d(Z, Z̃, εP ). �e supply relationship de�nes the equilibrium price as a function of Z ,
last period’s Z , which we denote Z̃ (to allow for ramping costs), and the unobservable
term, εP .15 We allow the forecastable part of P d to vary across days in our sample,
to capture factors such as generator outages, transmission congestion, and changes in
fuel prices.16

We also allow the forecastable portion of net load to vary across days in our sample
and time intervals within the day. Speci�cally, we let net load equal X = Xd

s + εL,
where Xd

s is the interval-of-day forecastable mean net load and εL is the unobserv-
able term. However, for simplicity, we assume operators believe that the forecastable
demand and supply conditions of the current day repeat forever.17 In the absence of
storage, Z = X , since net load is the amount of electricity that needs to be supplied
by dispatchable generators. With ba�ery storage, Z = X − Q(q,K), implying that

13Because the choice variable is the charge/discharge fraction as a share of capacity and each ba�ery
takes the electricity market price as given, the equilibrium can still be symmetric even if ba�eries have
di�erent capacity levels.

14We use four di�erent indices of time: t denotes a 5-minute interval, s ∈ {1, . . . , 288} denotes a
5-minute interval within a day, d denotes a sample day (of which we have four years’ worth), and, in
Section 5, y denotes a calendar year. We need both s and d because our model includes interval-of-day
�xed e�ects and separate parameter estimates by sample day.

15Our model assumes that wind and solar are exogenous and exhausted before dispatchable gener-
ation.

16Section 3.2 discusses functional forms for the supply relationship.
17We focus on ba�eries that can completely �ll or empty within a few hours, so expectations about

changes in future days’ demand and supply conditions will have relatively li�le in�uence on charging
decisions.
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ba�eries discharging Q is equivalent to a shi� down in net load by this amount.
We assume that the residuals εL and εP have a joint conditional distribution

dGε(·, ·|·, ·). At the start of time interval t, operators know εLt and εPt and their joint
conditional distribution. �is joint distribution allows for serial correlation. �is is
important because if, for instance, a generator is unavailable at one time interval, it is
likely to be unavailable in the subsequent time interval, and this knowledge will then
a�ect the storage operator’s charge/discharge decisions and pro�ts.

Given our assumptions,18 we can write the operator Bellman equation as:

Vd(f, s, Z̃, εL, εP ) =

max
q

{
P d(Z, Z̃, εP )× (1{q > 0}qυ + 1{q < 0}q/υ)

+β
1

SD

∫
Vd(f − q, s+ 1− 1{s = S}S,Z, εL′ , εP ′)dGε′(εL

′
, εP

′|εL, εP )
}
, (1)

s.t. Z = XL
s −Q(q∗(f, s, Z̃, εL, εP ), K) + εL,−Fυ ≤ q ≤ F/υ, and

0 ≤ f − q ≤ 1.

where ε′ denotes the value of ε at the next time interval, and where q∗(f, s, Z̃, εL, εP )

is the equilibrium quantity discharged at that state and is equal to the value of q that
maximizes (1) at every state.

To ease computation, we use the fact that ba�ery operators are price takers to
recast the ba�ery operations problem as a single agent decision problem where the
incentives of the single agent correspond to the incentives of the �eet of ba�ery op-
erators. As a price taker, the �rst order condition for a ba�ery operator that would
result from di�erentiating (1) would set price equal to the derivative of the expected
future value from the charge/discharge choice q∗. �us, the corresponding single agent
maximization problem needs to maximize the integral of price, which is given by the
supply relationship.

18In the Xu et al. (2016) capacity fading model, ba�ery depreciation depends on ba�ery usage, but in
a complex and non-linear way and over a long time horizon. For simplicity, we do not model cumulative
ba�ery usage that would lead to depreciation as a state variable, but rather let ba�ery operators account
for depreciation in their charging decisions with a heuristic approach; see Section 3.3 for details.
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We write the single agent Bellman equation as:

Wd(f, s, Z̃, εL, εP ) = max
q

{
−
∫ Z

0

P (ζ, Z̃, εP )dζ

+β
1

SD

∫
Wd(f − q, s+ 1− 1{s = S}S,Z, εL′ , εP ′)dGε′(εL

′
, εP

′ |εL, εP )
}
, (2)

s.t. Z = XL
s −Q(q,K) + εL,−Fυ ≤ q ≤ F/υ, and 0 ≤ f − q ≤ 1.

In the case where the dispatchable generators price at marginal cost, the single agent
problem (2) is equivalent to the social planner solution, where the social planner
chooses operations decisions to minimize the expected cost of dispatchable genera-
tion. For a similar model to ours, Cullen and Reynolds (2023) prove that competitive
equilibria and a solution to the planner’s problem exist, and that the planner’s solution
is equivalent to all competitive equilibria.

Equation (2) depends on the pricing function evaluated at di�erent values of Z
and Z̃ . Since Z and Z̃ are the portion of load and lagged load served by dispatchable
generators, they will adjust based on the charge/discharge decisions of utility-scale
ba�eries.

A fundamental requirement of our modeling approach is that the pricing function
depends only on the speci�ed arguments. Formally, we require:

Assumption 1. �e equilibrium supply relationship for dispatchable generators is a

function of only the state (d, Z, Z̃, εL, εP ). In particular, the supply relationship is in-

variant to installed ba�ery capacity.

Assumption 1 imposes that the pricing function that we estimate as part of our
pricing function is “structural” in the presence of large-scale ba�eries and hence does
not change. �is would occur if—contingent on the state—the same generators run
across di�erent counterfactuals and the markups that those generators receive are the
same. Importantly, the assumption is consistent with markups changing as a function
of ba�ery capacity, as ba�eries change the equilibrium states reached. �e assumption
would be exactly accurate if fossil fuel generators bore no ramping costs (e.g., Boren-
stein et al., 2002; Ellio�, 2022; Gonzales et al., 2023) and made their bid decisions a�er
ba�ery operators. In the presence of dynamic oligopoly fossil fuel generators, it is an
approximation. Large-scale ba�eries may �a�en the peaks and valleys of net load and
hence of prices. Dispatchable generators may thus have di�erent expectations of the
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net load they need to serve, even conditional on Z and Z̃ . Importantly, Assumption 1
allows for ramping costs because it allows prices to depend on Z̃ .19

We solve the operations model by discretizing the state elements Z̃ , εL, εP , and f
into 10 dimensions each and solving the single agent problem in (2).20 We solve the
optimization separately for each day in our 4-year main estimation sample and across
9 candidate values of K , resulting in about 13,000 dynamic problems with 2,880,000
states each.21 �e in�nite horizon solution is very computationally challenging to
solve. We instead solve for a �nite approximation of the in�nite horizon model. For
each sample day d, we set up a �nite horizon model with the base 288 periods for the
day plus 288×3 additional periods which repeat the same set of net load and marginal
cost parameters as the base periods. We veri�ed that the policies computed from the
�nite approximation are virtually identical to the policies from the in�nite horizon
solution. A�er solving for the optimal policies, we compute counterfactual market
outcomes by applying the policies to the realized time series of (εL, εP ), ensuring ro-
bustness to the distributional assumptions on them.

3.2 Estimation of Supply Relationship and Net Load

Having described our operations model, we now turn to the estimation of our key
structural parameters. Our model depends fundamentally on the parameters that un-
derlie the wholesale electricity market supply relationship, net load, and ba�ery tech-
nology. We estimate the supply relationship and net load structural parameters from
data from the wholesale electricity market and without imposing our structural model
of ba�ery optimizing behavior. We estimate separate demand and supply relationship
parameters for each day, d in our sample. Our central goal is to develop credible es-
timates of these processes using information that operators could themselves observe
in real-time. �is informational component is important because we do not want to
inadvertently overstate the value of ba�ery storage as arbitrageurs by providing oper-

19A limitation of our model of ramping costs is that it does not speci�cally model di�erent types of
generators, instead specifying that costs depend on net load in the previous time interval.

20We discretize the transitions of εL, εP by assuming that the innovation to these shocks are inde-
pendent and normally distributed. We use the Rouwenhurst method to discretize εL, which avoids the
sensitivity of the Tauchen (1986) procedure to very persistent processes (Kopecky and Suen, 2010).

21We also solve the operations model under an (infeasible) assumption of perfect foresight. For this
model, we assume that the current and future values of εL, εP are known to the operator before it
makes its charge/discharge decision. �e state space for this model is thus much smaller.
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ators in our model with more information than operators participating in this market
would have when forming their operation decisions.

While ba�ery operators in our model only need to forecast prices, we need to fore-
cast the supply relationship, P d(Z, Z̃, εP ), since we examine counterfactual utility-
scale storage that will a�ect Z and Z̃ . To provide further economic structure on the
supply relationship, we de�ne dispatchable generation capacity,K, which indicates the
maximum quantity that can be supplied by dispatchable generators at any given time
interval, and which is a function of Z̃ and εP .22 �is transforms the supply relation-
ship to be a function of capacity utilization, Z/K ∈ [0, 1), and K. We let P̃ d(Z/K,K)

denote the transformed function.
For our supply relationship to make economic sense, two monotonicity proper-

ties should hold. First, K should be strictly increasing in Z̃ , because a higher level
of generation in the previous time interval will result in more generators available
to produce electricity without bearing ramping costs. Second, P̃ d should be strictly
increasing in Z/K, as greater capacity utilization implies that higher marginal cost
generators—such as peakers—must be used, which will tend to drive up market prices.

We choose a simple Cobb-Douglas functional form for dispatchable generation
capacity:

K = καZ̃1−α exp(εP ), (3)

where κ and α are parameters that we estimate.
Our base model imposes a functional form for P̃ d taken from the commodity stor-

age literature (Pirrong, 2012):

P̃ d(Z/K,K) = θ1 + θ2[K(1− Z/K)]−θ3 , (4)

where θ1, θ2, and θ3 are parameters to estimate. Equation (4) satis�es our monotonic-
ity conditions: for θ1, θ2, θ3 > 0, prices are increasing in capacity utilization and de-
creasing in capacity. In addition, because this functional form lets price asymptote to
in�nity as capacity utilization approaches one, it can capture the spikes that occur fre-
quently in wholesale electricity prices (e.g. Borenstein et al., 2002; Kni�el and Roberts,
2005).

22We use K for dispatchable generation capacity to distinguish it from ba�ery capacity K .
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Section 6 also provides results from another �exible functional form that imposes
the above monotonicity conditions, in this case adapted from the industrial organiza-
tion literature (Fowlie et al., 2016; Ryan, 2012). It would also be possible, though com-
putationally challenging, to estimate non-parametric polynomial speci�cations for P̃ d

that directly impose these monotonicity properties (Compiani, 2022).
Collecting terms, the structural parameters that we estimate for P̃ d are (αd, κd,

θ1d, θ2d, θ3d).23 We estimate these parameters using DAM prices. At the DAM stage,
we assume that εP = 0. �e idea is that when dispatchable generators bid in the
DAM market, they do not yet know last-minute changes in capacity, which enter into
εP . �ere may still be variation in the observed prices relative to predicted prices,
corresponding to measurement or optimization errors. We impose that the deviations
are orthogonal to the observable regressors and estimate the parameters using NLLS,
choosing:

(α̂d, κ̂d, θ̂1d, θ̂2d, θ̂3d) =

arg min
αd,κd,θ1d,θ2d,θ3d

∑
t

[
PDAM,d
t − P̃ d(Zd

t /Kdt ,Kdt )
]2
, (5)

whereKdt = κd
αd

Z̃d
t

1−αd

; PDAM,d
t ,Zd

t , and Z̃d
t are data; and t indicates a sample hour.24

We estimate a separate speci�cation for (5) for each day d of our sample. For a
given day, we estimate the parameters using data for one week, with all hours in the
current and the previous 6 days.25 Because very few ba�eries (as measured by capacity)
engaged in arbitrage during our sample period, we directly substitute net load, X ,
for the portion of load served by dispatchable generators, Z (and analogously for its
lag, Z̃d). �is means that our estimation does not incorporate the very small amount
of ba�ery charging observed over our sample period, though our main results will
compute the portion of load served by dispatchable generators that account for the
counterfactual presence of large ba�ery �eets. In this step of the estimation, we use
the predicted net load—which is load and subtracting solar and wind generation–all
as reported by CAISO in its DAM forecasts.

23We include ‘d’ superscripts since we allow these parameters to vary by day of the sample.
24DAM prices and quantities vary at the hourly, not 5-minute, level.
25Before estimation, we scale both prices and quantities, since they vary considerably both season-

ally and across years. Appendix C provides further details on our estimation of the supply relationship.
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Our estimation of the net load process is much simpler, given our assumption that
net load is perfectly inelastic. We use the predicted net load reported by CAISO in its
DAM forecasts as our estimate of the mean net load, XL,d

s(t). Since the DAM forecasts
are only reported at the hourly frequency, we temporally disaggregate the net load
forecasts to the 5-minute level using a Kalman �lter/smoother approach; see Online
Appendix D for details.26

Turning now to the unobservables εP and εL, we estimate these values from the
RTM. Ba�eries can bid in the RTM, having observed the sequence of DAM prices and
supply relationships, but not future RTM prices. Our idea is that RTM price �uctua-
tions relative to the DAM represent unanticipated changes in the availability of gener-
ation capacity. Hence, for each time interval, t, we recover the value of εP that makes
the wholesale electricity price equal to the observed electricity price in the RTM con-
ditional on supply relationship parameters and the realizations of net load.27 �us, εPt
is de�ned implicitly by:

PRTM,d
t = P̃ d

(
Zt

κdα
d

Z̃1−αd

t exp(εPt )
, κd

αd

Z̃1−αd

t exp(εPt )

)
. (6)

It is easy to verify that (6) does in fact de�ne a unique εPt for the Pirrong (2012) func-
tional form because prices are monotonically decreasing in K for a given net load Z ,
and a higher εPt implies a higher K and no change in Z .

