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Abstract

I study heterogeneity in demand elasticities as a source of risk in asset pricing. I use

high-frequency product price and quantity data from Amazon to overcome the classical

endogeneity challenge and estimate demand elasticities for a large cross-section of firms.

I find that firms facing more elastic demands are riskier and this is reflected in higher

equilibrium average stock returns (6.2% annual return premium). I show that price stick-

iness contributes to these differences in risk: firms are slow to react to competitors’ price

changes (compared to the predictions of a Calvo model). My empirical findings show the

importance of having heterogeneous demand elasticities and degrees of price stickiness in

macro-finance models.
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I. Introduction

Marshall’s (1890) seminal work developed the concept of demand elasticity: the extent to

which demand varies in response to a price change. Since then the concept has been central

in economics (e.g. Gali (1994), Raith (2003)). This paper studies the role of demand in asset

pricing, namely the relation between demand elasticities and frequency of price adjustment at

the firm level and their joint implications for firm fundamentals and asset prices. The asset

pricing literature, often assumes that firms face the same elasticity which overlooks the relation

between demand elasticity, nominal rigidities and asset prices. In a standard macro-finance

model, nominal rigidities generate operational leverage in firms and create a role for demand

elasticity. The main empirical contribution of my paper is to estimate demand elasticities for a

large cross-section of products and firms and understand the risk implications of differences in

elasticity. I overcome the classical endogeneity challenge in estimating demand elasticities by

using a novel high-frequency product level dataset from Amazon.

While the relation between sticky prices and asset pricing has been studied in the literature

(namely Weber (2015) and Gorodnichenko and Weber (2016)), the role that demand elasticity

plays in either nominal frictions or asset pricing has not. Further, most asset pricing accounts for

risk and returns of firms focus on supply side factors, such as investment, leverage, profitability,

value, liquidity, among others.1 This paper instead focuses on the demand side.

The first building block of my analysis is to develop a New-Keynesian model where firms are

heterogeneous in the demand elasticity that they face, potentially correlated with their degree

of nominal rigidities. To do so, I generalize the standard multi-sector New-Keynesian model

(e.g. Carvalho (2006), Nakamura and Steinsson (2010) and Weber (2015)), in which firms face

nominal rigidities in adjusting their prices and allow for both heterogeneous degrees of price

stickiness and heterogeneous demand elasticities. I calibrate the benchmark model to generate

reasonable macroeconomic and asset pricing moments.

In the model when faced with a shock, firms’ optimal prices change and, all else equal,

move more in the sector with high elasticity of demand. The existence of nominal frictions

leads firms in this sector to be further away from their optimal reset price, thus making them

riskier. In equilibrium, their markups co-move more with marginal utility, thus yielding higher

1There is a vast literature studying supply side factors and the cross-section of returns: Fama and French
(2015), Zhang (2005), Carlson, Fisher, and Giammarino (2004), Kogan and Papanikolaou (2013), Pástor and
Stambaugh (2003), Gomes and Schmid (2010), among many others.
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expected returns. In good times, firms in the high-elasticity sector pay more dividends than

firms in the low-elasticity sector, precisely because their markups co-move more with the busi-

ness cycle. This makes firms in the high-elasticity sector pay more when the marginal utility of

wealth is lower, so they are riskier in equilibrium. The benchmark calibration generates a 7%

return spread between firms facing high elasticities of demand versus firms facing more inelastic

demands.

In the model expected returns weakly line up with CAPM betas - firms facing high elasticities

have higher returns and higher CAPM betas - this is because their cashflows co-move more with

aggregate market cashflows.

The model also predicts that firms in the high-elasticity sector have lower equilibrium

markups: there is a one-to-one mapping between steady-state markups and demand elastic-

ity parameters, with firms with higher elasticity having lower markups. This is an important

model prediction, as it allows me to distinguish its mechanism from that of Weber (2015) where

heterogeneity is only in the degree of nominal rigidities. In fact, I show that if heterogeneity

among firms comes only from nominal rigidities, then firms with more sticky prices have higher

returns and higher markups. This is due to a precautionary savings motive, as firms with higher

degrees of nominal rigidities fear locking a low markup more and therefore charge slightly higher

markups.

To test the model predictions, I need firm-level estimates of demand elasticity. There are

several well-known challenges in estimating them. The first is the standard endogeneity prob-

lem: firms’ decisions to change prices are endogenous and empiricists only observe equilibrium

prices and quantities, which makes it difficult to estimate the slopes that generated the equi-

librium outcomes. This classical challenge can be overcome either by relying on parametric

assumptions regarding the shape of the demand (e.g. Broda and Weinstein (2010) and Feen-

stra (1994)), or by using instruments to trace out demand (e.g. Berry, Levinsohn, and Pakes

(1995), Hausman (1996) and Nevo (2001)). Further, even when instruments can be found, it is

hard to do so for a large cross-section of firms.

The main empirical contribution of this paper is the development of a novel approach to

estimating demand elasticities for a large cross-section of firms. I use high-frequency micro-

level product data (prices and quantities) provided by Keepa, one of the largest Amazon US

product trackers. I construct a database from scratch, with the price and quantity data of more

than 280 thousand products sold by US public firms. I address the identification challenges
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by looking into how quantity moves in a very narrow window around a price change. In

particular, I estimate elasticity by measuring quantity demanded right before the price change

and I see how quantity evolves within a short time-frame (12 hours) after the price has changed.

This identification strategy to measure demand elasticities draws on the vast literature of high

frequency identification of monetary policy shocks (e.g. Chodorow-Reich (2014), Gertler and

Karadi (2015), Nakamura and Steinsson (2018), among others).

Naturally, price changes are endogenous, and my identification could fail if changes in prices

are happening in response to a shift in the demand curve. To address this issue, I ensure

that in these narrow windows, there are no demand shifts or expected demand shifts, and that

therefore only the price shift is affecting the quantity demanded. I exclude price changes that

occur when demand shifts are predictable (such as holidays and sales periods).

Second, my strategy could fail if firms are quick to react to competitors’ price changes,

which would trigger a shift in the demand curve faced by the firm for which I am estimating

demand elasticity. I ensure that in such narrow windows, there are no competitors moving

their prices. In fact, I find that firms are slow to adjust their prices when competitors change

theirs. The degree of price synchronization across products that are close substitutes is 4%: an

order of magnitude lower than the Calvo (1983) model would imply, where price changes are

purely random. Even in such a case, the degree of price synchronization is higher than what is

observable in the data.

The fact that firms are slow to react to competitors price changes is an important empirical

result, because it sheds light on the nature of nominal frictions. Take for example a menu cost

model: in such a model, price synchronization is one - if a firm changes its price, all firms that

produce goods that are close substitutes change their prices. The same is not true for models

such as the Calvo model, where the degree of price synchronization is lower than one, but even

such a model fails to match the observable low degree of price synchronization in the data.

To further address endogeneity of price changes, I use standard instrumental variable meth-

ods to estimate demand elasticity. The main drawback of using instruments to trace demand

is the reduction in sample size, as it is not possible to find an instrument for every product

in the sample: an issue that does not arise with the high-frequency identification of demand

elasticities. In particular, I follow Hausman (1996) and Nevo (2001) and use prices of the same

products on Amazon Canada to instrument for demand. These instruments rely on the as-
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sumption that the demand shocks are uncorrelated across the two markets.2 Using instruments

instead of the high-frequency strategy to estimate demand elasticity does not change the main

results of the paper.

The estimated elasticities have several reasonable economic properties. First, elasticities are

negative, as standard microeconomic theory would predict. Second, consumer goods industries

such as clothing and non-durables have a more inelastic demand than durables and manufac-

turing industries, which is consistent with the fact that agents’ have the choice of holding a

durable good for longer and waiting for a price decrease (e.g. Gowrisankaran and Rysman

(2012)). Third, elasticities seem to be fairly stable over time.

To study the impact of heterogeneous demand elasticities and nominal rigidities on firm

fundamentals and asset prices, I merge the estimated elasticities with CRSP and Compustat.