�e assumption that RTM supply relationship �uctuations are due to generator
unavailability is important for our analysis. It implies that ba�eries can mitigate peak
prices by supplying energy at times when dispatchable generation capacity is scarce,
which will tend to imply important equilibrium e�ects. Alternatively, if price vari-
ations within a day were due to a shock common to all generators (e.g., a common
fuel price shock where all generators had the same heat rate), then the di�erence be-
tween RTM and DAM prices would not vary based on the amount of available energy
that ba�eries supplied. In this case, equilibrium e�ects may be smaller, since ba�ery
operators supplying energy when prices spiked would not a�ect this fuel premium.

26CAISO market reports indicate that the CAISO day-ahead load forecasts are shaded up to ensure
su�cient supply is available. We scale the net load forecasts by 0.95 to re�ect this practice. �is choice
is supported by the empirical relationship between the day-ahead market forecasts and the realized
values, see Table A.1, panel (a) in Online Appendix A.

27RTM prices are available at the 5 minute level and hence t now indicates a 5 minute time interval.
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Table A.2 in Online Appendix A provides evidence regarding the plausibility of our
modeling assumptions. It displays the results of several regressions of prices in the
day-ahead and real-time markets (and their deviations) on fuel prices as measured by
the daily spot price for natural gas. It shows �rst that daily natural gas prices strongly
impact mean PDAM

t . �e magnitude is consistent with complete pass-through from
natural gas prices to wholesale electricity prices.28 A similar pa�ern holds for PRTM

t .
�is motivates our estimation of separate supply relationship and demand parameters
by sample day. In contrast, when gas prices are high, we �nd no positive association
with PRTM

t being higher than PDAM
t . In other words, gas price variation does not

appear to be causing price spikes in RTM prices relative to DAM prices. �is lends
credence to our assumption that RTM price spikes are due to generator or transmission
unavailability that ba�eries can then mitigate, rather than common cost shocks.

We model the transition of εP as an AR(1) process given by:

εPt = ρP εPt−1 + σPs(t)η
P
t

(7)

σPs(t) =

 σP,Peak if s(t) ∈ 5–10 PM
σP,O�-peak if s(t) /∈ 5–10 PM

,

where ηP is a mean zero serially uncorrelated shock with unit variance, ρP governs
the persistence of changes to available capacity, and σs(t) accommodates any het-
eroskedasticity that exists across peak (i.e., 5 PM to 10 PM) and o�-peak hours of the
day.

Finally, we recover the net load unobservable εL as the di�erence between the
realized net load, XRTM

t and our forecast of net load from the DAM. We model the
transition of εL as an AR(1) process given by:

εLt = ρLεLt−1 + ηLt , ηLt ∼ N(0, σL), (8)

where ρL and σL are parameters to estimate. We estimate each of the AR(1) models

28We calculate that the median gas generator in California had a heat rate of 8.79, which should be
scaled up by approximately 5% to account for losses from gross to net generation. �e scaled �gure is
similar to our estimated coe�cient of 10.40.
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using ordinary least squares (OLS) on a training sample in 2015,29 and hold these pa-
rameters �xed over the evaluation sample, 2016–19.30 �is ensures that the policies
would be feasible to estimate and implement given the information set of a market
participant.

3.3 Calibration of Battery Technology Parameters

Finally, our ba�ery operations model depends on the ba�ery’s storage technology. In
many cases, industrial organization economists have structurally estimated technol-
ogy parameters by imposing the assumption of optimizing behavior (Rust, 1987). How-
ever, our sample period includes very li�le observed ba�ery behavior in the wholesale
electricity market. For this reason, we estimate the ba�ery’s technology parameters
using engineering estimates, rather than from revealed preferences and structural es-
timation. Following Section 2.2, we model ba�eries with a duration of four hours, and
thus set F = 1

4×12 . In addition, we model the round-trip e�ciency as υ2 = 0.85.
�e �nal technology parameter is capacity depreciation. Capacity depreciation

factors a�ect both operator decisions and values. A ba�ery’s depreciation is a function
of the frequency and depth of its charge/discharge cycles (Xu et al., 2016). For this
reason, in the real world, ba�eries will likely limit charges and discharges to prevent
capacity depreciation. Additionally, depreciation a�ects the discounted value a ba�ery
can expect to receive over its lifetime, as it causes the ba�ery to e�ectively shrink in
size over time.

We model the e�ects of depreciation on operator decisions and values with a heuris-
tic extension to our model, separately for each candidateK . We start with the Xu et al.
(2016) engineering model, which in our case predicts δ, the capacity depreciation rate
per year.31 We then allow δ to a�ect operators’ perceived value of e�ciency, υ, in
making their charge/discharge decisions, �nding a heuristic for the υ that maximizes
the long-run value, which we call υ∗. We believe that a lower perceived round-trip
e�ciency will create similar charge/discharge incentives for the ba�ery operator to
having the ba�ery capacity depreciate from repeated usage. �e idea is that the per-

29Day ahead forecasts for solar and wind are publicly available starting in Nov. 2015. �us, our
training sample includes only data from Nov. and Dec. 2015.

30For our estimates of σP (Peak), σP (O�-Peak), we use a robust (and consistent) estimator of the
scale for the normal distribution: 1.4826×mediant{|xt −medianjxj |} (Rousseeuw and Croux, 1993).

31Appendix E provides details on our inputs to Xu et al. (2016).
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ception of a lower-than-actual round-trip e�ciency will make a ba�ery operator more
reluctant to charge or discharge unless the payo� is su�ciently high. �is may then
help the ba�ery operator increase its expected long-run pro�ts by lowering capacity
depreciation.

We calibrate υ∗ by solving the model for a 2015 pre-analysis training sample, using
a grid of di�erent candidate perceived round-trip e�ciency levels, υp ∈ [.6υ, .65υ, . . . , υ].32

We calculate the best perceived e�ciency level as the one that maximizes an approx-
imation of the expected discounted future value. We approximate this level by �rst
calculating the realized pro�ts over 2015 from the solutions to the Bellman equations
(2), which we denote Π2015(υp). We then solve for υ∗ as:

υ∗ = arg max
υp

Π2015(υp)

1− β − δ
. (9)

In words, Π2015(υp) is the 2015 pro�t earned by the single agent with technology υp

and with the same incentives as a competitive ba�ery �eet. Scaling these pro�ts by
1 − β − δ then provides the expected discounted value, with the approximation that
the pro�ts in future years will be similar to pro�ts in the current year.

�is completes our summary of the operations model and our approach towards
estimating it. Figure A.5 provides a schema of the di�erent parts of our operations
framework for a single day.

4 Main Results

4.1 Supply Relationship and Net Load Parameter Estimation

Table A.3 in Online Appendix A reports sample statistics on the supply relationship
parameters. For each supply relationship parameter, we report the mean, standard
deviation, and 25th and 75th percentiles of the distribution of all the daily estimates
by year. We �nd a considerable amount of variation in the parameters, even within a
year. Some parameters appear to have longer-run trends. E.g., the intercept and slope
terms—θ1 and θ2 respectively—both trend downward, consistent with the declining
natural gas prices. �e exceptions to these pa�erns are the parameters governing the

32We solve the perfect foresight version of these models for computational ease.
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weight on the current dispatchable generation capacity in the Cobb-Douglas capacity
function, α, and the parameters governing the curvature of the supply relationship,
θ3. In the case of α, the estimates center around 0.85 and are fairly stable, indicating
the presence of positive and similar ramping costs throughout our sample. In the case
of θ3, the mean estimates across the year range from 1.07 to 2.07, with a fairly skewed
distribution towards 1. Finally, estimates for κ indicate that the scheduled available
capacity (relative to the day-ahead forecasted maximum net load) are relatively stable
over our analysis sample.

Table A.4 in Online Appendix A reports our parameter estimates for the AR(1) pro-
cess for εP . Our estimate of ρP that we use in our simulations—based on the training
sample of 2015—is 0.947. We also report (but do not otherwise use) the AR(1) param-
eters for our evaluation sample. We �nd that ρP falls a li�le over time–lying within a
range of 0.832 to 0.897. Our estimates of the standard deviations for on- and o�-peak
from our training sample are 0.012 and 0.10, respectively. �ese estimates exhibit sta-
bility over our evaluation sample–with some years falling above or below our training
sample estimate, and the overall average for each over our evaluation sample being
virtually identical. Across both the training and evaluation samples, comparing the
estimates of σP,Peak to σP,O�-peak, on-peak hours have about 25 percent more volatile
changes in εP than do o�-peak hours.

Table A.1 panel (b) in Online Appendix A summarizes estimation results for the
model of net load. Our estimate of ρL is very close to one—indicating a very high level
of persistence in the day-ahead forecast errors. �e parameters governing the AR(1)
process (ρL, σL) are fairly stable across both our training and evaluation samples, with
only σL exhibiting a modest increase over the evaluation sample.

4.2 Pro�tability of Small Battery Fleet

We �rst use our model to estimate the value of a small ba�ery �eet that can charge and
discharge energy as arbitrageurs without a�ecting equilibrium electricity prices. �is
allows us to evaluate the conditions under which initial ba�ery investments would
reach a break-even point and also provides an informative benchmark about ba�ery
pro�tability in the absence of equilibrium e�ects.

We proceed by evaluating the pro�ts of the small ba�ery �eet for each sample week
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Figure 3: Renewable Energy, Depreciation, and the Value of Ba�eries

(a) Ba�ery Depreciation and Ba�ery Value (b) Price Uncertainty and Perfect Foresight

Notes: Each point in the sca�er plot represents the lifetime pro�ts for a unit of storage capacity based
on market conditions during a single week of the sample (assuming conditions during that week
repeated in perpetuity). �e solid line plots the linear trend for each group. �e pro�ts are estimated
using there are 10 MWh of aggregate operational storage capacity in the market. We rescale the
estimated weekly storage value into a perpetuity using a 5% annual discount rate and adjusting for
the rate of capacity depreciation.

over the 2016–19 period. We then approximate the pro�ts of a small ba�ery by solving
for optimal charge/discharge policies with an aggregate ba�ery capacity of K = 10

MWh from (2), and then simulating the weekly returns with these policies.33 We then
convert each of these weekly observations into a heuristic lifetime value of storage
capacity, using a weekly discount factor of β = 0.957/365, and a weekly depreciation
rate from these policies, fed into the Xu et al. (2016) algorithm.

Figure 3 uses these calculations to illustrate these lifetime values relative to cap-
ital costs, with and without accounting for depreciation. �e dashed-red line plots a
simple linear �t of the relationship between ba�ery pro�ts and the share of electricity
generated by renewable sources, before adjusting for capacity depreciation.34 We �nd
a strong positive association between renewable generation and the value of storage.
�e dashed-grey line shows the expected capital cost per kWh of storage capacity in
2019. Together, these lines show that, absent capacity depreciation, lifetime ba�ery
pro�ts would exceed the 2019 expected capital cost of storage if the renewable energy
share was above 45%.

33�e single-agent Bellman equation policies and returns from (2) relative to K = 0 (divided by 10)
will approximate the small �eet, since price is roughly equal to marginal revenue for a small �eet.

34We calculate the renewable energy share as the percentage share of solar plus wind generators
during the sample week plus 19%. 19% is the mean share of generation from non-intermi�ent renew-
ables including hydro, geothermal, and biomass generators across the sample period.
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�e solid blue line in Figure 3a highlights how capacity depreciation (as discussed
in Section 3.3) in�uences the estimated storage values. Depreciation from cycling re-
duces the estimated value of storage investment by 27% on average. Moreover, the
impact of depreciation is higher with more renewable energy, which is due to ba�er-
ies cycling more in this case. A�er accounting for depreciation, the �rst ba�ery unit
would earn net pro�ts in the energy market when renewable energy share is above
50.2% and capital costs are below $264/kWh, as is expected to occur by 2024.35 �is
�nding emphasizes the signi�cance of accounting for depreciation when measuring
the value of storage.

Figure 3b compares our baseline storage value estimates—that assume ba�ery op-
erators face uncertainty about future wholesale prices—to the value estimates if bat-
tery operators have perfect foresight about future net load and electricity supply curve
realizations.36 Our model with uncertainty, which can be feasibly implemented by bat-
tery operators, achieves 70% of the theoretical maximum value under perfect foresight.
Although our baseline results under uncertainty a�ain the majority of the perfect-
foresight value, they should be interpreted as a lower bound for storage value that
could be further improved through be�er forecasting and modeling.

4.3 Equilibrium E�ects of Battery Storage

We use our model to estimate the impact of ba�ery operations on equilibrium prices.
Figure 4a illustrates the mean simulated ba�ery discharge quantity for each hour of
the day for our evaluation sample, 2016–19. Each line in the �gure shows ba�ery
output for a speci�c aggregate ba�ery �eet capacity, K .

Across levels of K , ba�eries discharge the most during the hours where net load
is the highest—the evening peak hours of 5–10 PM, but also discharge on average
between 5–7 AM. As aggregate ba�ery capacity grows, total discharges increase in
the evening and total charges increase during the day.

Figure 4b shows that, as the �eet expands, ba�ery operations exert a strong e�ect
on lowering the variation in hourly mean equilibrium prices. Ba�ery operations have
the biggest impact on evening peak prices. Ba�eries have a relatively small e�ect on

35Renewable share from California’s RPS (Figure A.2) and capital costs from Cole and Frazier (2019).
36In both cases, we adjust the values to account for depreciation.
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Figure 4: Mean Ba�ery Output and Equilibrium Prices E�ects

(a) Mean Hourly Ba�ery Output (b) Mean Hourly Equilibrium Prices

Notes: Each line plots the mean counterfactual outcome across all days during 2016–19.

prices during the middle of the day, because the supply relationship is relatively �at
during these hours.37 Additionally, Figure 4b shows that the �rst few units of ba�ery
investment would have the largest impact on equilibrium prices, whereas incremental
storage investment has a smaller impact on prices. �e �rst ba�eries will reduce the
occurrence of extreme pricing events by discharging during periods when net load
approaches the available generation capacity. By doing so, the ba�eries will reduce
prices and also move the equilibrium to �a�er regions of the supply relationship, thus
reducing the marginal impact of subsequent ba�ery entry on prices.

Table A.5 in Online Appendix A emphasizes this result. It shows that the �rst
5,000 MWh of storage capacity would reduce evening prices by 10.3% ($54.25/MWh to
$48.67/MWh) and overall average price by over 5.7% ($35.92 per MWh to $33.90 per
MWh). In contrast, an increase in capacity from 25,000 to 50,000 would only reduce
evening prices by 7.3% ($39.76/MWh to $36.84/MWh) and overall mean prices by an
additional 2.7% ($31.02/MWh to $30.20/MWh).

Figure A.6b in Online Appendix A demonstrates how ba�ery operations would
a�ect the mean generation from dispatchable power generators (e.g., natural gas gen-
erators) throughout the day. Unsurprisingly, large-scale storage increases dispatch-
able generator output during the middle of the day and reduces it in the evening peak
hours. Notably though, ba�eries would also change the times of day that dispatchable

37Figure A.6a in Online Appendix A focuses on the evening hours, showing that from 6-7 PM—the
hours with the highest average net load—a modest 5000 MWh ba�ery �eet would reduce average prices
by over $10 per MWh.
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generation troughs and peaks occur. With no ba�ery capacity, the lowest production
hour is 11 AM, whereas with a large ba�ery �eet the lowest production period moves
an hour later to noon. Similarly, the peak for dispatchable production without ba�ery
storage is 7 PM, relative to a�er 8 PM with a large storage �eet. �ese pa�erns demon-
strate the importance of ramping costs in modeling storage operations. A competitive
ba�ery �eet reduces the rate at which dispatchable production increases, spreading
the morning ramp down and evening ramp up over more hours.

To further understand how large ba�ery �eets would optimally operate, Figure
A.7 in Online Appendix A graphs real-time prices and ba�ery operations for two
arbitrarily-selected days—June 23rd, 2016 and December 29, 2018—both for a 25,000
MWh capacity. Ba�ery operations change discretely and abruptly during the day. On
the le� graph, ba�eries charge substantially in the morning before 9 AM, remain idle
throughout the middle of the day, and then discharge at di�erent points in time in the
evening. On the right graph, prices are higher in the morning, causing ba�eries to
discharge then. On both days, ba�eries reach approximately a full state of charge by
mid-a�ernoon, wait several hours, and then discharge in the evening when real-time
market prices spike. However, the two days di�er in the times at which ba�eries start
charging and discharging. More generally, and consistent with Figure A.7, we �nd
that (1) ba�ery output at any time period varies considerably across days, but (2), on
most days, ba�eries will fully charge prior to the evening ramp-up period and then
wait to discharge until a price spike occurs.

As a result of highly volatile real-time prices, ba�ery operations revenues are
highly skewed across 5-minute time intervals. From Table A.6 in Online Appendix A,
ba�eries earn the majority of their revenues during the most pro�table 1% of time in-
tervals. For a 1000 MWh ba�ery �eet, each 1 MWh of ba�ery capacity would earn
$38,400 during the most pro�table 1% of intervals and only $17,293 across the other
99% of intervals over our sample period. Moreover, ba�ery revenues are very sensitive
to equilibrium e�ects. For instance, ba�ery revenues during the most pro�table inter-
vals decline dramatically as aggregate ba�ery capacity rises. For example, an increase
in the ba�ery �eet from 100 MWh to 10,000 MWh reduces per-unit revenues by nearly
28% during these intervals.

�ese �ndings highlight the considerable decreasing returns to scale in ba�ery
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Figure 5: Ba�ery Value by Aggregate Ba�ery Capacity and Renewable Energy Share

Notes: �e sloped lines plot the relationship between the expected lifetime value per kWh of ba�ery
investment and the share of renewable energy for selected aggregate ba�ery capacity levels. �ey
represent the best linear �t based o� value and renewable energy across each week in our data. �e
gray horizontal line shows the expected capital cost of ba�ery storage in 2024 (Cole and Frazier,
2019). �e vertical line shows the total share of renewable energy (including hydro) based on data,
the California RPS, and the authors’ calculations.

storage capacity, which has important implications for the time path of ba�ery invest-
ment. Figure 5 plots linear �t lines of the relationship between a heuristic of the value
per-unit capacity of a competitive ba�ery market and the share of renewable energy
during each week across three aggregate capacity levels—10 MWh, 10,000 MWh, and
50,000 MWh.38

As in Figure 3, the per-unit value of a small ba�ery �eet increases rapidly over
time as more renewables enter the market, resulting in a 10 MWh �eet being prof-
itable by 2024. Nevertheless, as more ba�eries enter the market, each ba�eries’ value
shi�s downward due to market equilibrium e�ects of operations of the preceding bat-
tery stock. For example, with a 50% renewable energy share, average ba�ery value
falls from $280/kWh to $230/kWh when aggregate capacity increases from 10 kWh
to 10,000 kWh. �ese values fall further to $140/kWh when there are 50,000 MWh of
ba�ery storage in the market. Because of equilibrium e�ects, storage �eets of even
10,000 MWh would not be pro�table as arbitrageurs by 2024 without subsidies or un-

38As in Figure 3, we use the weekly value simulated from the single-agent Bellman equation (2)
(which mimics the incentives of the competitive ba�ery market) scaled for depreciation and discounting.
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less capital costs were to fall far below current expectations.

4.4 Distributional E�ects of Utility-Scale Batteries

Table 1 considers the impact of ba�ery capacity additions to di�erent market partici-
pants. Column 1 shows that with 1,000 MWh (1 GWh) of aggregate storage capacity
in the market, ba�eries would have earned an average of $14 million per year from
operations during our sample period. As aggregate capacity increases to 50,000 MWh,
the ba�ery �eet �a�ens the price peaks, resulting in the average operating pro�ts per
unit capacity falling to $4.48 million per GWh-year.

Column 3 indicates that ba�eries would signi�cantly reduce the total expendi-
tures (price×load) that load-serving entities need to pay—to generators and storage
operators—to meet demand. In particular, a 1,000 MWh ba�ery �eet would reduce
mean hourly expenditures for utilities by over $124 million per year.

Column 4 shows the change in dispatchable generators’ revenues with large-scale
ba�eries. �ese track the expenditures to load-serving entities very closely. For in-
stance, ba�eries would reduce total revenues of dispatchable generators substantially,
by $126 million per year. While we do not model dispatchable generator exit, these
results suggest that large-scale ba�ery adoption may accelerate the retirement of dis-
patchable generators.

Column 5 shows the change in solar and wind revenues with 1,000 MWh of ba�er-
ies. Surprisingly, the presence of ba�eries reduces solar and wind generators’ revenues
by $13 million annually. Although ba�eries increase prices between 9 AM and 1 PM
when solar plants are coming online, they also reduce prices in the mid-a�ernoon (3
PM-5 PM) when many solar generators are still producing. Summing these impacts,
intermi�ent renewable generators are made slightly worse o� by ba�ery operations.39

�ese impacts are likely occur in markets similar to CAISO, though may not hold uni-
versally. For instance, the impact of ba�eries on renewables’ pro�ts will depend on
the level of correlation between load and renewable generation across the day.

Finally, column 6 investigates the impact of ba�eries on social surplus (gross of
capital cost) in the electricity market. Calculating social surplus requires that we cal-

39Notably, these results contrast Gonzales et al. (2023), who �nd that transmission infrastructure
investment led to more solar investment in Chile. Transmission investments help integrate renewables
by allowing for additional spatial arbitrage whereas storage allows for arbitrage across time.
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culate costs, for which we leverage two additional assumptions: �rst, that our esti-
mated supply relationships represent marginal costs (i.e., the dispatchable generation
is competitively supplied), and second, that the �xed costs of producing 0 in any pe-
riod are 0. Under these assumptions, a 1,000 MWh storage �eet would have increased
gross social surplus by $13.96 million annually during our sample period.40 A larger
�eet with 50,000 MWh would have further reduced costs by $351.09 million per year.

Table 1: Revenue and Costs Across Aggregate Ba�ery Capacity Levels (MWh)

Ba�ery
Pro�t

per GWh
Capacity

Total
Ba�ery

Operation
Pro�ts

∆ Load
Serving Entities’

Expenditures

∆ Dispatchable
Generator
Revenue

∆ Solar
and Wind
Revenue

∆ Gross
Social

Surplus∗∗∗
10 15.79 0.16 -1.76 -1.74 -0.18 0.15
1000 14.46 14.46 -123.98 -125.55 -12.88 13.96
5000 12.37 61.83 -436.48 -456.38 -41.87 65.52
25000 7.04 175.96 -1,062.34 -1,158.03 -80.13 242.57
50000 4.48 223.99 -1,239.99 -1,379.44 -84.39 351.09
Notes: All variables are annual means in millions of dollars per year over our sample period. Columns

1 and 2 show ba�ery operations pro�ts per unit (GWh) and in aggregate as a function of the total
installed ba�ery capacity. “∆ Load Serving Entities’ Expenditures” is the change in the total price
paid by load-serving entities for energy (change in equilibrium price times total load) relative to the
K = 0 case. “∆ Dispatchable Generator Revenues”, and“∆ Solar and Wind Revenue”, are the mean
change in annual gross revenues for dispatchable generators and renewable generators respectively.
*** “∆ Gross Social Surplus” is the estimated change in mean total costs of generation relative to the
K = 0 case under the assumption that the supply relationship represents marginal cost and that the
�xed costs with no net load served are 0.

5 Evaluating Equilibrium Battery Adoption

Our results in Section 4.2 highlighted that a small ba�ery �eet earning pro�ts from
electricity arbitrage was not far from breaking even by the end of our sample, while
those from Section 4.3 showed that equilibrium e�ects will dampen the value of large-
scale ba�ery �eets. Nonetheless, even the Section 4.3 results do not speak to the equi-
librium level of ba�ery adoption, because the break-even constraint does not incorpo-
rate the opportunity cost of investment. Speci�cally, with declining capital costs, by
waiting to adopt until a�er the break-even point, a potential operator will lower its

40Since we assume that demand is perfectly inelastic, a change in gross social surplus is equal to the
change in the total cost of electricity generation.

30



expected adoption cost and potentially increase its value. �e option value of waiting
will then delay equilibrium ba�ery adoption.

�is section develops an equilibrium adoption model that evaluates expected bat-
tery adoption rates under di�erent policies, accounting for the opportunity cost of
investment. As we detail below, our results here leverage assumptions beyond our
operations model. �is occurs because potential ba�ery operators need to forecast
their option value from waiting instead of adopting, which requires understanding
future adoption capital costs and revenues. Additionally, our modeling framework is
limited in that it does not consider dispatchable generator retirement, learning-by-
doing causing ba�ery capital cost reductions, or energy storage technologies other
than lithium-ion ba�eries. We proceed by developing the modeling framework we
use to understand adoption, explaining the calibration and estimation of the underly-
ing parameters, and then presenting our results.

5.1 Model

Our capacity adoption model complements our operations model in Section 3.1 by
considering potential ba�ery operators at the annual level. We assume that there is
an in�nite mass of ex-ante identical potential ba�ery operators, each of which has
the ability to install a �xed-capacity storage system in one year. �is capacity, which
we normalize to k = 1, is su�ciently small that the potential operator takes future
electricity market prices as given in its adoption decision.

Potential operators are forward-looking and solve an optimal stopping problem of
when to invest. At each year y, potential operators that have not previously adopted
make a binary decision of whether or not to invest in storage capacity. To adopt,
they must pay a �xed capital cost, cy. At year y, agents observe cy but do not know
future adoption costs. We assume that these costs evolve stochastically as a Markov
process based on current costs, declining over time in expectation due to technological
advances. Agents have rational expectations over future adoption costs and hence
form accurate distributions over cost trajectories.

Besides costs, a potential operator must also forecast the expected current and
future revenues from its system for every future year. We model two important and
counterbalancing factors regarding the future path of revenues. First, following our
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results in Section 4.2, the extra renewable energy capacity in future years will increase
revenues. However, from Section 4.3, revenues will decline with greater equilibrium
ba�ery capacity, because large-scale storage will �a�en equilibrium price peaks.

�us, the annual per-unit revenues depend on both the year, y, which a�ects re-
newable energy generation share, and K , the aggregate capacity of storage present
in the market. To simplify the analysis, we assume that potential operators perceive
that, apart from these changes, the structural parameters of the operations model—i.e.,
the distributions of (gross) load by hour and the supply relationship from dispatchable
generators—will remain constant in the future and hence do not enter as state vari-
ables.