My sample contains an average of a thousand products per firm and 250 public firms. Returns

monotonically increase for stocks sorted on demand elasticity: there is a 6.2% return differential

between high- and low-elasticity firms. This return premium is statistically and economically

meaningful. I show that the return spreads of elasticity-sorted portfolios are weakly explained

by systematic risk or CAPM betas. In addition, I show that firms in highly elastic sectors

have lower markups over marginal costs. This is in line with the prediction of the theoreti-

cal model: firms with a lower degree of monopoly power charge lower prices relative to costs.

This is an important result, because a potential alternative explanation for the difference in

expected returns is differences in the frequency of price adjustment (Weber (2015)). I show that

heterogeneity in price stickiness and heterogeneity in elasticities have similar implications for

expected returns: both higher elasticities and higher degrees of price stickiness imply higher ex-

pected returns. The implications are, however, opposite for markups. Higher elasticities imply

lower equilibrium markups whereas higher degrees of price stickiness imply higher equilibrium

markups. Empirically, the elasticity-sorted portfolios have similar degrees of price stickiness

and higher-elasticity portfolios have lower markups.

The last section of this paper is dedicated to showing that the asset pricing results are

robust. The empirical finding that firms with higher elasticities earn higher returns holds in

a large out-of-sample period. Also, I show that the results are not driven by industry-specific

2In particular, Hausman assumes that a price in one market is a function of the average marginal costs of a
product plus a markup amount that the firm is able to charge due to customers differing willingness to pay for
that product in that specific market. If demand shocks for a product in Canada and the US are uncorrelated,
then the price of the product in Canada will be correlated with the price of the same product in the US, due to
common marginal costs.
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characteristics. Even within industries, there is significant heterogeneity in the elasticity of

demand across firms; using standard panel regressions, I show that firms with higher elasticities

have higher returns even after controlling for time- and industry-fixed effects.

The paper is structured as follows: Section II offers a literature review, Section III lays

down a theoretical framework to guide the empirical tests, Section IV describes the data and

identification strategy, Section V shows the empirical results and Section VI concludes.

II. Literature Review

This paper is related to the literature on sticky prices and the intersection of sticky prices and

asset pricing.

First, my paper is related to the empirical literature on sticky prices in retail markets.

Cavallo (2017) undertook the first large-scale comparison of prices simultaneously collected

from online stores and physical stores (e.g. Walmart online and Walmart stores), in 56 multi-

channel retailers in 10 countries. He finds that online and offline prices are similar 72% of the

time and that online and offline price changes have similar frequencies and magnitudes. He

also finds that, 40% of the time, Amazon prices are identical to those of the products in stores,

which is surprising as Amazon is a different retailer. This means that Amazon price data can

be used to make inferences about physical retail markets and not only about online retail.

Furthermore, Cavallo (2016) finds that standard product-level datasets such as the Con-

sumer Price Index (CPI) dataset and scanner datasets (for example the Nielsen dataset) suffer

from several biases. On the one hand, price imputation and substitutions of temporarily missing

products in the CPI dataset do not allow researchers to correctly know the quantity and price of

a given product. On the other hand, the Nielsen dataset also suffers from a bias due to weekly

averaging of individual product prices, which misses intra-week temporary shifts in prices, such

as discounts and stock availability. Monthly and weekly data collection (a characteristic of

these datasets) makes it difficult to disentangle shifts in the demand curve from shifts along

the demand curve due to price changes. Scraped data such as the data collected by Keepa,

which I use in this study, makes it possible to circumvent the issues of price imputation and

averaging, as one can observe quantity and prices at higher frequencies. These high-frequency

observations also make it easier to identify shifts along the demand curve and consequently to

estimate demand elasticities.

Second, my paper relates to the literature on demand elasticity estimation. One common
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way to estimate elasticities is to rely on instruments (e.g. Berry, Levinsohn, and Pakes (1995),

Nevo (2001) and Hausman (1996)) to trace out demand. Due to the difficulty of finding good

instruments, this approach is rarely applied to a large cross-section of products. An alternative

approach is to make parametric assumptions regarding the shape of demand and supply. For

example, Feenstra (1994) and Broda and Weinstein (2010) assume that demand and supply

curves are linear in logarithm and that elasticities of products within a given product group are

the same. This allows them to estimate constant demand and supply elasticities within product

groups using panel data. I propose an alternative approach to estimating demand elasticities,

which makes use of high-frequency data and allows me to make use of the full sample. As a

robustness test, I run the same estimation using Hausman (1996) instruments to trace demand.

Finally, my paper is related to the asset pricing literature in the presence of nominal rigidi-

ties. The closest papers to mine are Gorodnichenko and Weber (2016) and Weber (2015), which

look at how price stickiness relates to asset prices.

III. Framework

I develop a general equilibrium model to study the relation between demand elasticities and

asset prices. The model will guide the empirical analysis, and will allow me to investigate

potential alternative channels and test them in the data. In the appendix AI, I provide the

basic intuition and qualitatively describe the main mechanism at play in a static one-period

model. In the main text below, I develop a dynamic stochastic sectoral equilibrium model to

evaluate the mechanism quantitatively.

The model features firms that exogenously face different elasticities of demand which may

be correlated with the degree of nominal frictions.

A. Dynamic Model

I develop a quantitative neoclassical multi-sector equilibrium model in which sectors face differ-

ent elasticities of demand and evaluate differences in risk among firms in the different sectors.

The model is a generalization of the New-Keynesian multisector models (e.g. Carvalho (2006),

Nakamura and Steinsson (2010) and Weber (2015)). In the aforementioned models, the hetero-

geneity among sectors comes from differences in the degree of price stickiness. In my model,

firms in different sectors can face both different demand elasticities and different degrees of

nominal rigidity. In this section, I lay down the main model equations and leave details and
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derivations for the appendix.

The model delivers sharp quantitative implications that can be tested in the data. Sections

A.1, A.2 and A.3 lay out the set of agents in the model and their optimization problems. Section

A.4 calibrates the model. Section A.5 describes the model fit, its implications and the main

mechanism underlying the results.

A.1. Households

There is a continuum of households indexed by i ∈ [0, 1]. Each household derives utility from

consumption goods and supply differentiated labor services (nt,i). The representative household

has an utility function separable in a consumption bundle (Ct) and labor and maximizes:

Et

∞∑
s=0

βs
[
u(Ct+s − νCt+s−1)−

∫ 1

0

v(nt+s,i)di

]
(1)

where β is the time discount factor. The utility exhibits external habits in consumption (as in

Christiano, Eichenbaum, and Evans (2005)), with intensity governed by the parameter ν. Each

agent has some monopoly power in the labor market and posts the wage at which he/she is

willing to supply labor services to firms that demand them.

Households consume goods produced in two sectors k ∈ {1, 2}.3 In each sector k there is a

continuum of heterogeneous goods j ∈ [0, 1] being produced. The output of each sector is given

by the Dixit-Stiglitz aggregator over the different varieties:

Ck,t =

[ ∫ 1

0

C
ηk−1

ηk
t,k,j dj

] ηk
ηk−1

k ∈ {1, 2} (2)

The sectors are heterogeneous in terms of the elasticity of demand that they face, i.e. holding

everything else constant, the demand elasticity of any product j from sector k is given by:

∂Ct,k,j
∂Pt,k,j

Pt,k,j
Ct,k,j

= −ηk (3)

Finally, households bundle the consumption from each sector into an overall consumption

basket, Ct, using an upper Dixit-Stiglitz aggregator with elasticity of substitution between the

two sectors equal to η. Without loss of generality, I assume that the elasticity of substitution

between sectors is lower than within sectors: η1 > η2 > η. The representative agent Euler

3The model can be easily generalizable to have an arbitrarily larger number of sectors
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equation is given by:

1 = βRtEt

[
1

πt+1

(Ct+1 − bCt)−γ

(Ct − bCt−1)−γ

]
(4)

A.2. Wage Setting

I follow Erceg, Henderson, and Levin (2000) and Woodford (2013, chapter 4.1), and I model

staggered wage contracts à la Calvo (1983): in each period, only a fraction 1−θw of households,

drawn randomly from the population, reoptimize their posted nominal wage. There is a single

labor market, with producers of all goods facing the same wages. However, the labor used

to produce each good is a CES aggregate of the continuum of types of labor supplied by the

representative household:4

Nt ≡
[ ∫ 1

0

n
ηw−1
ηw

i,t di

] ηw
ηw−1

(5)

where ηw is the elasticity of substitution across different labor types. Consider a household

resetting its wage, wt,i, in period t. Given the household marginal utility of wealth λt, he/she

will choose wt,i to maximize:

Et

∞∑
s=t

(βθw)s−t[λswt,ins,i − v(ns,i)] (6)

subject to labor demand on the part of firms. Wage rigidity is important in the model to match

the volatility of the ratio of labor hours to output. In absence of wage rigidities, labor hours in

the high-elasticity sector would be too volatile. The presence of wage rigidities makes it harder

to move labor between the two sectors.