Combining these factors, the potential operator’s state is (k, c, y,K), where k = 0

for a potential operator that has not yet adopted and k > 0 for existing operators. We
then write its Bellman equation as:

V(k, c, y,K) = 1{k = 0}[
max

{ Value from adopting︷ ︸︸ ︷
π(y,K∗)− c+ β

∫
V
(
δ (y,K∗) , c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y),

Value from waiting︷ ︸︸ ︷
β

∫
V
(

0, c′, y + 1, δ (y,K∗)K∗
)
dGc′(c′|c, y)

}]
(10)

+1{k > 0}

[
π(y,K∗)k + β

∫
V
(
δ (y,K∗) k, c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y)︸ ︷︷ ︸

Value if adoption before y

]
,

where π(y,K∗) are annual operating pro�ts. �e last line in (10) is the value to a
potential operator that had previously adopted (which is proportional to k). A�er
adopting, the ba�ery operator makes no further adoption decisions, but the future
distribution of ba�ery installation costs will a�ect the future adoption, and hence,
future operating pro�ts.

We microfound π(y,K∗) using the computed values from the operations model.
Speci�cally, we let:

π(y,K∗) =
∑
t

E [pt(1{q∗t > 0}q∗t υ + 1{q∗t < 0}q∗t /υ)] , (11)
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where the generator uses state-contingent optimal charge decisions, q∗t . �ese are
calculated using (1) at the expected equilibrium capacity K∗ and taking the state-
contingent prices, pt, as given.

We calculate capacity depreciation, δ(y,K∗), from the Xu et al. (2016) engineering
model. Depreciation is a function of the state, since the state a�ects ba�ery usage and
this usage a�ects depreciation. Because we assume exponential capacity depreciation,
all ba�eries at a given state will have the same incentives proportional to their capacity,
and thus we do not need to keep track of ba�ery age as a state variable.

Similar to the operations model, we ease computation by recasting the ba�ery op-
erations problem in (10) as a single-agent decision problem where the incentives of the
single agent correspond to the incentives of the price-taking �eet of ba�ery operators.
In an equilibrium with price-taking potential ba�ery operators, the marginal operator
sets per-unit adoption cost equal to the marginal operating revenue net of the opportu-
nity cost of adopting. Marginal operating revenue is composed of the weighted sum of
prices over the year. �e weights are determined by the charge quantity, q∗, which can
be positive or negative. �us, the corresponding single-agent maximization problem
is as follows:

W(c, y,K) = max
K∗≥K

{
− E

[∑
t

∫ Zt

0

P d(t)(ζ, Z̃t, ε
P
t )ζ

]

−c (K∗ −K) + β

∫
W
(
c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y)

}
(12)

s.t. Zt = XRTM
t +Q(q∗t , K

∗).

In (12), the expectation is taken over the sequences of (εPt , ε
L
t ) over the time in-

tervals t during the year y and where d(t) indicates the day corresponding to each
time interval t, since the supply relationship parameters vary by d. Since the integral
is taken up to XRTM

t − Q(q∗t , K
∗)—which is the electricity supplied by dispatchable

generators—the �rst order condition with respect to K∗ will weight P d(t) negatively
in intervals where there are charges and positively in intervals where there are dis-
charges.

We compute the solution to the adoption model by solving the single-agent adop-
tion Bellman, equation (12). As with the operations model, in the case where the
dispatchable generation market prices at marginal cost, the single agent problem is
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equivalent to the social planner problem, where the social planner is minimizing the
expected discounted costs of dispatchable generation plus storage capital costs.

5.2 Calibration and Estimation of Parameters

�e main computational di�culty in solving the single-agent adoption Bellman equa-
tion is to evaluate the integral of expected operations revenues from across aggregate
ba�ery capacity states in (12), which we call ba�eries’ �ow return. �e �ow return
is a function of the optimal charging behavior q∗, which varies based on aggregate
ba�ery capacity, K∗. In principle, for each state K∗ that we reach in computing the
adoption Bellman equation solution, we could solve for optimizing behavior in the
operations model at each time interval, and then plug in the resulting �ow return into
the adoption Bellman equation. However, this process would be very computation-
ally intensive, especially because we allow the supply relationship parameters to vary
across sample days.

In addition, the �ow return is also a function of the year y. �e calendar year af-
fects the �ow return because it a�ects renewable energy penetration which, per the
Section 4.2 results, is complementary to the values ba�eries can earn.41 Unlike with
K∗, we do not develop a structural model of how increases in renewable energy pen-
etration would a�ect the wholesale electricity price and through that, a�ect operation
revenues, but instead, identify this e�ect from our in-sample variation in renewable
energy generation share.

Given these issues, we follow Bodéré (2022) and Gowrisankaran et al. (2022) and
�rst evaluate the �ow return across a �xed grid of states. We then estimate a regression
of these �ow return values on the state variables and treat the ��ed value of this
regression structurally. �e bene�t of this �ow return surface approach is that it allows
us to predict �ow returns without computing the operations model Bellman equation
for every state reached in the adoption model solution. �e cost is that this approach
puts functional form restrictions stemming from our regression on the �ow return
surface. �ese restrictions are an approximation to the true and unknown functional
form implied by the structural model.

41As noted above, an important limitation is that we do not allow the supply relationship to change
across years y, implying that we are not allowing for dispatchable generator exit in response to greater
renewable energy capacity.
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Speci�cally, we start by evaluating the �ow return for eight di�erent counterfac-
tual values of K∗ at the weekly level, all relative to K∗ = 0.42 We evaluate the �ow
return over the week by simulating the optimized operations model assuming that
ba�eries start with 50% charge.43 We then regress the �ow return per unit capacity
(�ow return divided by K∗) on ba�ery capacity (K∗), renewable energy generation
share, controls for peak electricity demand, natural gas fuel prices, hydroelectricity
availability (using the Sacramento Valley water-year index as a proxy), and week-of-
year �xed e�ects. We use the ��ed values from the regression—multiplied by K∗ and
scaled from the weekly to the annual level—as the �ow return for any state.

To obtain our ��ed values, we map each calendar year into a renewable energy
generation share that matches California’s legislated RPS schedule, interpolating in
years where the RPS is not speci�ed. �is implicitly assumes that our estimated rela-
tionship between weekly renewable share on the �ow return (conditional on controls)
would apply at the annual level.44 We believe this assumption is reasonable given
our inclusion of week-of-year �xed e�ects and other controls and that wind and solar
production have both been increasing in California.45 Our approach will capture the
fact that changes in renewable energy production will indirectly a�ect the within-day
net load variation, which will then a�ect storage systems’ pro�ts. Finally, while our
sample includes weeks with up to 50% renewable generation (see Figure 3), our �ow
return surface extrapolates out of sample above this level.

To solve the adoption model, we also need to estimate the state-contingent ba�ery
depreciation over a year, δ(y,K∗), in (12). We estimate this function with the same
methods as our estimation of the �ow return function, except with the dependent
variable being the annualized ba�ery capacity depreciation rate, as calculated by the
Xu et al. (2016) engineering model.

Last, we calibrate the evolution of ba�ery capital costs over time. We specify the
following unit root with dri� process for the cost of the storage technology, cy:

cy = cy−1 exp(τ) exp(ξy), ξy ∼ N(0, σ2
c ), (13)

42We use K∗ ∈ {10, 100, 1000, 5000, 10000, 15000, 25000, 50000}.
43Because we de�ne simulated realized pro�ts at the week level, our sample starts on Friday, Jan. 1,

2016 and ends on �ursday, Dec. 27, 2019.
44We use the 2019 sample mean values of the above controls for our ��ed values.
45California does not have separate wind and solar mandates.
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with c2018 as the capital cost of ba�eries in 2018, the initial year, and τ and σc governing
the size of the dri� and future uncertainty of costs. To the extent that τ < 0, the costs of
storage will trend down over time on average. �e ξy process captures the uncertainty
about the size of these future cost declines. We assume that ξy are i.i.d. over time.

We estimate two parameters in (13): the magnitude of the downward dri� (τ ) and
the size of the shock process governing the level of cost uncertainty (σc). Online Ap-
pendix F provides details of this estimation.

5.3 Adoption Model Results

Table 2 reports the estimates of our �ow return regressions. Column 1 shows results
from a speci�cation that regresses the ba�ery �ow return on the logarithm of aggre-
gate ba�ery capacity (ln(K∗)), renewable energy share (wind + solar share), and an
interaction term. Column 2, our preferred speci�cation, adds week-level controls for
mean load in the evening peak hours, mean natural gas price, and the Sacramento
Valley hydroelectric water year index (WYI), and week-of-year �xed e�ects.

�e speci�cations with and without controls yield very similar results, adding
to our con�dence that the estimates are not being confounded by electricity market
changes that are contemporaneous to renewable energy share changes. In our pre-
ferred speci�cation, we estimate a negative and statistically signi�cant coe�cient on
ln (K∗), a positive and signi�cant coe�cient on renewable share, and a negative and
signi�cant coe�cient for the interaction term, consistent with the trends in Figure 3.
Overall, our results paint a clear picture of the link between installed ba�ery capac-
ity, renewable generation, and the value per unit of storage capacity. Per-unit storage
value falls quickly as the aggregate storage capacity in the market rises, consistent
with the equilibrium pricing impacts of storage we document in Section 4.3.46

�e third and fourth columns of Table 2 show the regression results with the annual
ba�ery depreciation rate as the dependent variable. �e estimates indicate that when
the solar and wind share equals 30% and there is a single unit of storage in the market,
capacity would depreciate at an annual rate of 2.8% due to cycling. �e coe�cient
on the renewable energy share is positive: as renewable energy increases, the annual

46Table A.7 in Online Appendix A shows that the regression estimates are robust to alternative
speci�cations and control variables.
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Table 2: Ba�ery Flow Return and Depreciation by Year and Ba�ery Capacity

Ba�ery Flow Return
Per Unit Capacity ($/kWh)

Annual Depreciation
Rate (%)

(1) (2) (3) (4)

Constant 134.6∗∗∗ 0.4187∗∗∗
(43.70) (0.1529)

ln(K∗) -2.832 -2.832 0.0623∗∗∗ 0.0623∗∗∗
(2.158) (2.195) (0.0104) (0.0106)

Renewable Share (%) 12.47∗∗∗ 10.04∗∗ 0.0805∗∗∗ 0.0705∗∗∗
(2.609) (4.229) (0.0085) (0.0092)

ln(K∗) × Renewable Share (%) -0.6883∗∗∗ -0.6883∗∗∗ -0.0049∗∗∗ -0.0049∗∗∗
(0.1298) (0.1321) (0.0006) (0.0006)

Observations 1,664 1,664 1,664 1,664
R2 0.10533 0.41319 0.23211 0.52330
Within R2 0.09888 0.10697

Controls + week �xed e�ects X X

Notes: In columns 1 and 2, the dependent variable is the annual �ow return per kWh
of storage capacity. Each observation represents a single week of the sample for a single
storage capacity. In columns 3 and 4, the dependent variable is the annual capacity depreci-
ation due to operations. Columns 2 and 4 include controls for the mean load in the evening
peak hours of 5–10 PM over the week, the mean natural gas price over the week, and the
Sacramento Valley hydroelectric water year index (WYI) associated with that week. Peak
load is the mean load between 5 PM and 9 PM during the week. We cluster standard errors
by week of sample.

depreciation rate also rises because ba�eries engage in more charge-discharge cycles.
Figure 6 provides simulated mean competitive equilibrium adoption paths under

a variety of alternative assumptions, all using an annual discount factor of β = 0.95

and without an explicit ba�ery mandate or subsidy. �roughout each panel of Fig-
ure 6, the solid black line shows the expected ba�ery capacity trajectory under our
baseline case, in which we assume that: ba�ery capacity depreciates as a function of
use; potential adopters have rational expectations over future capital costs; renewable
energy increases according to the California RPS; and peak load is held �xed at the
2019 mean level. �e purple line in Figure 6a plots the expected ba�ery capital cost
over time from our estimated capital cost process. �e solid black line shows that
ba�ery adoption begins very slowly with the �rst storage system installed in 2026.47

Total capacity reaches 288 MWh by 2030, before increasing sharply and achieving an

47We �nd that there would be 0.91 MWh of storage in 2026 in expectation.
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aggregate capacity of 7,098 MWh by 2035.48 A 7,000 MWh storage �eet composed of
4-hour duration ba�eries can produce 1,750 MW at any instant, similar to the typical
output of a large nuclear power plant. �is output would serve less than 10% of the
typical CAISO load.

�e remaining lines in Figure 6 explore several potential factors that may be lim-
iting the baseline equilibrium adoption. First, Figure 6a contrasts expected ba�ery
capacity over time without capacity depreciation to the baseline. When we ignore
depreciation in calculating the value of storage, adoption starts one year sooner and
increases at a much faster pace. In particular, the expected capacity would be roughly
three times higher in 2035 (20,560 MWh).

Another factor that encourages potential ba�ery adopters to delay investment is
the anticipation of future capital cost reductions. Figure 6b quanti�es the in�uence of
future cost expectations on investment by calculating the predicted adoption path for
myopic agents. While the forward-looking potential operators in our baseline know
the parameters of the stochastic capital cost process in equation (13), myopic potential
operators assume that the current capital cost will remain unchanged in future years,
but are otherwise identical to the baseline agents. Under myopic expectations, the
�rst unit of ba�ery investment is expected in 2023, with aggregate ba�ery capacity
reaching 12,000 MWh by 2030, and surpassing 50,000 MWh by 2035. �ese results are
striking, as they indicate that expectations of future ba�ery cost declines may play a
major role in limiting early adoption.

Another key driver of the ba�ery adoption decisions is the trajectory of future re-
newable energy generation. Figure 6c measures the e�ect of changing the renewable
portfolio standard on the time path of ba�ery adoption. Speci�cally, we plot the bat-
tery investment path for a 40% RPS by 2045, a 60% RPS by 2045, an 80% RPS by 2045,
and a 100% RPS by 2045 (the current policy). With an RPS of 40%—a policy that would
hold renewable generation constant at 2019 levels—less than 200 MWh of ba�ery in-
vestment would occur by 2035. With the more aggressive renewable energy mandates,
storage investment substantially increases. �e 60% RPS would result in 1,430 MWh
of expected storage capacity by 2035, and the 80% RPS would lead to 5,820 MWh by
2035.

48Because our model does not decompose wholesale electricity prices into costs and markups, we
cannot determine whether the competitive ba�ery market would have too much or too li�le entry.
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Figure 6: Counterfactual Ba�ery Capacity Adoption Paths

(a) Ba�ery Capacity With vs. Without Depre-
ciation

(b) Myopic vs. Forward-Looking Expectations

(c) Renewable Mandates and Ba�ery Capacity (d) Peak Demand and Ba�ery Capacity

Notes: In Figure 6a, the purple line shows the expected capital cost over time. In all �gures, the
solid black line plots expected ba�ery capacity under the baseline case with: capacity depreciation,
forward-looking expectations, 100% RPS, and peak load held constant. �e other lines plot expected
ba�ery capacity adoption under di�erent counterfactuals. Each �gure varies a single parameter, and
holds all other assumptions �xed.

Figure 6d explores how changes in future electricity load (demand) would change
the time path of ba�ery adoption. In our baseline case, Figure 6a, we assumed that
peak load would remain constant at 2019 levels in all future years. However, Califor-
nia’s peak load may change over time for a multitude of reasons. On the one hand,
peak load could decrease over time due to energy e�ciency retro�ts and adoption
of behind-the-meter renewable (e.g., residential solar panels) and storage technolo-
gies. On the other hand, rising adoption of electric vehicles could increase peak load
if drivers plug in their cars during evening hours. Figure 6d illustrates how di�erent
assumptions about future peak load in California would change the trajectory of bat-
tery adoption. We evaluate expected ba�ery adoption under �ve di�erent cases: (1)
25% increase in peak load, (2) 10% increase in peak load, (3) no change in peak load
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(baseline), (4) 10% decrease in peak load, and (5) 25% decrease in peak load. We �nd
that peak load changes can result in signi�cant changes in expected ba�ery invest-
ment. A 25% increase in peak load leads to a massive four-fold increase in capacity by
2035, whereas a 25% decrease in peak load reduces aggregate capacity by more than
80% relative to the baseline case.

�ese results show that utility-scale ba�ery investment serves as a substitute for
other investments that reduce peak load. For instance, energy e�ciency retro�ts
can reduce electricity demand at times of the day when the grid is most strained
(Boomhower and Davis, 2020) while home ba�eries could also reduce peak household
electricity demand. Accordingly, policies that encourage residential storage or energy
e�ciency investments would reduce the optimal capacity of utility-scale storage in-
vestment, while further investments in residential solar might complement them.

Finally, we use our results to evaluate policies. �us far, our results suggest that
a renewable portfolio standard alone is not su�cient to reach the amount of bat-
tery adoption stipulated in California’s 2024 ba�ery mandate under AB 2514. Con-
sequently, Figure 7 explores the impact of various government subsidies on ba�ery
adoption. Speci�cally, we compute the expected ba�ery capacity in 2024 for di�erent
investment subsidies o�ered by the government ranging from 0%-40% of the capital
cost. For each subsidy level, we assume that the subsidy is available to storage adopters
in each year until 2024, and then no subsidy is available therea�er. Notably, we con-
sider a 30% subsidy, similar to the energy storage investment tax credit o�ered by the
2022 U.S. In�ation Reduction Act (IRA).49

Figure 7 shows that very li�le adoption would occur by 2024 with subsidies below
25%. However, the 2024 expected ba�ery capacity increases substantially for subsidies
ranging from 25-40%. Speci�cally, the vertical green line shows that the IRA subsidy
would increase capacity to over 5,000 MWh. A larger 40% storage subsidy could further
boost ba�ery capacity to 25,000 MWh. We estimate that California’s ba�ery mandate,
which is equivalent to 5,200 MWh of storage capacity, would require a 30.4% up-front
subsidy. Interestingly, this subsidy is very similar to the more recent 30% federal IRA
subsidy that potential ba�ery operators are earning throughout the U.S.

49�e IRA includes a 30% energy storage investment tax credit, available through 2025 (House of
Representatives, 2022).
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Figure 7: Evaluating Ba�ery Adoption Response to Subsidies

Notes: �e blue line plots the total installed ba�ery capacity in 2024 for di�ering levels of up-front
subsidies (as a percentage of capital cost). �e horizontal pink line indicates the California storage
mandate under AB 2514 assuming 4-hour ba�eries. �e vertical green line shows the 30% subsidy
o�ered to storage under the 2022 U.S. In�ation Reduction Act.

6 Robustness of Results

6.1 Robustness to Battery Market Power

A central assumption of our modeling framework in the previous sections is that bat-
tery storage would operate competitively. �is assumption allows us to solve both
operations and adoption decisions as single-agent problems, thereby simplifying the
analysis. A ba�ery �eet with market power will operate di�erently than a compet-
itive one. For instance, it will have a greater incentive to maintain high peak prices
and pro�t from them compared to a competitive �eet. With market power, the private
adoption incentives for potential ba�ery operators may also di�er from the socially
optimal incentives (Mankiw and Whinston, 1986).

Section 2.2 and Online Appendix B discuss the ba�ery market structure in Cali-
fornia, which remains unconcentrated to date. Nonetheless, this section considers the
robustness of our main results to ba�ery market power. While it is beyond the scope
of this paper to estimate a full dynamic oligopoly model of ba�ery operations and
adoption, we provide simulation evidence to demonstrate how market power could
impact the main predictions of our model.
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Speci�cally, we estimate the decisions of a ba�ery market that is controlled by a
monopoly ba�ery provider rather than by competitive �rms. We then approximate
the charge/discharge decisions and adoption decisions of an oligopoly ba�ery market
as a weighted mean of the decisions of the competitive and monopoly markets. �is
approximation is consistent with the idea that oligopolistic �rms will partially inter-
nalize the impact of their decisions on market revenues and hence tend to produce
somewhere between competitive and monopolistic �rms.

We begin by solving for the monopolist’s charge/discharge decisions using a Bell-
man equation analogous to (2) but where the objective function is ba�eries’ total rev-
enue from arbitrage rather than the integral of the pricing function. In this way, the
monopoly ba�ery operator internalizes that its charge/discharge decisions will a�ect
market prices and thereby a�ect its revenues from inframarginal output.

We then approximate the oligopoly charge/discharge decisions at each state
(f, s, Z̃, εL, εP ) as a weighted sum of 25% of the monopoly charge/discharge decision
at the state and 75% of the competitive charge/discharge decisions. �is fraction is
consistent with the largest annual HHI observed in the California ba�ery market be-
tween 2018 to 2022 of 2,522 (reported in Appendix B). We simulate the ba�ery �eet’s
operations decisions and resulting pro�ts using these policies. We then use these op-
erations simulations to estimate the �ow return surface analogous to Table 2 but with
the realized operations pro�ts as the main dependent variables. Having estimated the
�ow return surface, we solve the Bellman equation for the adoption model, analogous
to (12). We maintain our assumption that the dispatchable generation supply relation-
ship parameters are invariant to the presence of ba�eries, and hence do not update
these parameters in our robustness analysis.

Table 3 provides results analogous to our main results, for the model with ba�ery
market power. Panel A shows the mean equilibrium prices during peak hours (i.e., 5-9
PM) across our sample for both the base model in Column 1 and the model with ba�ery
market power in Column 2. �e �rst two rows of Panel A show that with a smaller
ba�ery �eet of 1,000 MWh or 10,000 MWh, equilibrium prices are nearly identical
across the two models. For a larger ba�ery �eet of 50,000 MWh, we �nd that mean
peak prices would be $38.00/MWh with ba�ery market power, slightly higher than
$35.96/MWh with our base model. �ese higher peak prices occur because ba�eries
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with market power withhold energy during peak times in order to maintain high prices
and higher pro�ts.

In Panel B, we calculate ba�eries’ expected lifetime value per unit capacity (K∗)
averaged over our sample period for both the base model and the model with ba�ery
market power. �e expected lifetime value provides an indication of the pro�tability
of a marginal investment in ba�ery capacity. When the ba�ery �eet is only 1,000
MWh, the results indicate that the marginal gains (to adopters) from adding ba�ery
capacity are slightly larger in the model with ba�ery market power relative to the
baseline. However, the result switches when existing ba�ery capacity is 10,000 MWh
or above. Namely, we see that the marginal gains from adding capacity in the baseline
model exceed those from one when ba�eries possess market power. �is set of �ndings
suggests that when ba�eries have market power, ba�ery capacity investment will be
lower in the long-run compared to when they act as price takers.

In Panel C, we explore how ba�ery market power would a�ect revenues of electric-
ity market participants. We focus on the case with 50,000 MWh of aggregate ba�ery
capacity in the market. We �nd that at this level of ba�ery capacity, ba�eries’ operat-
ing pro�ts are slightly lower in the model with ba�ery market power relative to the
base model. We also �nd that each of the models predicts similar revenues for both dis-
patchable generators and renewable generators. While it may seem surprising that we
�nd slightly lower pro�ts in the model with ba�ery market power, this result is partly
explained by the fact that there would be lower incentives for investing in substantial
capacity when market power exists as suggested in Panel B.

In the �nal panel, we estimate the total ba�ery capacity that would enter the mar-
ket over time for the base model and the model with ba�ery market power, both with-
out subsidies. �e results broadly con�rm the intuition from the previous panels. In
particular, we see that ba�ery adoption starts slightly sooner in the base model. Addi-
tionally, total ba�ery capacity would be 263 MWh in 2030 for the base model compared
to only 62 MWh for the model where ba�eries possess market power. In short, ba�ery
market power would generally reduce the incentives for entry, and therefore, our base
model will tend to overstate the level of ba�ery adoption over time if ba�ery operators
do in e�ect exercise market power.

43



6.2 Robustness to Supply Relationship Functional Form

We also explore the sensitivity of our results to our chosen functional form for the
supply relationship. We based our functional form on the Pirrong (2012) model, which
has been used in the commodity storage literature.

In order to verify the robustness of our results to functional form, we reestimate
our model using a functional form for the supply relationship based on the cost func-

Table 3: Robustness of Results to Market Structure and Functional Form

Panel A: Mean Peak Prices by Aggregate Battery Capacity ($/MWh)

Base
Model

Ba�ery
Market
Power

R/FRR
Functional

Form

1000 MWh 50.44 50.41 51.74
10000 MWh 43.57 43.71 48.65
50000 MWh 35.96 38.00 40.30

Panel B: Expected Lifetime Value perK∗ by Aggregate Battery Capacity ($/kWh)

1000 MWh 197.17 206.09 192.58
10000 MWh 172.51 151.25 176.90
50000 MWh 106.56 55.01 93.37

Panel C: Change in Annual Operating Revenues forK∗ = 50,000 MWh ($1M)

Ba�ery Pro�ts per GWh Capacity 4.48 3.60 3.87
∆ Dispatchable Generator Revenue -1,388.46 -1,157.52 -956.23
∆ Solar and Wind Revenue -85.93 -82.86 -32.36

Panel D: Battery Adoption without Subsidies/Mandates by Year (MWh)

2024 0.00 0.00 0.00
2026 0.91 0.00 0.00
2028 28.99 7.17 13.54
2030 263.33 61.92 228.89

Notes: Column 1 summarizes key results for our base model that assumes ba�eries are perfectly
competitive and uses the Pirrong (2012) functional form for the supply relationship. Column 2
considers an alternative model in which ba�eries possess market power but maintains the Pirrong
(2012) functional form. Column 3 uses a competitive ba�ery market but an alternative functional
form (R/FRR) for the supply relationship based on Ryan (2012) and Fowlie et al. (2016). Panels A
and C report annual means per year over our sample period and Panel B reports a mean over the
sample period. Panel A calculates peak prices as the mean price between 5 PM and 9 PM.
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tion in Ryan (2012) and Fowlie et al. (2016) (henceforth, R/FRR).50 �e authors used the
functional form to estimate costs for cement plants, noting that this cost function ac-
counts for increasing costs near capacity, which gives the function the “‘hockey stick’
shape common in the electricity generation industry” (Ryan, 2012, p. 1029).