A.3. Firms

Firm j from sector k hires labor services to produce its output using a linear constant returns

to scale technology:

Yt,k,j = Atnt,k,j k ∈ {1, 2} (7)

4It follows that demand for labor of type i on the part of wage-taking firms is given by: nt,i = Nt

(
wi,t
Wt

)−ηw
,

where Wt is aggregate average wage.
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where nt,k,j is an aggregate of the different types of labor supplied by households and hired by

firm j in sector k. At is aggregate productivity, it follows an AR(1). The firms in this economy

face a nominal rigidity, which I model using the standard Calvo (1983) time-dependent price

changes: in each period, firms receive an opportunity to change their prices at no cost with

probability (1 − θk), but otherwise price changes are infinitely costly.5 The firms’ objective is

to maximize the expected real present value of a dividend flow, Et[
∑∞

t=0 m0,tdt,k,j], where dt,k,j

denotes the real dividend and m0,t is the stochastic discount factor. Given the monopolistically

competitive product markets, firms’ maximization problem is subject to a demand constraint.

Formally, firms solve:

max
P ?t,k,j

Et

[ ∞∑
t=0

(βθk)
tm0,t[P

?
t,k,jYt,k,j − wtnt,k,j]

]
(8)

subject to:

Yt,k,j =

(
P ?
t,k,j

Pk,t

)−ηk
Yt,k(ωk)

−1 (9)

Yt,k,j = Atnt,k,j (10)

I close the model by assuming that a monetary authority sets the one-period nominal interest

rate rt ≡ log(Rt) according to a Taylor (1993)-type policy rule:

rt = φππt + φy log
Yt
Yt−1

+ log

(
1

β

)
+ εrt (11)

where πt is the inflation level, β is the impatience level of households and εrt is a monetary

policy shock. I do not explicitly model a zero lower bound in the model. In the context of the

zero lower bound, the monetary policy shock should be interpreted as forward guidance shocks.

A.4. Calibration

I calibrate the model at quarterly frequency in order to match standard macroeconomic and

asset pricing moments in the data. Section AIII and Table A1 from the appendix summarize

the calibration choices, as well as the moments I target in the data. Below, I briefly outline the

calibration.

5Up to a first order approximation modelling nominal rigidities using a fixed menu cost of changing prices
or the Calvo (1983) method yields the same results (e.g. Sims and Wolff (2017))
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Household Parameters

I set the household impatience level to 0.99, which implies a risk-free rate of 1%. The habit

adjustment parameter, v, is 0.66, as estimated by Gaĺı, Smets, and Wouters (2012). This value

helps to match the level of the equity premium. The risk aversion, γ, is set to 10, a value that

is commonly used in the asset pricing literature (Kung (2015) and Bansal, Kiku, and Yaron

(2010)). I set φl, the weight on disutility of labor, so that steady-state labor hours are around

1. I set σ, the inverse Frisch labor supply elasticity, to 1 as in Rabanal and Rubio-Ramı́rez

(2005). The elasticity of substitution between labor types ηw is set to 21 and the degree of wage

stickiness θw is set to 0.64, which implies an average labour contract duration of 2.8 quarters,

consistent with the evidence of Christiano, Eichenbaum, and Evans (2005).

Firms’ Parameters

The elasticity of demand between the two sectors is assumed to be different. I set η1 to 3,

which implies a steady state markup of 50%, and η2 to 13, which implies a steady state markup

of 8%, which are respectively the first and last deciles of the markup distribution estimated by

Epifani and Gancia (2011). These markups imply that firms in sector 1 have more monopoly

power. I calibrate the correlation between demand elasticity and the degree of price stickiness

to zero. This is empirically plausible, as: (i) I estimate a statistically zero correlation between

demand elasticity and frequency of price adjustment at both the firm level and the industry

level and, (ii) portfolios sorted on demand elasticity do not exhibit any difference in terms of

frequency of price adjustment. The empirical section of the paper will provide evidence on

the relation between the degree of nominal rigidities and demand elasticity. Thus, I set the

degree of price stickiness θk to 0.77, which implies an average duration of price contracts of

4.49 quarters, a value that is consistent with the degree of price stickiness in my data and

that is in line with the estimates of Rabanal and Rubio-Ramı́rez (2005), but slightly below the

estimate of 0.92 from Christiano, Eichenbaum, and Evans (2005). At the end of this section, I

analyze the sensitivity of the results to changes in these elasticity parameters as well as the re-

maining parameters. This will also allow me to pinpoint the exact forces behind the main result.

Other Parameters

Finally, the coefficients on the Taylor Rule are set to φπ = 1.17, to match the standard
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deviation of inflation, and φy = 0.6, as in Olivei and Tenreyro (2007). Technology and monetary

policy shocks follow an AR(1). I set the coefficients on the auto-regressive processes to be the

same as in Weber (2015).

I solve the model using second-order perturbation methods around the deterministic steady-

state and simulate the model for 500 firms per sector and 500 periods. I follow the approach of

Gorodnichenko and Weber (2016) and, for each time-period t and firm j in sector k, I compute

their cum-div value V (Pt,k,j)cum−div and ex-div value V (Pt,k,j)ex−div = V (Pt,k,j)cum−div − dt,k,j,
and use these two values to compute implied net returns of firms.

A.5. Model Fit, Mechanism and Implications

I now investigate the implications of heterogeneity in demand elasticities for firm fundamentals

and asset prices, as well as the mechanism that drives the results. The baseline model generates

reasonable macroeconomic moments (see Table A1 in the appendix). The annual volatility of

consumption growth is 1.1% and the first order autocorrelation of consumption growth is 0.24.

The model generates a volatility of inflation of 0.028 and a first order autocorrelation of 0.706.

All of these values are in line with the data. By construction, the baseline calibration allows me

to match the degree of nominal rigidities in my sample as well as the steady state markups of

the low- and high-elasticity sectors. Finally, the model generates an equity premium of 0.05 and

a Sharpe ratio of 0.31: both slightly lower than their data counterparts. Finally, the average

price-dividend ratio and the volatility of the price-dividend ratio are 30.1 and 16% respectively.

Mechanism

To understand the main forces at work, Figure 1 plots the impulse response functions of the

model key variables to a one-standard deviation productivity shock log(At).

The first panel of the figure plots the log-level of productivity, which increases one standard

deviation (0.85%) and then slowly decays to its steady state level. Firms are now more pro-

ductive and therefore the level of output is increased in both sectors (Panel (b)). However, the

output response is higher for firms that face a higher elasticity of demand. The reason for this

is straightforward. Marginal costs have gone down for firms in both sectors. Firms’ optimal

reset price is a markup over marginal costs. This markup is lower for firms that face a bigger

elasticity of demand and therefore, if allowed to adjust prices, these firms reduce prices more

(Panel (c)). This means that the relative prices of goods in the sector with higher elasticity
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versus sectors with lower elasticity have now decreased, so demand is relatively higher.

Figure 1: Impulse Response Function to a One Standard Deviation Positive Productivity
Shock

y-axis shows % deviations from steady state

The sluggish increase in consumption is due to habits in utility. If there were no habits,

consumption would jump and then steadily decrease. The presence of habits leads agents to

smooth changes in consumption, which yields the hump-shaped pattern seen in Panel (b).

Firms in the model have no savings technology and must distribute all profits as dividends.

The higher production level in the sector with higher elasticity leads this sector to distribute

more dividends (Panel (d)). The differences in covariance between consumption and dividends

of each sector are important for explaining the heterogeneity in the risk of firms. Firms in
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the high-elasticity sector pay more when marginal utility of wealth is lower and are therefore

riskier. Panel (f) plots the price dispersion in each sector, pdt,k with k ∈ {1, 2}. I define price

dispersion as the average price of each firm divided by the sector price index:

pdt,k =

∫ 1

0

(
Pt,k,j
Pt,k

)−ηk
dj (12)

Price dispersion in the sector facing a higher (lower) demand elasticity increases more (less).

The more elastic sector wants to decrease prices relatively more, so that the staggered mecha-

nism of price setting makes them on average further from the optimal price. This makes this

sector riskier than the sector with a more inelastic demand. To demonstrate this, consider

a claim over the dividend next period. Denote dt+1,k the aggregate dividend of sector k and

V 1
t,k the value of the claim over that dividend. Assume that the log-pricing kernel and asset

log-returns at the sector level follow normal distributions (this is similar to the expositional

assumption made by Li and Palomino (2014)). The return spread of the one-period dividend

claim between sectors with high (H) and low (L) elasticities can be written as:

Et[r
H
t+1 − rLt+1] = −covt(mt,t+1, dH,t+1 − dL,t+1) (13)

where rkt+1 is the log-return on a claim over next period dividends from sector k, mt,t+1 is the log

stochastic discount factor and dt+1,k are the log-dividends. Using a log linear approximation,

equation (13) can be written as:

Et[r
H
t+1 − rLt+1] = −[(1− η)covt(mt,t+1, pH,t+1 − pL,t+1) (14)

+ (ηH − 1)covt(mt,t+1, log(µH,t+1))

− (ηL − 1)covt(mt,t+1, log(µL,t+1))]

where µk,t+1 is the average markup of prices over marginal costs. The first factor in this

return decomposition implies a positive spread between the two returns, as the covariance

between marginal utility and the price of dividend claims is larger for the sector with high

elasticity (dividends in this sector respond more to shocks, as seen in Panel (b) of Figure 1).

However, most of the spread comes from the covariance between marginal utility and markups.

Markups are mainly driven by price dispersion, which is larger for the sector with high elasticity.
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Furthermore, the covariance between marginal utility and markups is scaled by the demand

elasticity ηk, which further enhances the effect.

The mechanism to generate a spread in returns through heterogeneity in demand elastici-

ties is not isomorphic to that in a model with different frequencies of price adjustment, as in

Carvalho (2006) and Weber (2015). In their models, the inefficiency comes from how long firms

stay away from their optimal price, whereas in my model, the friction is related to how far

posted prices are from optimal prices. This has different implications for firms’ markups, which

I discuss below.

Implications and Sensitivity to Calibration

With a fair understanding of the model, I will now describe its implications, which can

be directly tested in the data. Table 1 reports annualized mean excess returns over the risk-

free rate of portfolios of firms in the low-elasticity sector and in the high-elasticity sector, the

market equity premium and the Sharpe ratio. The first row of the table reports the results for

the baseline calibration.

Firms in the high-elasticity sector are riskier and earn an average excess return of 8.7%,

whereas firms in the low-elasticity sector are safer and therefore earn an average excess return

of 1.1%. The return spread between the two sectors is 7.6%. The overall market return excess

return is 4.74% with a Sharpe ratio of 0.31. Returns in the high- (low-) elasticity sector are

also more (less) volatile with a standard deviation of 0.2 (0.15). In the model, the CAPM

holds weakly. The portfolio of firms in the high-elasticity sector has a CAPM beta of 1.2 and

the portfolio of firms in the low-elasticity sector has a CAPM beta of 0.8. Although CAPM

betas line up with expected returns, the difference in betas between the low-elasticity portfolio

and the high-elasticity portfolio is not enough to explain the return spreads, this is due to the

presence of risk factors not captured by the CAPM, such as habits and nominal rigidities. This

is something that I also test in the data.
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Table 1: Model Implied Stock Returns

This table reports annualized asset pricing moments for the model described in Section III.A. The second and third columns report
average excess returns for stocks in the low-elasticity and high-elasticity sectors respectively. The fourth column reports the spread
in returns between the two sectors. The fifth and sixth columns report the average excess market return and the Sharpe Ratio. The
first line of the table reports these moments for the baseline calibration and the remaining lines report sensitivity to several model
parameters.

Low Elasticity High Elasticity Spread in Returns Market Return Sharpe Ratio
Benchmark 1.10% 8.70% 7.60% 4.74% 0.311
No Productivity Shocks 0.71% 3.40% 2.69% 2.05% 0.176
No Monetary Policy Shocks 0.04% 0.44% 0.40% 0.24% 0.083
No Sticky Prices 1.09% 1.09% 0.00% 1.09% 0.069
Higher Stance on inflation, φπ = 1.24 0.82% 1.71% 0.89% 1.27% 0.090
Higher Stance on consumption, φc = 0.7 0.77% 9.03% 8.27% 4.90% 0.315
Higher Dispersion of Elasticities η2 = 14 0.78% 11.56% 10.74% 6.17% 0.423
Higher Elast. of Substitution Across Sectors η = 3 0.76% 10.27% 9.52% 5.52% 0.326
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The remaining rows of the table describe sensitivity to parameter choices. Rows 2 and 3

of Table 1 report the results for the baseline model without productivity shocks and monetary

policy shocks, respectively. Compared with the baseline model, monetary policy shocks are

quantitatively more important for both the spread in returns and the market equity premium.

This is in line with the findings of Weber (2015) and De Paoli, Scott, and Weeken (2010). In

particular De Paoli, Scott, and Weeken (2010) argue that nominal rigidities only enhance risk

premia if they are coupled with monetary policy shocks. Rows 5 and 6 report the results if the

monetary authority takes a stronger stance on either inflation or output. A stronger stance on

inflation dampens the equity return and strongly decreases the spread among the two sectors.

A stronger stance on output has limited effects on the outcomes of the model. Finally, the

last two rows report the effects of a higher dispersion in elasticities and a higher elasticity of

substitution across the two sectors. As expected, both an increase in the gap of elasticities

between the two sectors and an increase in the substitutability of goods across the two sectors

increase the spread in returns among the sectors.

Firms with a higher degree of monopoly power have higher markups.6 This is in line with

what a simple reduced form monopoly power model would deliver: higher monopoly power

(lower elasticity) implies that firms charge higher markups over marginal costs and consequently

have higher monopoly rents. This is an important prediction of this model, as it allows me

to disentangle the cross-sectional implications for returns of different demand elasticities from

other cross-sectional mechanisms proposed in the literature. In particular, Weber (2015) and

Gorodnichenko and Weber (2016) argue that firms with a higher degree of price stickiness earn

higher returns.

In order to disentangle the heterogeneous sticky prices mechanism from the heterogeneous

elasticities mechanism, I solve a two-sector version of Weber’s (2015) model. Table 2 reports

results for markups and returns of my baseline model, where firms are heterogeneous in the

elasticity they face (Panel A), as well as the results of Weber’s (2015) model, where firms are

heterogeneous in the degree of price adjustment (Panel B).