In our case, we estimate a supply relationship and not a cost function. From Sec-
tion 3.2, we require that the supply relationship de�ne a unique εPt for any observed
price, as in (6). We de�ne a supply relationship based on the R/FRR cost function that
is strictly increasing in capacity utilization:

P̃ d(Z|K,K) = θ4 + θ5Z/K + θ61{Z/K > ν}(Z/K − ν)2, (14)

where ν, θ4, θ5, and θ6 are parameters to estimate. �e parameter ν represents the
point at which the pricing surface starts to bend from linearly increasing in capacity
utilization to quadratically increasing. We proceed by estimating our entire model
using the supply relationship motivated by R/FRR instead of Pirrong.51

�e third column of Table 3 provides results analogous to our main results, but
when using the R/FRR functional form supply relationship. Each panel replicates the
experiment described in the previous subsection. Broadly speaking, we �nd that most
results implied from the alternative functional form are similar to those from our base
model. In Panel A, we see that the R/FRR functional predicts slightly muted equi-
librium price e�ects relative to the base model. Speci�cally, the base model with
50,000 MWh of ba�ery capacity predicts mean peak prices of $35.96/MWh versus
$40.30/MWh with the R/FRR functional form. Panel B shows that our estimates of the
expected lifetime value per unit capacity are relatively similar across the two mod-
els. Panel C illustrates that with 50,000 MWh of ba�ery capacity, the R/FRR functional
form yields slightly lower estimates for ba�ery pro�ts and also that storage operations
would have a smaller impact on both dispatchable generators’ revenues and renewable
generators’ revenues relative to the base model. Finally, Panel D shows that predicted

50Another alternative to estimate the supply relationship would be to use generator-level data on
heat rates and capacities to infer a market level dispatch curve using a merit-order approach. We found
this approach to be inferior in explaining the behavior of electricity prices in the wholesale markets.
Online Appendix G provides more details on this point.

51Similar to our approach with the Pirrong (2012) form, we use non-linear least squares to estimate
the R/FRR supply relationships. Unlike with Pirrong, the real-time supply relationship in (14) does not
asymptote to P d = ∞ at K. In fewer than 1% of cases with high RTM prices, the observed RTM price
implies Z/K > 1. We simply use these prices, rather than restricting (14) to Z/K = 1.
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ba�ery adoption between the years 2024 to 2030 is remarkably similar across the two
speci�cations.

Importantly, both functional forms require a similar assumption that the devia-
tions in prices that occur between the real-time market and the day-ahead market re-
veal changes in available capacity or transmission. But these results indicate that our
baseline results are unlikely to be speci�c to a functional form choice, a consequence
of our �exible approach of estimating supply relationships that vary by sample day.

7 Conclusion

A signi�cant challenge to meeting the world’s growing demand for energy is that util-
ities cannot typically store electricity for later use. As the majority of new renewable
generation capacity comes from intermi�ent resources, the interest and potential role
for ba�ery storage technology has grown substantially. �is paper develops a new
framework to understand the equilibrium e�ects of large-scale ba�ery storage and its
complementarities with intermi�ent renewable energy. We model a number of fea-
tures that we believe are critical to understanding the incentives to adopt and use
storage and the value created by storage: the equilibrium price e�ects of large-scale
ba�ery capacity, dispatchable generator market power and ramping costs, and ba�ery
depreciation from use. We estimate our model using data from California’s electric-
ity market—which allows us to exploit variation in renewable energy generation over
time—but our model can be applied to explore the economic impacts of storage in other
markets and contexts.

We �nd that the equilibrium e�ects of ba�eries are large. �e �rst 5,000 to 10,000
MWh of storage capacity will reduce peak hour prices signi�cantly, but further in-
creases will have much smaller marginal impacts. �e value that ba�eries can earn
from energy market arbitrage is also signi�cantly increasing in renewable energy pen-
etration. Despite this, utility-scale storage in California will reduce revenues for both
dispatchable generators and renewable energy. Finally, although we are currently not
very far from a point where a small ba�ery storage investment could break even in the
energy market, utility-scale ba�ery adoption would be limited in the absence of sub-
sidies or mandates, due to the equilibrium e�ects and because of the option value of
waiting for future capital cost declines. We predict that the 2022 U.S. In�ation Reduc-
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tion Act storage subsidy of 30% is roughly su�cient to implement California’s 2024
ba�ery mandate of 5,200 MWh (1,300 MW). More ambitious policies to encourage
large-scale storage will be substantially more costly.

While our analysis makes several contributions towards understanding the eco-
nomics of ba�ery storage investment, our modeling approach has several important
limitations. First, we hold �xed the existing dispatchable generation capacity and the
associated electricity supply relationship, even though our results imply that utility-
scale ba�eries would lower dispatchable generator revenues and hence would likely
lead to retirements. We believe that modeling endogenous dispatchable generator re-
tirement is a useful area for further research. Second, we do not model the impact of
storage on grid reliability. �ird, we assume that ba�ery costs evolve exogenously, not
allowing for ba�ery mandates to lead to declines in production costs through learning-
by-doing. Fourth, we use weekly variation in renewable energy over our 4-year sam-
ple period and extrapolate to predict the value of storage investment in a world where
more renewable generation exists than we can observe within our sample. Finally,
we do not a�empt to solve for the optimal storage subsidy to mitigate environmental
externalities, given the complex interplay between a combination of mechanisms that
incentivize both renewable energy and storage.
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Online Appendix

A Additional Tables & Figures Referenced in Main

Paper

Figure A.1: Regulation Service �antity Procured by CAISO

Notes: �e �gure plots the mean hourly quantity of regulation services procured by CAISO each month.
Regulation quantity is calculated the sum of “regulation up” and “regulation down” quantities in the
day-ahead market.
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Figure A.2: Renewable Energy Over Time Under the California Renewable Portfolio
Standard

Notes: Each horizontal line shows the share of generation that must come from renewable sources in a
particular year under the California RPS. �e “All Renewables” line shows our linear interpolation of
the California RPS. �e “Solar + Wind” line shows our assumption about the solar and wind generation
in each year.
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Figure A.3: CAISO Electricity Market Trends

(a) Load (b) Solar PV Share

(c) Wind Share (d) Solar + Wind Share

(e) Natural Gas Price ($/mmbtu) (f) RTM Price ($/MWh)

Notes: Each panel plots the weekly average of a given single variable over the sample period. �e
solar generation measure does not include distributed generation. �e reported market prices are for
the CAISO South Zone Trading Hub (SP 15).
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Figure A.4: Real-Time Market Prices (5-Minute Frequency)

Notes: Figure shows the average real-time market price (South Hub - SP-15) for each 5-minute interval
of the day, separately for 2015 and 2019.
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Figure A.5: Operations Model (Single Day)

• f – state of charge

• s – time of day (e.g., Xd
s )

s ∈ 1, . . . , S, where S = 288

• Z̃ – lag of dispatchable generation

• εL – demand shock

• εP – supply shock

Elements of the state
• X – net load (i.e., load - wind - solar)
X = Xd

s + εL

Exogenous quantities

• Equilibrium supply relationship
P (d, Z, Z̃, εL, εP )

◦ Estimated for each day using
most recent seven days of DAM data
◦ Set Z = X and Z̃ = X̃ for estimation

of the supply relationship

• Joint conditional distribution of demand / supply
shocks dGε(εL

′
, εP

′|εL, εP )

◦ Estimated using 2015 data

Supply relationship and distribution of unobservables

υ2∗ – perceived round-trip e�ciency

◦ Solve perfect foresight model across
grid of candidate values for training
sample, determine best value a�er
accounting for simulated depreciation
υ2

• K – total ba�ery energy capacity

• F – power �ow capacity

• υ2 – actual round-trip e�ciency

Ba�ery technology

Vd(f, s, Z̃, εL, εP ) – ba�ery operator value function

◦ Solve single agent problem
(i.e., maximize the integral of the pricing function)
Wd(f, s, Z̃, εL, εP ) – single agent value function

Ba�ery optimization criterion

• q∗(f, s, Z̃, εL, εP ) – optimal ba�ery policy function

• Q(q∗, K) – total amount of discharge (+) / charge (-) q∗ from ba�ery �eet K

• Z – amount of electricity supplied by dispatchable generators
Z = X −Q

Endogenous quantities

(εL, εP ) – estimated as the di�erence between
RTM load / price and the DAM load / price forecast

Realized market shocks

• q∗1, . . . , q∗S

• P ∗1 , . . . , P ∗S

Equilibrium prices and quantity realizations

f0 – ba�ery state of charge
f0 = 0.5 (ba�ery half full)

Initial condition

fS – initial condition for the next day

Final energy inventory
Raw inputs & data

Inputs estimated parametrically from data

Inputs estimated from dynamic optimization

Outputs

Legend
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Table A.1: Summary Statistics for Estimated Net Load Model

2015 2016 2017 2018 2019 2016–19
(a) Dependent Variable: Net Loadt

Net Load DAM Forecast 0.969*** 0.950*** 0.950*** 0.971*** 0.955*** 0.956***
(0.003) (0.002) (0.001) (0.001) (0.002) (0.001)

Dependent Variable Mean 1794.61 1798.35 1734.13 1687.41 1599.83 1704.99
In-sample RMSE 67.721 83.007 77.494 74.292 80.513 80.511

(b) Dependent Variable: εLt
εLt−1 0.996*** 0.996*** 0.996*** 0.995*** 0.995*** 0.996***

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant 0.144** -0.014 -0.023 0.178*** 0.017 0.032***

(0.043) (0.016) (0.016) (0.023) (0.021) (0.009)
σL 6.426 7.110 7.245 7.591 8.131 7.530
Observations 17568 105408 105120 105120 105120 420768

Notes: �is table summarizes the estimates of the net load model. �e 2015 sample, which is used to
obtain the parameters of the AR(1) process, includes only November and December. We report standard
errors, clustered by day-of-sample, in parentheses.

Table A.2: Regression Results of Day-Ahead (DAM) and Real-time Market (RTM)
Prices on Natural Gas Price

Dependent Variable:
PDAMt PRTMt PRTMt − PDAMt

Mean Mean 10th 90th Mean 10th 90th
PNG 10.40*** 7.31*** 4.62*** 11.50*** -3.09*** -5.93*** 0.81

(0.58) (0.59) (0.54) (1.01) (0.46) (0.62) (0.63)

R-squared 0.32 0.15 0.09 0.14 0.04 0.06 0.00
Observations 1459 1459 1459 1459 1459 1459 1459

Notes: �is table summarizes the coe�cient estimates on the natural gas price from several regressions
where the dependent variable is a part of the distribution of the daily day-ahead (PDAM

t ) or real-
time (PRTM

t ) market prices or their deviation for that particular day. In all regressions, the unit of
observation is a day, and the sample is all days from 2016–2019. We calculate the distribution from
�ve minute or hourly prices over the day. We report heteroskedasticity consistent standard errors in
parentheses.
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Table A.3: Summary Statistics for Estimated Supply Relationship Parameters

Parameter 2015 2016 2017 2018 2019 2016–19
θ1
Mean -6.45 -27.24 -16.52 -11.71 -10.65 -16.54
Std. Dev. 8.82 25.62 19.50 14.32 14.92 20.21
25th-percentile -5.20 -52.95 -29.78 -12.16 -9.62 -21.27
75th-percentile -2.79 -4.80 -1.98 -3.27 -2.77 -2.99

θ2
Mean 18.39 161.30 93.27 50.95 45.55 87.82
Std. Dev. 53.17 192.24 144.39 107.31 107.98 149.54
25th-percentile 1.42 3.96 0.81 1.71 1.01 1.47
75th-percentile 15.67 365.00 135.41 23.13 12.96 63.66

θ3
Mean 2.07 1.37 1.47 1.16 1.07 1.27
Std. Dev. 1.35 0.89 1.02 0.58 0.39 0.78
25th-percentile 1.01 1.01 1.01 1.01 1.01 1.01
75th-percentile 3.81 1.01 1.01 1.01 1.01 1.01

κ
Mean 2.18 4.29 3.41 2.67 2.46 3.21
Std. Dev. 1.11 2.82 2.69 2.17 2.07 2.56
25th-percentile 1.42 1.75 1.25 1.38 1.24 1.35
75th-percentile 2.55 8.00 5.46 2.70 2.31 3.87

α
Mean 0.82 0.90 0.85 0.85 0.83 0.86
Std. Dev. 0.08 0.09 0.15 0.12 0.12 0.12
25th-percentile 0.76 0.83 0.76 0.80 0.73 0.79
75th-percentile 0.88 0.97 0.97 0.95 0.94 0.97

Notes: �is table summarizes the means, standard deviations, and 25th and 75th percentiles of the daily
estimated supply relationship parameters.
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Table A.4: Summary Statistics for Estimated Supply Relationship Residuals

2015 2016 2017 2018 2019 2016–19
Dependent Variable: εPt

εPt−1 0.947*** 0.849*** 0.897*** 0.832*** 0.839*** 0.861***
(0.013) (0.015) (0.017) (0.028) (0.019) (0.013)

Constant 0.005*** 0.004*** 0.007*** 0.010*** 0.008*** 0.007***
(0.001) (0.000) (0.001) (0.002) (0.001) (0.001)

σP,Peak 0.012 0.010 0.010 0.016 0.016 0.013
σP,O�-peak 0.010 0.006 0.008 0.012 0.014 0.010
Observations 17568 105408 105120 105120 105120 420768

Notes: �is table summarizes the estimates of the supply relationship residual (εPt ) parameters. �e
2015 sample includes only November and December. We report standard errors, clustered by day-of-
sample, in parentheses.
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Figure A.6: Equilibrium Prices E�ects and Dispatchable Generator Output

(a) Peak Five-Minute Equilibrium Prices (b) Mean Hourly Output from Dispatchable
Generators

Notes: Each line plots the mean counterfactual outcome for speci�c storage capacity level across all
days during 2016–19.
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Table A.5: Equilibrium Prices and Aggregate Ba�ery Capacity

Price (All hours) Price (6-9 AM) Price (10 AM - 3 PM) Price (5-10 PM)
0 35.92 31.44 25.15 54.25
10 35.91 31.43 25.15 54.23
100 35.84 31.39 25.13 54.04
1000 35.35 31.14 25.01 52.75
5000 33.90 30.33 24.88 48.67
10000 32.70 29.52 24.90 45.04
15000 31.96 29.03 24.95 42.79
25000 31.02 28.62 25.03 39.76
50000 30.20 28.61 25.42 36.84

Notes: Prices reported are in $/MWh and indicate the load-weighted mean across all �ve minute inter-
vals between 2016–19.