In my model, as described above, the more elastic sector earns higher returns and has lower

markups (Panel A). On the other hand, and in line with the results of Weber (2015), sectors

with a higher degree of price stickiness earn higher expected returns (Panel B). In Weber’s

6In the absence of nominal rigidities firms would set the optimal price to be a markup over marginal costs,
i.e.: p? = η

η−1
At
wt

. Therefore, firms with more inelastic demands have higher market power and set higher

markups over marginal costs (lower η).
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Table 2: Heterogeneity in Sticky Prices Versus Heterogeneity in Elasticities of Demand in the
Model

Panel A: Heterogeneity in Elasticities only
Returns Markups

Low Elasticity 1.10% 1.531
High Elasticity 8.70% 1.138

Panel B: Heterogeneity in Price Stickiness only
Returns Markups

Low Stickiness 0.72% 1.092
High Stickiness 6.34% 1.149

This table reports returns and markups for the baseline model described in Section III.A (Panel
A) and a two-sector version of the model developed by Weber (2015) (Panel B). The calibration
of Weber (2015) is identical to the calibration of the baseline model with the exception of the
stickiness parameters θ1 and θ2 which are set to 0.3 and 0.9, respectively, and the elasticity
parameters η1 and η2, which are identical and equal to 8 (the same value as in Weber (2015)).

(2015) model, in the deterministic steady state, firms in either sector have the same markups.

However, in the stochastic steady state, firms in the high price stickiness sector fear selling at a

loss more and charge slightly higher markups for precautionary motives. This implication is the

opposite of the one in the my model. When firms face different demand elasticities, firms with

low markups earn higher returns, whereas when the heterogeneity is in the nominal rigidity,

firms with low markups earn lower returns. This is an implication that I also take to the data.

IV. Data and Identification

A. Data

The data used in this study are from Keepa.com (hereafter Keepa). Keepa is a private online

price tracker that tracks over 250 million products sold on Amazon USA, UK, France, Japan,

Canada, China, Italy, Spain, Mexico and Brazil. It started operating in January 2011. In

this section, I will describe the Keepa data and leave the details regarding the data gathering

process for Appendix AIV.

The Keepa database stores several fixed attributes of the products it tracks: the product

name, category node7, Universal Product Codes (UPC), International Article Numbers (EAN),

7e.g. Home Care & Cleaning
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product brand, label, model, color and size, among other attributes. Keepa also stores several

time series for time-varying quantities such as prices and a proxy for quantity called “sales

rank” (an ordinal ranking describing the quantity sold of a product).

The frequency of update and the sales rank indicator are two of the distinctive features

of this database compared to other product price datasets (such as the Nielsen dataset or the

BLS dataset). First, the Keepa database is updated several times a day. For most products,

it is updated once every hour. In contrast, the Nielsen Dataset and the BLS dataset are

updated weekly and monthly (respectively). Even most scraped datasets used in the sticky

prices literature (e.g. Cavallo (2016)) have at most daily update frequencies. The second

distinguishing feature of this dataset is the sales rank, which is a very good proxy for quantity

sold (more on this relationship below). Neither the BLS datasets nor the scraped datasets have

quantity information. The Nielsen scanner datasets, which do have information on quantities,

are an exception. The Keepa dataset fills this void in the micro-level product datasets, having

both quantity information and high update frequency.

Keepa is one of the largest Amazon online price trackers available. It provides free access

to interactive product price and sales rank charts, and it charges a fee for a user to access and

download the data. It also allows users to monitor any Amazon product and receive alerts once

the price drops. Most users of this database are concerned with product sales rank or product

prices. Sellers looking for new product markets to enter rely on the sales rank of a product,

i.e., how frequently the product is sold, to decide whether or not they should enter a market,

while consumers looking to take advantage of product deals and price drops rely on price alerts

to make purchase decisions. Therefore, for both sellers and buyers, the high update frequency

of Keepa is crucial. This is important to me, as the high-frequency nature of these data will be

extremely helpful for identifying demand elasticities.

Keepa can potentially track all Amazon products (except for e-books). Once a product

enters the database, tracking begins and will continue indefinitely. Even if the product is no

longer sold on Amazon, it still appears in the database, albeit with no associated price. Keepa’s

database is constantly growing as new products are added on a daily basis. At any given point

in time, Keepa ensures that it tracks all best-sellers within each Amazon product category and

if anyone searches for a product that is not being tracked, then Keepa starts tracking it.

Unlike standard datasets, it is not possible to download the full Keepa database at once due

to its large size. Each Amazon product has a unique identifier called the Amazon Standard
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Identification Number (hereafter, Asin) which can be used to obtain the data for a specific

product. The challenge here is to identify products sold by Amazon that are produced by

publicly traded firms. I manage to get data on 278 thousand products sold by public firms. I

use a two-tier approach to identify public firms that sell products on Amazon. First, I rely on

prior literature that uses Amazon data for public firms, namely Huang (2016), who identified

246 public firms that sell their products on Amazon. Out of those firms, 59 were taken private

or filed for bankruptcy before 2011. These are therefore dropped from my sample. Second, I

take the full list of brands sold by Amazon under each product category, manually match each

brand to a corporation and check if the company is publicly traded. This increases the sample

from 187 to 250 firms. For each firm in the sample, I manually search for each brand it sells on

Amazon and use a web-crawling algorithm to retrieve the Asins of their products, which I can

then “insert” into the Keepa database to download the data (see details in Appendix AIV).

Overall, the sample is comprised of approximately 278 thousand products, with an average

of a thousand products per firm. The data range from January 2011 to March 2017.8 This a

fairly large database in terms of both the time series and the cross-section (e.g. the Cavallo

(2016) scraped USA sample contains 170 thousand products over the course of two years). The

sample contains firms belonging to nine of the thirteen Fama-French industries - Manufacturing,

Health, Shops, Business Equipment, Durables, Telecom, Non-Durables, Chemicals and Others.

The three industries that are not represented in my sample are Energy, Utilities and Finance.

I aggregate the product-level data to the firm level and merge it with the standard equity

prices database (CRSP) and firm fundamentals database (Compustat). Panel A of Table 3

reports the main characteristics of the firms in the sample. On average, each firm sells around a

thousand products on Amazon. The median number of products per firm is 298, which reflects

the fact that a few firms sell far more products than others (e.g., clothing firms sell many

products whereas manufacturing firms sell fewer products). The average market capitalization

of the firms in the sample is US$26 billion, as most of the firms that have their products

sold by Amazon are large. They also have high average revenues of US$3 billion and high

average EBITDA of US$700 million. This reflects that fact that most of these firms are not

only large, but also mature and well established. Panel B reports the same metrics for the

overall Compustat sample over the same time period. As expected, the firms included in my

sample are larger in all the metrics (market capitalization, revenue and EBITDA), and have

8The Sales Rank data starts in February 2015 as Keepa only started keeping track of Sales Rank at this date.
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lower book-to-market capitalization. Therefore, while this is not a representative sample of

US public firms, the granularity of the product data might still allow us to draw important

empirical conclusions regarding product level dynamics and asset prices.

Table 3: Summary Statistics Keepa Sample and Compustat Sample

Panel A: Summary Statistics
Mean Std. Deviation 25th Median 75th

Number of Products 1109.1 2593.3 223.0 298.0 612.0
Frequency of Price adjustment (months) 4.93 1.82 3.92 4.50 5.39
Market Capitalization (M$) 26969.8 61048.6 1408.0 5576.3 19414.0
Book-to-Market 4.2 8.2 1.8 2.9 4.6
Revenues (M$) 3450.2 6239.6 314.1 945.1 3456.5
EBITDA (M$) 695.2 1643.8 34.8 147.2 545.8

Panel B: Full Compustat Sample
Mean Std. Deviation 25th Median 75th

Market Capitalization (M$) 2745.0 14096.4 25.9 135.1 823.3
Book-to-Market 11.0 2771.9 0.5 1.3 2.8
Revenues (M$) 743.4 4023.6 0.7 24.5 211.7
EBITDA (M$) 156.8 1087.4 -0.5 2.3 32.6

This table reports summary statistics for the firms included in the Keepa sample (Panel A) and the full
Compustat sample (Panel B). The first row of Panel A reports the statistics for the number of products
per firm. The second row reports the frequency of price adjustment. The third to sixth rows report average
market capitalization, book-to-market, revenues and EBITDA per firm. Panel B reports the same financial
statistics for the entire Compustat sample.

B. Amazon Prices and Sales

I use some examples to explain the nature of the data. Figure 2 plots screenshots of 6 products

in the sample, taken from Amazon.com. As the figure illustrates, Amazon sells a vast range of

products: drills, sportswear, food, sprays, copying devices and, sports watches, among others.

At any one point in time, Amazon only shows the current price and sales rank of each of these

products. The advantage of using a database such as Keepa is that it includes historical time

series of prices and sales rank for each product.

Consider the last product in Figure 2, the Fitbit Flex 2. This wristband is produced by

Fitbit, Inc., a US public firm traded on the New York Stock Exchange (NYSE). Panel A of
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Figure 2: Examples of Products in the Dataset

This picture plots six examples of products in the Keepa dataset. The figures and prices are
screenshots taken from the website amazon.com.

Figure 3 shows the time series of the original price pt for this product. The wristband was

introduced to the market in September 2016, with a retail price on Amazon of 80.5 US dollars.

There are a couple of stylized facts from the literature on sticky prices that can be seen in the

figure. First, prices have different low- and high-frequency dynamics. At a lower frequency,

prices are quite sticky and move around very little. In this specific example, the price is

usually either 80.50 or 60 US dollars. At a higher frequency, prices experience a great deal
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more movement, with shorter price spells. For instance, in December-2017 the price briefly

dropped from 80.5 US dollars to 75 US dollars for a day, before reverting to 80.5 US dollars.

Second, following a temporary price change, the price often reverts to the original nominal

price. Midrigan (2011) and Kehoe and Midrigan (2015) document these two stylized facts

and conclude that the standard Calvo and Menu Cost New-Keynesian models cannot generate

both patterns: (i) very sticky (flexible) prices at low (high) frequencies, and (ii) that after

a temporary price change, the nominal price often returns to the nominal pre-existing price.

Although they use CPI datasets to document these, the same patterns appear in Amazon prices.

Panel B plots the Amazon price (in the left y-axis) and the Amazon Sales Rank (in the right

y-axis). The Amazon Sales Rank is an ordinal ranking describing the quantity sold of a product

within its product category. If a product is sold, the ranking increases and becomes closer to 1

(which would be the ranking of the best-selling product). If the product is not sold and other

products are, the ranking starts drifting down from 1. Although prices are quite sticky, the

figure shows that there is much more variation in Sales Rank, because products move up and

down the ranking as they get sold more or less often than products in the same category. For

instance, on Friday, November 25th, 2016, there is a spike down in the price of the Fitbit watch.

This was the USA’s so-called Black Friday: the shopping day after Thanksgiving, when many

retailers offer promotional sales. It is clear that there is a sharp spike up in the Sales Rank

when Black Friday arrives, which then slowly reverts to its unconditional mean. All results in

the paper are robust to the exclusion from the sample of weeks surrounding event days such as

Black Friday, Christmas, New Year, Valentine’s day and Father’s/Mother’s day.

Several marketing studies look into the properties of the Amazon Sales Rank and conclude

that there is an extremely tight relationship between Sales Rank and quantities sold (e.g.

Chevalier and Mayzlin (2006), Brynjolfsson, Hu, and Smith (2006) and Chevalier and Goolsbee

(2003)). In particular Chevalier and Goolsbee (2003) have data on both Amazon quantities sold

and Sales Rank for 20,000 Amazon products, and they conjecture that a standard distributional

assumption for rank data is a Pareto distribution (i.e., a power law). The Pareto distribution

conjecture implies that one can translate the sales rank to quantity sold using the following

log-relation:

log(SalesRank) = c− θ log(QuantitySold) (15)

where c and θ are a function of parameters of the power law distribution. They estimate
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Figure 3: Amazon Price, Sales Rank and Permanent Price

This figure plots price and sales rank time series for the Fitbit Flex 2, a sports wristband sold
by Fitbit, Inc. The top panel plots the end-of-day Amazon price of the watch. The middle
panel plots the end-of-day Amazon price on the left y-axis and the sales rank on the right
y-axis. The last panel plots the Amazon price and the permanent price computed using the
Midrigan (2011) algorithm. The data is taken from Keepa.

equation (15) and find very robust estimates of θ and c across different samples, with R2’s

exceeding 0.95. This implies that sales rank movements do indeed have a strong relation with
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quantities sold and that the log change in Sales Rank translates almost one-to-one with log

change in quantities sold (just take first differences of equation (15)).

Therefore, I interpret movements in the Amazon Sales Rank as changes in quantities and

do several tests below to confirm this hypothesis. During the remainder of the paper, I will use

the terms Sales Rank and quantity sold interchangeably, and I will only refer to the difference

between the concepts when appropriate. This approximation matters for the quantitative level

of the estimated elasticities, but not for ranking products and firms according to the demand

elasticity they face. In this paper, I am only concerned about how firms rank in terms of

demand elasticity and not with the level of the estimates.

The sticky prices literature places great emphasis on the distinction between high-frequency

and low-frequency price movements, and most frequencies of price adjustment statistics are

computed using low-frequency price movements. It is observationally difficult to disentangle

when a price movement is temporary versus when it is permanent. I employ the same algorithm

as Midrigan (2011) and Kehoe and Midrigan (2015), which is based on the idea that a price is

regular or permanent if the retailer frequently charges it in a window surrounding a particular

week, provided the modal price is used sufficiently often. It is beyond the scope of this paper

to describe this algorithm in detail; readers should refer to Midrigan’s (2011) online appendix

for further details.

Panel C of Figure 3 plots the Amazon price, pt, in the left y-axis and the regular price,

pRt in the right y-axis. As expected, regular price changes occur much less frequently than

temporary price changes. The regular price is much stickier than the actual price.

In the literature, it is common to compute price stickiness metrics excluding changes in

prices due to sales (e.g. Cavallo (2016), Nakamura and Steinsson (2008), Midrigan (2011)

and Gorodnichenko and Weber (2016)). Therefore, I apply Midrigan’s (2011) algorithm to

each product in the sample, to disentangle temporary from regular price changes, then I use

the regular price series to compute frequency of price adjustment (FPA) at the firm level. I

define frequency of price adjustment in the standard way. First, I obtain the frequency of price

adjustment per individual good by calculating the number of price changes over the total valid

observations for a particular product. Next, I take mean frequency per good at the firm level

and then compute implied durations using: −1/ ln(1− frequency). The second line of Panel A

in Table 3 reports the frequency of price adjustment at the firm level. On average, firms adjust

their prices every 4.93 months (permanently). This value is comparable to previous estimates
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in the literature (e.g. Nakamura and Steinsson (2008) and Bils and Klenow (2004)).

There is, however, significant heterogeneity in the permanent frequency of price adjustment

among firms. The interquantile range is 1.47 months and the standard deviation is 1.82 months.

Weber (2015) uses this heterogeneity to sort portfolios and argues that firms with stickier prices

are riskier, and therefore have higher CAPM betas and higher expected returns when compared

to firms with more flexible prices. I test this hypothesis in the online appendix of the paper and

find that in the more recent sample, this result does not hold. This is consistent with Weber

(2015), which shows that the relationship holds only before 2007. Furthermore, I estimate a

relation between the elasticity of demand of a firm and the frequency with which firms alter

their prices, and I fail to find such an association.

C. High-Frequency Identification

The main empirical prediction of the model described in Section III is that firms with higher

elasticities of demand are riskier and therefore earn higher excess returns in equilibrium. In

order to test this hypothesis, I need to estimate demand elasticities. Having both individual

product quantity and price data is usually not enough to identify elasticities, due to the standard

endogeneity problem: empiricists only observe equilibrium prices and quantities, therefore the

slopes that generate the equilibrium outcomes are unknown.

In this section, I make use of the high-frequency Keepa data to estimate elasticities. Given

the nature of my data, I can measure the level of demand right before the price change, then see

how demand moves within a very narrow window after the price change. In reality, firms could

be moving prices due to demand shocks or supply shocks, or they could be simply changing

markups (as often occurs in sales). Price changes are endogenous, changes in markups or supply

side shocks are not a problem for my identification, as they are shifts along the demand curve

and allow me to trace demand. However, shifts of the demand curve are problematic for my

identification strategy. Thus, for the identification strategy to be valid, I need to ensure that

in such a narrow window around the price change, the demand curve is not moving. There are

two main reasons for demand for a specific product to move. First, demand can move if there

is an overall shift in demand for products in a certain product category. This would be the case

for products such as flowers on Valentine’s day, for electronics on Cyber Monday, or for a wide

range of other products in holiday periods such as Christmas and New Year. Second, demand

for a given product should also move around if competitors are changing their prices. I address
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these concerns below, then I detail how I estimate demand elasticities.