Figure A.7: Ba�ery Operations on Selected Days

Notes: �e black lines show the observed real-time market price in the absence of ba�ery operations.
�e orange lines show the equilibrium prices a�er incorporating storage operations. �e green lines
in both show the simulated amount of energy held in storage (i.e. the stock) as a percentage of energy
capacity on June, 23, 2016 and December, 29, 2018. �e simulations assume an aggregate storage
capacity of 25,000 MWh.
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Table A.6: Skew in Distribution of Ba�ery Operating Pro�ts Across Time Periods

Time Periods - Other Percentiles Time Periods - 99th Percentile

Ba�ery Capacity in MWh: 10 17,764.74 40,679.28
Ba�ery Capacity in MWh: 100 18,707.89 41,452.05
Ba�ery Capacity in MWh: 1000 17,292.98 38,399.72
Ba�ery Capacity in MWh: 5000 17,161.93 35,114.04
Ba�ery Capacity in MWh: 10000 16,433.17 32,413.34
Ba�ery Capacity in MWh: 15000 14,961.54 30,118.45
Ba�ery Capacity in MWh: 25000 12,145.14 26,559.53
Ba�ery Capacity in MWh: 50000 7,388.77 20,621.49

Notes: �e �rst column lists the aggregate ba�ery capacity. �e second column indicates the total revenue a ba�ery
owner would earn between 2016–19 summed over the least pro�table 99 percent of time periods. �e third column
lists the total revenue a ba�ery owner would earn summed over the most pro�table 1 percent of time periods. All
numbers are in $/MWh of capacity.
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Table A.7: Robustness Checks: Ba�ery Flow Return Regressions

Ba�ery Flow Return Per Unit Capacity ($/kWh)
(1) (2) (3) (4)

ln(K∗) -2.832 -2.832 -2.832 -2.832
(2.195) (2.195) (2.196) (2.195)

Renewable Share (%) 10.04∗∗ 9.857∗∗ 7.853 17.17
(4.229) (4.542) (4.779) (14.41)

ln(K∗) × Renewable Share (%) -0.6883∗∗∗ -0.6883∗∗∗ -0.6883∗∗∗ -0.6883∗∗∗
(0.1321) (0.1321) (0.1321) (0.1321)

Peak Load (Mean) 0.1573∗ 0.4517∗∗
(0.0878) (0.2268)

Load (Mean) 0.1760
(0.1258)

O�-Peak Load (Mean) -0.4900
(0.3610)

(Renewable Share)2 -0.2735
(0.3318)

Observations 1,664 1,664 1,664 1,664
R2 0.41319 0.41069 0.41648 0.40806
Within R2 0.09888 0.09504 0.10393 0.09100

Controls + week of year �xed e�ects X X X X

Notes: �e dependent variable is the annual �ow return per kWh of storage capacity. Each obser-
vation represents a single week of the sample for a single storage capacity. All columns include
controls for the mean natural gas price over the week and the Sacramento Valley hydroelectric wa-
ter year index (WYI) associated with that week. Peak load is the mean load between 5 PM and 9 PM
during the week; o�-peak load is the mean load at all other times. We cluster standard errors by
week of sample.

B Battery Market Structure

�is appendix documents the evolving industry structure of ba�ery storage in the Cal-
ifornia electricity market over the past few years. Before 2020, most ba�ery storage
projects were small in scale (e.g., less than 40MW).52 �is changed starting in 2020,
with the development of the Gateway Energy Storage System in California, which has
250MW of capacity ba�ery storage.53 Following this trend, Paci�c Gas and Electric
(PG&E)—California’s largest investor-owned utility—unveiled the Moss Landing site
for ba�ery storage in collaboration with Tesla in June 2022. �e Moss Landing fa-

52For an overview of the growth of ba�ery storage projects, see EIA (2022b).
53�e Gateway Energy Storage System is managed and operated by LS Power, which also owns the

40MW Vista Project which came online in 2018 (Spector, 2020).
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cility composed 182.5MW of the 955.5MW total storage capacity operated by PG&E.
With the Moss Landing Ba�ery Storage Project beginning operations in June of 2022,
California’s Independent System Operator (CAISO) had just over 3,160 MW of ba�ery
storage capacity, with an additional 700 MW of planned storage capacity scheduled to
come online later that month (CAISO, 2022).

Table B.1: Industry Structure of the CAISO Ba�ery Market

2018 2020 2022
Number of Entities 17 28 70
Total Capacity (MW) 233.3 528.9 4737.8
Top 4 Share 67% 71% 29%
HHI 1347 2522 432
Avg. Capacity (MW) 13.7 18.9 67.7

Notes: EIA Form 860 and authors’ calculations. Sample
includes all operating ba�ery plants in California in each
of the respective years.

Table B.1 provides some descriptive statistics of the industry structure of Cali-
fornia’s ba�ery market between 2018 and 2022. We calculate the statistics using the
entity-level capacity information provided by the Energy Information Administration
(EIA) in Form 860. �is table indicates several pa�erns. First, the growth in ba�ery
capacity from 2018 to 2022 was substantial. For instance, in 2018, the total amount of
ba�ery capacity operating in California was negligible, amounting to less than 240MW.
But, ba�ery capacity grew by nearly 2000% over this time frame. Second, there has
been a sizable uptick in the number of �rms operating ba�ery storage facilities in
California from 17 �rms in 2018 up to 70 �rms in 2022.

�ird, ba�ery market concentration fell markedly between from 2020 to 2022 (as
measured by capacities) in terms of both the top-four share and the Her�ndahl-
Hirschman Index (HHI). In the earliest years of ba�ery entry to the California market,
total capacity was relatively small and the four largest operating companies owned
71% of ba�ery capacity implying a ba�ery market HHI of 2,522. In contrast, many
new operating companies entered the ba�ery market in 2022, which led to both a large
increase in the market’s total capacity and a major reduction in the concentration of
ownership. Speci�cally, the combined market share of the four largest operating fell
to just 29% and the market HHI dropped to 432 in 2022.
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�ese recent changes in market structure suggest that the current ba�ery market
structure in California is relatively competitive. Overall, we view these statistics as
supporting evidence of our choice to model ba�ery operators as competitive players
in the electricity market. However, while the statistics presented above are indicative
that our perfect competition assumption is a reasonable approximation of the cur-
rent industry, there are a few important caveats. First, the reported market shares
and HHIs are based on operating companies’ reported names on EIA Form 860. In
our calculations, we assume that a di�erent operating company name implies a dis-
tinct competing �rm, but we cannot rule out that unique operating companies may be
owned by a common parent company. Second, because the ba�ery market is changing
rapidly over time, the current market structure may not necessarily match the future
structure of the market.

C Details of Supply Relationship Estimation

For each sample day, d, we estimate the supply relationship parameters using net load
and price data from the day-ahead market (DAM) over the previous week. Varia-
tion in these parameters across sample days, may be caused by shi�s in natural gas
prices, changes in the availability of low cost generation coming from nuclear power
plants and hydroelectric sources, as well as day-to-day changes in generator availabil-
ity and imports and exports from neighboring states. By using the DAM to estimate
the marginal cost curve, our approach allows us to account for market characteris-
tics that vary at a high frequency, while ensuring that our dynamic operations model
remains feasible in that it only uses information that would be available to a storage
operator in bidding in the real-time market.

Turning to speci�cs of the estimation of the supply relationship given in (4), we
facilitate estimation by standardizing each day’s DAM prices and net load forecasts.
For the DAM prices, we subtract the median and divide by the interquartile range
over the sample window. For net load, we divide by the maximum of that sample
window’s net load forecast. Finally, we restrict the parameter domain, Θ, to be such
that θ1 ∈ [−700, 500], θ1 ∈ [0, 500], θ3 ∈ [1.01, 4], κ ∈ [1, 8], α ∈ [0, 1].54

54We also compute a perfect foresight model, which uses the same marginal cost curve parameters.
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Turning to the structural unobservable (εP ), conditional on a set of supply relation-
ship parameters for any particular day, we recover a time series of εPt as the shocks
required to rationalize the RTM price observed at time t with the realizations of net
load and lagged net load. At time t, we obtain:

εPt = ln

[
Zt +

(
PRTM
t − θ1

θ2

)−1/θ3]
− ln

[
καZ̃1−α

t

]
, (C.1)

where we use the sample day d estimated values of (θ, κ, α).
As an example of the features of our approach towards modeling the supply rela-

tionship, Figure C.1 provides the supply relationship on June 2, 2016, when net load
was approaching the constraint on available generating capacity. From Figure C.1a, at
5:15 PM, the market equilibrium was near an in�ection point: an increase in net load
would signi�cantly raise equilibrium price, while a decrease in net load would only
have a small e�ect in decreasing price. Figure C.1b illustrates the importance of ramp-
ing costs in our model. At this same time, a 20% decrease in generation from fossil fuel
generators in the previous period (Z̃) would lead to a substantial price increase, with
a smaller price decrease from a 20% increase in Z̃ .

Figures C.1c and C.1d illustrate how our model rationalizes a rapid change in price
that occurred in the real-time market. At 3:20 PM on June 2, 2016, the real-time market
price was just under $50/MWh, then at 3:40 PM price nearly tripled to $140/MWh. As
evidenced by the change in the supply relationship curves between 3:20 PM (top sub-
panel of c) and 3:40 PM (top sub-panel of d), the model largely rationalizes this price
change as being due to a shock in the available generating capacity, εPt —as opposed to
an anticipated or unanticipated movement along the curve driven by net load—perhaps
due to unplanned generator outages or a transmission congestion event.

Figure C.2 provides the �t of the supply relationship for June 28, 2016. �e maroon
dots show the net load forecasts and DAM price realizations. �e blue line shows the
predicted DAM prices as a function of the forecasts of net load from our estimated
model. Finally, the orange line shows the predicted DAM prices as a function of the
forecasts of net load from a model estimated without ramping costs (i.e., α = 1). By
allowing for ramping costs, the blue line is able to explain more of the variation in the
DAM prices than the orange line, and hence lies closer to the maroon dots.
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Figure C.1: Time-Varying Marginal Cost Curve

(a) Price Rises at Capacity Constraint (b) Generation Output at t− 1 shi�s MC

(c) Equilibrium Before Price Spike Event (d) Equilibrium During Price Spike Event

Notes: �is �gure displays supply relationships for June 2, 2016. Figure C.1a shows the market equi-
librium and the implied generation capacity available for a single �ve-minute interval. Figure C.1b
shows how 20% changes in last period’s dispatchable generation would shi� the supply relationship.
Figures C.1c and C.1d show how both the net load and the supply relationship shi�s during a period
when price increased rapidly over a 20-minute span.

Figure C.2: Supply Relationship From Day-Ahead Market

Notes: �is �gure displays the day-ahead market prices and forecast of net load for each hour for June
28, 2016. Additionally, the �gure displays the estimated supply relationship with ramping costs (blue
line) and without ramping costs (orange line). �e reported market prices are for the CAISO South
Zone Trading Hub (SP 15).
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D �e Kalman Filter/Smoother

As described in Section 3.2, a complication of our data is that CAISO implements the
day-ahead market (DAM) only at the hourly frequency, reporting prices and forecasts
for net load that are constant over the 12 5-minute intervals of each hour. Our oper-
ations model and the real-time market (RTM) prices use a 5-minute frequency. �us,
our estimation procedure needs to accommodate the mixed-frequency nature of the
data.

We use the Kalman �lter/smoother to temporally disaggregate (i.e., interpolate)
the forecasts of net load to yield a forecast at the 5-minute frequency. Generically,
assume that a series At is observed only every h periods, and what is observed is the
average of the interim h periods of the latent process at, so At = 1

h

∑h−1
j=0 at−j . Our

objective is to take the observed seriesAt and construct estimates of the latent process
at such that the implied values of the accumulated version of that series, φt, match the
observable data (At) at the end of the h periods. We cast the problem as a state space
model and use the Kalman �lter/smoother to estimate the latent process (e.g., Proie�i,
2006).

More speci�cally, we use the following state space model:

At = Ht

 at

φt

 ,
 at

φt

 = Mt

 at−1

φt−1

+ Utψt, ψt ∼ N(0, 1),

whereHt is a deterministically time-varying selection matrix55 designed to handle the
missing observations of At; Mt

56 and Ut57 are deterministically time-varying matrices
designed to create the accumulated version of the latent process, φt; and ψt is a serially
independent error term that contributes to the time series variation in the latent pro-

55Ht iterates between the matrix [0 1] on the last period of each hour (the period we observe At,
and [0 0] for the �rst to penultimate period of each hour.

56Mt takes 12 possible values for each period within the hour such that Mt = [1 0; 1/j(t) (j(t)−
1)/j(t)], where j(t) is the period within the hour associated with time period t.