Narrow Windows with Stable Demands

To correctly identify demand elasticities, i.e. movements along the demand curve in response

to price shifts, demand needs to be stable and consumers should not be able to predict that

prices are going to change. Demand is likely to shift in the days surrounding holidays and

occasions, so I remove from my sample the weeks around Christmas, New Year, Valentine’s,

Thanksgiving, Black Friday, Father’s Day and Mother’s Day.9 Second, it is important that

competitors are not changing prices when a firm changes its price.

One of the advantages of using the Keepa database is that it is straightforward to identify

competitor products. For each firm in my sample, I pick a random product that it sells, and

extract its narrowest Amazon product category. A given product might belong to multiple

product categories. For example, one of the products sold by Logitech Inc, a company in

my sample, is a presentation clicker. This product belongs to the Amazon product category

Electronics and the subcategories Office Electronics > Presentation Products > Presentation

Remotes, so its narrowest product category is Presentation Remotes. Figure 4 illustrates a few

products in this subcategory. All of the products are close substitutes, with similar price tags,

so in a frictionless market, a change in the price of a product in such a narrow category should

trigger a change in the competitor’s demand and consequently a change in the price of the

competitor’s product.

For each product, i, in the sample, I take the competitors’ products and see if they are

changing their prices when the price of product i changes. Figure 5 plots a histogram with the

probability of a change in price by a competitor when product i changes its price. Uncondition-

ally, the overall probability of a competitor’ changing a price when product i changes its price

is 2.95% (in a two-sided 12-hour window). Further, I find that 50% of the time, only 2.5% of

competitors change their price, and that 80% of the time only 5% of competitors change their

price. The average price change of competitors is around 3.2%, which also implies that demand

should be fairly stable in the windows where I am measuring elasticity.

Even if price changes are not synchronized at such high frequency, it is interesting to un-

derstand whether they are synchronized at lower frequencies. Price changes being correlated

at lower frequencies are not a problem for my identification strategy. Nevertheless, it is em-

9The main results of the paper are not sensitive to using either the full sample or the sample with holidays
and occasions included.
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Figure 4: Close Substitutes - Example

This figure plots a screenshot of the amazon.com Presentation Remotes product subcategory.
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Figure 5: Probability of a Competitors’ Price Change in the 12-hour Windows

This figure plots a histogram with the probabilities of price change for a competitor’s product
in the 12-hour windows where I am estimating elasticities of demand. The x − axis shows
the probability of a competitor’s price changing and the y − axis the frequency at which each
probability occurs.

pirically relevant to document price synchronization patterns across similar goods, as it may

provide new evidence regarding the nature of nominal rigidities.

Formally, I define the synchronization of price changes as the mean share of sellers that

change the price for a particular good when another seller of the same good changes its price.10

Consider the set Si of products that are close substitutes in product category i. If sci,t→T is the

number of products in S that changed their prices between times t and T , then one can define

the synchronization rate as:

synci =
sci,t→T − 1

#Si − 1
(16)

where #Si is the total number of products in subcategory i.

10This definition is similar to the definition of synchronization used by Gorodnichenko, Sheremirov, and
Talavera (2014).
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The synchronization rate defined above ranges between one if all products change price

between t and T , and zero if price changes are perfectly unsynchronized. To put the synchro-

nization rate defined above into perspective, I compute the Calvo theoretical synchronization

rate. This is a useful benchmark: in a Calvo model, each firm is allowed to change the price

randomly, therefore firms cannot synchronize price changes. However, given that some price

changes coincide in time, the synchronization rate is not zero.

Figure 6 plots the synchronization rate at several weekly horizons.11 The left panel plots the

synchronization rate taking into account all price changes (including temporary price changes).

The blue line is the synchronization rate implied by the Keepa data. As soon as a product

changes its price, the probability of a competitor adjusting its prices is only 4%.

Figure 6: Synchronization Rates: Data and Calvo-implied

This figure plots the synchronization across products of price changes at the week-h horizon.
The blue lines plot the synchronization rate in the data computed using equation (16). The
red line plots the Calvo-implied synchronization rate. We compute the frequency of price
adjustment at the subcategory level and use it to backout the Calvo parameter at a weekly
frequency. The Calvo-synchronization rate is given by: 1 − (1 − ¯theta)h+1, where θ is the
median frequency of price adjustment across sectors and h is the horizon in weeks. The left-
hand panel plots the synchronization rates without filtering for temporary price changes and
the right-hand panel plots the synchronization rate excluding temporary price changes. The
permanent price changes are computed using the algorithm of Midrigan (2011).

This implies that firms are slow to react to demand shocks such as price changes and

11It might be the case that sellers do not synchronize price changes immediately, but may be able to do so at
lower frequencies.
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therefore this should not be an issue for the identification strategy outlined above. The Calvo

synchronization rate is depicted by a red line.12 The Calvo synchronization rate always lies

above the synchronization rate of the sellers in my Keepa sample, which is in line with the

evidence found by Gorodnichenko, Sheremirov, and Talavera (2014). This is a very puzzling

finding, given that we usually expect competitors to react fast to changes in prices of products

that are close substitutes.

The right-hand panel of the figure plots the same synchronization rates, but excluding the

temporary price changes.13 Again, the Calvo synchronization rate lies above the data synchro-

nization rate, which again is evidence that firms are slow to react to changes in competitors’

prices. Remember that the products are almost perfect substitutes and therefore price responses

to a competitor’s change in prices should be much quicker. Alternatively, if instead of using

the Calvo model as a benchmark I use a menu cost model, then the differences would be even

more striking. In fact, in a menu cost model, price changes of substitute goods are perfectly

coordinated and the synchronization rate should be one.

I now turn to explaining the demand elasticity estimation in detail.

Demand Elasticity Estimation

To better understand the identification strategy, I rely again on the example of the Fitbit

Flex 2 wristband. On February 2nd, 2017 at 8:15 a.m. UTC -4, Amazon changed the price

of this product from 99 to 79.5 US dollars. A decrease in price should lead to an increase in

the quantity sold of this product: a movement along the demand curve. Panel A of Figure

7 illustrates this effect. The orange dashed line shows the Amazon product price decrease.

The green line is the product sales rank, which can be interpreted as quantity sold. The sales

rank was on average 2400, meaning that the product was ranking fairly low in comparison

with products in its category. At 8:15 am, when Amazon changed its price, the sales rank

immediately jumped to 1300, which means that the product sold well in that exact moment.

Over the next 12 hours, the sales rank kept increasing towards one. In this narrow window, it is

unlikely that events were affecting the demand for this product, other than a simple movement

along the demand curve.

Panel B of Figure 7 plots the Amazon price and Sales Rank of this same price change, but

12Given the evidence from Weber (2015) that different sectors might have different frequencies of price ad-
justments, I compute the degrees of stickiness at the product category level and average them.

13To filter temporary price changes, I use the Midrigan (2011) algorithm.
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Figure 7: High-Frequency Amazon Price and Sales Rank

This figure plots high-frequency price and sales rank for the Fitbit Flex 2, in two narrow
windows around a price change. The top panel plots the Amazon price (left y-axis) and sales
rank (right y-axis) of the product in a 12-hour window around a price change that occurred
on February 5th, 2017. The bottom panel plots the same thing in a 5-day window.

in a 5-day window. Demand is quite stable until the price change on February 2nd when it

increases sharply until February 7th. After the 7th, demand stabilizes again. This illustrates
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that the only shock occurring at the time of the price change is indeed the price shock itself,

and no other confounding effects should be at work.