57Ut takes 12 possible values for each period within the hour such that Ut = [1; 1/j(t)], where j(t)
is the period within the hour associated with time period t.
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cess of interest at. We use the techniques outlined in Harvey (1989) and Durbin and
Koopman (2012) to recover an estimate of the latent at for each �ve minute interval in
our sample.58 We then use these estimates to augment our data on the deterministic
portion of net load, XL

s .

E Modeling Battery Capacity Depreciation

We model capacity fading or depreciation using Xu et al. (2016). In their approach, the
depreciation rate of a ba�ery is a non-linear function of time and cycling. Speci�cally,
depreciation depends on: (1) temperature, (2) depth-of-discharge, (3) state-of-charge,
(4) calendar time, and (5) number of cycles. For our application, we assume that bat-
teries are operated at 25◦C (77◦F) throughout the year, which is the Xu et al. base
case.

Let K denote the ba�ery’s capacity this period, K ′ denote its capacity next pe-
riod,59 and gd be the term that determines degradation between the current period and
next period, so that:

K ′ = K exp(−gd). (E.1)

From Xu et al. (2016), gd consists of calendar degradation and cycle degradation.
�e �rst component of the degradation function, calendar degradation gt, is the

portion that occurs regardless of how much the ba�ery is charged or discharged. Cal-
endar degradation is a function of elapsed time as well as the ba�ery’s mean state-
of-charge. Ba�ery capacity will degrade more if the ba�ery is le� idle at full state-of-
charge relative to if the ba�ery is le� idle at 50% state-of-charge. More concretely, at
25◦C, calendar degradation is the following function of elapsed time in seconds, t̃, and
the mean state-of-charge during the time elapsed, σ̄:

gt = 0.000000000414× t̃× exp(1.04(σ̄ − 0.5)). (E.2)

�e second component of the degradation function, cycle degradation, is the de-
preciation a�ributable to operations. Using the Xu et al. notation, de�ne N to be

58See Brave et al. (2021) for the explicit recursive formulation of the Kalman �lter/smoother equa-
tions for a temporally aggregated series involving an average.

59We use a period length of a week, as we discussed in Section 5.2.
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the total number of cycles that the ba�ery undertakes during a time period, where a
full cycle indicates a ba�ery making a roundtrip of charging and discharging; ni to
indicate if cycle i was a full roundtrip cycle (ni = 1) or a half cycle (ni = 0.5) of ei-
ther charge or discharge; and gci to be the cycle degradation during cycle i. �e cycle
degradation gci depends on the mean state-of-charge during cycle i, σi, as well as the
depth of discharge of the cycle, δi. �e depth of discharge indicates what fraction of
power was gained or lost during the cycle. Cycle degradation is convexly increasing
in the depth of discharge. E.g., cycling from 0% to 100% once is more damaging than
cycling from 25–75% twice. Applying Xu et al. (2016) to the case of 25◦C,

gci = exp(1.04(σi − 0.5))× (140000δ−0.501i − 123000)−1. (E.3)

We combine the di�erent degradation terms to write:

gd = gt +
N∑
i

nigci. (E.4)

From (E.2)–(E.4), capacity depreciation gd is a function of t̃, N , σ̄, and ni, δi, and
σi,∀i = 1, . . . , N .

Following Xu et al. (2016), we perform the following algorithm to simulate capacity
depreciation for our evaluation sample:60

1. Solve the optimal policy for a given week. Recall that we solve for policies sep-
arately for each day within the week and that our policy functions for the eval-
uation sample incorporate a heuristic approach that limits cycling due to depre-
ciation.

2. Use the optimal policy from (1) and the realized stream of net load residuals εL,
price residuals εP , and supply curve parameters across all time periods in the
week to simulate charge/discharge actions.

• Record the ba�eries’ state-of-charge for each 5-minute time interval of the
simulation.

60Our algorithm for the training sample is similar, but occurs over the entire 2015 training sample
period—rather than separately by each week—and uses perfect foresight policies.
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3. Calculate gt over the simulation period using (E.2).

• Use the recorded state-of-charge path to calculate the mean state-of-charge
over the simulation period, σ̄.

• Over one week, t̃ = 60× 60× 24× 7 = 604, 800.

4. Feed the recorded state-of-charge path into a rain�ow cycle counting algorithm.

• See h�ps://www.mathworks.com/matlabcentral/�leexchange/3026-rain�ow-
counting-algorithm.

• �e rain�ow counting algorithm returnsN andni, δi, and σi,∀i = 1, . . . , N .
In words, it returns the number of cycles and whether each cycle is full or
half, and determines the depth-of-discharge and mean state-of-charge for
each cycle.

5. Calculate gci,∀i = 1, . . . , N using (E.3).

6. Calculate the total depreciation rate exp(−gd) for each week-long simulation
using the above estimates and (E.4) and (E.1).

Finally, we note that this formulation implicitly assumes that both power and en-
ergy capacity depreciate through cycling. �e engineering literature shows that pri-
marily energy capacity should degrade. �erefore, our calculation should provide a
lower bound on the social value of storage.

F Details of Battery Capital Costs Estimation

�is appendix provides details on our estimation of ba�ery capital costs. �e National
Renewable Energy Laboratory (NREL) cost projections in Figure 2a motivate the func-
tional form we use, in (13. In particular, they demonstrate: (i) a downward trend in
costs, (ii) a non-linear trajectory to costs, (iii) an increase in the uncertainty the further
we are in the future, and (iv) positive skewness in the distribution of future costs. �e
downward trend in costs motivates the dri� term in our model; the non-linear trajec-
tory motivates the exponential formulation; the increasing level of uncertainty in the
forecast uncertainty motivates the unit-root (in logarithms) formulation of the model;
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and the positive skewness in the cost assessments justi�es the log-normal distribution
for the shock process.

Our estimation treats the �rst year of our sample, 2018, as y = 0. We rescale costs
in year y to be relative to initial cost c0, so that c̃y ≡ cy/c0. Taking logs of both sides
of the (rescaled) capital cost evolution equation (13) from Section 5.2, we obtain:

ln (c̃y)− ln (c̃0)︸ ︷︷ ︸
ln 1=0

= τ × y +

y∑
1

ξy. (F.1)

We use a method of moments approach to recover the two parameters τ and σc.
Using (F.1), we derive the following moment conditions. First moment:

E[ln (c̃y)] = τ × y. (F.2)

Second moment:

Var [ln (c̃y)] = Var
[
yτ +

y∑
1

ξy

]

⇒ Var [ln (c̃y)] = Var [yτ ] + Var
[

y∑
1

ξy

]
⇒ Var [ln (c̃y)|y] = y × Var [ξy]

⇒ SD [ln (c̃y)|y] =
√
y × SD [ξy]

⇒ SD [ln (c̃y)|y] =
√
y × σ. (F.3)

We estimate the parameters τ and σc that solve the two moment conditions by
estimating two univariate regressions, pooling across the set of cost projections. For
the �rst regression the dependent variable is ln (c̃y), and the independent variable is y.
For the second regression, the dependent variable is the standard deviation of all the
logged cost realizations ln (c̃y) conditional on y and the independent variable is√y. To
accommodate the variation in the number of cost assessments over time, the second
regression uses weights based on the number of cost projections that were made for
that year.61

Importantly, we do not observe actual realizations of the ba�ery capital cost pro-

61Figure 2a shows that years that are further in the future tend to have fewer cost projections.
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cess, only the set of projected cost realizations from Cole and Frazier (2019). �erefore,
our estimation treats each cost projection (i.e., each line in Figure 2a) as a realization
of the cost process. Our estimates for the cost process are τ̂ = −0.044 (with a stan-
dard error of 0.001) and σ̂c = 0.064 (with a standard error of 0.003). Following Cole
and Frazier (2019), our simulations use an initial condition for capital costs in 2018 of
c2018=$380/kWh. Since we use NREL data, our estimates pertain exclusively to lithium-
ion ba�ery costs, and do not include alternative storage technologies or account for
learning-by-doing.

G IdentifyingMarket PowerwithCEMSMarginalCost

Data

�is appendix considers an alternative way to identify dispatchable generator mar-
ket power, that we considered but did not use in our main simulations. �is method
involves calculating observable marginal costs at the generator level and using these
data to recover markups.

Towards these ends, we gathered all the generators that report their generation
and fuel consumption in the Environmental Protection Agency’s (EPA) Continuous
Emissions Monitoring System (CEMS) database in the state of California, calculating
their capacity and heat rate following Gowrisankaran et al. (2022). We constructed a
marginal cost for each generator by using the following formula:

MCit = Heat Rateit × Fuel Pricet × (1.0526) + 2.37, (G.1)

where Fuel Pricet is the spot price for fuel (e.g., natural gas) and can vary over time,
the scale 1.0526 re�ects the adjustment for approximated 5% losses from gross to net
generation (Gra� Zivin et al., 2014), and $2.37 re�ects an adjustment for variable op-
erations and maintenance (O&M) costs from the CEC 2019 report (California Energy
Commission, 2019).62 Next, we constructed an industry marginal cost curve by sorting
the generators from lowest to highest marginal cost and assuming constant marginal
cost for each generator up to its capacity. When combined with information on total

62Note that the marginal costs in (G.1) do not include ramping costs.
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net generation, the industry marginal cost curve can be used to predict the market
clearing price, absent misspeci�cations and market power.

We de�ned the set of available generators in the market at each hour with two
di�erent approaches:

1. For every hour, we assume that only generators that produced in that hour are
available to produce.

2. For every month, we assume that generators that produce at some hour in that
month are available to produce at every hour in that month.

For both approaches, we implemented a robustness check where we restrict the gener-
ators in the sample to those in Southern California, which we de�ne as below latitude
36.7378 (essentially south of Fresno).

Figure G.1 displays the industry marginal cost curve, using July 2016 natural gas
prices and method 2 for calculating the set of available generators. We observe the
hockey-stick nature of the industry marginal cost curve: costs are below $40MWh
for much of the domain of the curve, but tick up sharply a�er 30,000 MWh. We plot
the distribution of the hourly total generation from all the units in the CEMS data
during July 2016 on top of the industry marginal cost curve. Surprisingly, we do not
observe even one hour with net load su�cient to reach the steep part of the cost curve.
�is �gure shows that this cost curve is unlikely to reproduce the observed wholesale
electricity price spikes, which are a crucial component of the revenues that ba�eries
earn.

Figure G.2 displays the cost curve and distribution of total hourly generation for
July 2016, but now for generators in Southern California. While both the cost curve
and distribution of total hourly generation are shi�ed to the le�, we observe the same
pa�ern as in Figure G.1.

Next, we summarize the descriptive evidence of how the two measures of industry
marginal cost relate to the day ahead market prices we observe for the SP-15 hub. To
do this, we run regressions of the following form:

PDAM
t = β0 + β1MCt + εt

where PDAM
t is the day-ahead market price and MCt is industry marginal costs (de-
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�ned using both methods). In some speci�cations, we include a day-of-sample �xed
e�ect, in which case the coe�cient β1 is identi�ed only from within-day (hourly) vari-
ation in market-level marginal costs and day-ahead market prices.

Tables G.1 reports the coe�cient estimates from these speci�cations for all gen-
erators in California, while Table G.2 includes only Southern California generators.
�e tables show that, without �xed e�ects, industry marginal costs explain only a
relatively small fraction—21 percent at the highest—of the overall DAM price varia-
tion. Method 2 performs be�er than method 1 in explaining DAM prices. Nonetheless,
across speci�cations and sample, the highest R2 we observe is 37 percent, implying
that this approach does not predict the majority of the DAM price variation.

We opted not to use this method for our main simulations because of its lack of
predictive power and the fact that it cannot predict the observed price spikes. Our
supply relationship accounts for four potential forces that we cannot obtain from the
CEMS data: market power, ramping costs, imports, and transmission constraints. We

Figure G.1: Market Wide Hourly Generation and Supply Curve

Notes: �is �gure plots the (sorted) distribution of marginal costs for each generator in Southern
California (using method 2 to determine available generators) along with the histogram of generation.
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believe that these forces may explain some of these discrepancies.

Table G.1: Results of Day-Ahead Market Prices on Marginal Costs

Dependent Variable: PDAMt

Industry MC Method 1 Industry MC Method 2
Marginal Cost 0.73 2.63 1.66 15.24

(0.02) (0.34) (0.04) (1.18)
Constant 2.35 -81.16 -3.16 -313.43

(0.63) (14.87) (0.78) (26.94)

Day FEs X X
R-squared 0.16 0.07 0.20 0.37
Observations 34988 34988 34988 34988

Notes: �is table displays coe�cient estimates for regressions of the day-ahead market price on
marginal costs for all generators in California. We report heteroskedasticity consistent standard er-
rors in parentheses.

Figure G.2: Southern CA Hourly Generation and Supply Curve

Notes: �is �gure plots the (sorted) distribution of marginal costs for each generator in Southern
California (using method 2 to determine available generators) along with the histogram of generation.
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Table G.2: Results of Day-Ahead Market Prices on Marginal Costs (South CA)

Dependent Variable: PDAMt

Industry MC Method 1 Industry MC Method 2
Marginal Cost 0.82 2.28 1.70 11.88

(0.02) (0.26) (0.04) (0.90)
Constant 1.16 -59.22 -4.19 -237.15

(0.67) (10.57) (0.80) (20.71)

Day FEs X X
R-squared 0.17 0.08 0.21 0.33
Observations 34988 34988 34988 34988

Notes: �is table displays coe�cient estimates for regressions of the day-ahead market price on
marginal costs for all generators in Southern California. We report heteroskedasticity consistent stan-
dard errors in parentheses.
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