For each price change ∆pt and for each product i of firm f , I calculate within a narrow

window of [t, t+ w] the following:

εt→t+w,i,f = −∆ logSalesRankt→t+w,i,f
∆ log pt→t+w,i,f

≡ ∆ logQt→t+w,i,f

∆ log pt→t+w,i,f
(17)

which I interpret as an elasticity of demand for the product. Sales rank moves in the opposite

direction to quantity; therefore the sign of the first equality is flipped to make it closer to the

standard demand-price elasticity, which theory predicts to be negative. To be clear, I measure

quantity demanded right before the price as changed (seconds before) and then again 12 hours

after the price change. I use the change in quantity in this 12 hour asymmetric window to

compute demanded elasticities. The estimated elasticities and main results are also robust to

the choice of an 8-hour or a 16-hour window, or to the use of symmetric windows.

I average elasticities resulting from equation (17) at the product level, then at the firm level,

to get an estimate of the average demand elasticity per product and the average elasticity that

a firm faces. The averaging across products reduces measurement error and potential noise in

the estimates of demand elasticity. Further, asset pricing data only exists at the firm level and

not at the individual product level. This allows me to aggregate products at the firm level.

To address any remaining endogeneity concerns in the robustness section of the paper, I

re-estimate elasticities using standard instrumental variable methods and replicate the main

findings of the paper. This methodology comes at the cost of having to drop some products

and firms from the sample due to the lack of appropriate instruments.

V. Empirical Results

A. Demand Elasticity

Figure 8 plots a histogram of the estimated firm demand elasticities. The average elasticity of

demand faced by a firm is -0.124. In line with the predictions of economic theory, most firms in

our sample face a negative elasticity, with significant heterogeneity across firms: the standard

deviation of firms’ elasticities is equal to 0.185. There are a few firms in our sample with a

positive estimate for elasticity. This is likely to be due to noise in the data: conditional on

having a positive estimate for elasticity, only 0.8% of firms have estimates that are statistically
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different from zero at the 5% significance level.14 Therefore, I interpret these estimates as being

close to zero. Most of the estimates are fairly low, this has to do with the fact that I am using

sales rank as a proxy for quantity. However, the goal of this paper is just to rank firms according

to the demand elasticity they face and not to document the levels of demand elasticity, thus in

no analysis I will use the level of the estimated elasticity.

Figure 8: Average Elasticity Per Firm

This figure plots a histogram with the average estimated elasticities for the firms in the sample.
For each product in the sample, I compute equation (17), then I average across products and
firms to get an average elasticity per firm. The sample with which we compute elasticities
spans from February 2015 to April 2017.

I categorize each firm in the sample according to the Fama-French 12-industries classification

14Conditional on a negative elasticity, 86% of the estimates are statistically different from zero
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and compute the average industry elasticity. The first row of Table 4 reproduces the estimates

for the 9 industries in my sample. All industries have negative average elasticities, and industries

such as durables and manufacturing have higher demand elasticities than industries focusing

on consumption goods, such as non-durables and shops. This is in line with the empirical

macroeconomic evidence that in a recession (expansion), durable consumption falls (increases)

more than output and non-durable consumption falls (increases) much less than output (see

Kydland and Prescott (1982)).

Table 4: Average Elasticity per Industry

Durables Telecom Manuf Health Other Non-Durables Chems BusEq Shops
Elasticity -0.200 -0.170 -0.169 -0.138 -0.130 -0.123 -0.120 -0.119 -0.051
t-stats -2.301 -5.283 -6.126 -4.674 -3.632 -4.348 -4.947 -5.806 -1.553

This table reports the average equally-weighted elasticities per industry. I use the Fama-French 12-industry
classification. The elasticities are computed using equation (17) and the Keepa data. The sample period is
February 2015 to April 2017. The second row of the table reports the t-statistics.

All industry elasticities are statistically negative except for the most inelastic industry

(clothes), which is statistically indistinguishable from zero. The difference between the most

elastic industry (Durables) and the least elastic (Clothes) is 0.149, which is statistically sig-

nificant with 99% confidence. Figure 9 plots the ranking of elasticities per firm on the y-axis

and the industry on the x-axis. The firm with the highest elasticity has a rank of 1 and the

firm with the lowest elasticity has a rank of 0. Despite the large heterogeneity in elasticities

across industries, there is still a great variation in elasticities within each industry.15 The effects

reported in this paper are robust to industry level controls.

B. Portfolio Sorts and Systematic Risk

I test whether differences in the elasticity of demand that firms face are associated with differ-

ences in expected returns. I start by sorting stocks into five portfolios based on elasticity of

15There are three outliers in Figure 9. The three outliers are Leggett & Plat a premium furniture brand,
Nautilus, a company that sells treadmills and other fitness equipment and AVG Technologies, a firm that sells
security software. The first two outliers, have high elasticity, precisely because these companies sell luxury and
expensive goods and therefore customers have the option to wait for price decreases before making purchases.
The later company, also offers a free version of its software, and thus consumers have a readily available
substitute.
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Figure 9: Elasticities rank at the Firm-Industry Level

This scatter plot shows the rank of elasticities at the firm level (y-axis) conditional on the
industry to which the firm belongs (x-axis). The highest elasticity firm has a rank of zero and
the firm with the lowest elasticity has a rank of 1. Firms are classified into industries according
to the Fama-French 13-industry classification. The elasticities are computed using equation
(17) and the Keepa data.

demand. I measure returns at the daily level from the beginning of my sample in January 2011

to the end of the sample March 2017. The elasticity of the demand that firms’ face is stable

over time (more on this later). Therefore, I use an approach similar to Weber (2015), and do

not rebalance portfolios, but only sort them once to minimize concerns about measurement

error in firm elasticity estimates. In the robustness section, I show that the elasticity estimates

are stable over time and that the results also hold for an out-of-sample period.

Table 5 reports the results. The demand elasticity of each portfolio is by construction

monotonically increasing from low elasticity (close to zero) to high elasticity (close to -0.40).

Panel A reports the results for equally weighted returns. The portfolio of firms that face high

average elasticities of demand earns an average of 19.1% per year, whereas the low-elasticity

portfolio earns 12.9% per year. The difference between the high- and low-elasticity portfolios

is 6.2%, which is statistically and economically significant.

Panel B reports average value-weighted annual returns. The same pattern holds: returns

increase monotonically from the portfolio with lowest elasticity to the one with highest elasticity,

36



Table 5: Sorted Portfolios on Demand Elasticity

Average Annual Excess Returns
Low

Elasticity
2 3 4

High
Elasticity

H-L

Panel A: Equally Weighted Returns
Ri −Rf 0.129 0.156 0.168 0.180 0.191 0.062
t-stat [2.01]*** [2.57]*** [2.48]*** [2.85]*** [2.71]*** [2.15]***

Panel B: Value-Weighted Returns
Ri −Rf 0.137 0.142 0.160 0.153 0.189 0.053
t-stat [1.97]** [2.92]*** [2.76]*** [2.74]*** [2.92]*** [1.99]**

This table reports time-series averages for annual excess returns of elasticity-sorted portfolios.
Firms are assigned to one of five portfolios based on the average elasticity of demand they
face for their products. Portfolio low (high) has the stocks with the lowest (highest) demand
elasticity. The last column of the table reports the return on a portfolio that is long high-
elasticity stocks and short low-elasticity stocks. Panel A reports the results for equally-weighted
portfolios and Panel B for value-weighted portfolios. The sample ranges from January 2011 to
March 2017.

with a spread of 5.3% per annum.

To formally test the hypothesis that the relation is monotonically increasing, I use the

monotonicity test of Patton and Timmermann (2010). This test considers the full time series

of returns of each portfolio (not only the average return). The null hypothesis of the test is

that there is no relation between the returns of the portfolios (i.e., a flat relation) and the

alternative hypothesis can be specified as either an increasing or decreasing relationship. When

the alternative hypothesis is specified as an increasing relationship, I reject the null that the

relation is flat (with a p − value = 0). If, instead, the alternative hypothesis is specified as

a decreasing relationship, I fail to reject the null hypothesis (with a p − value = 0.49). This

is strong evidence that there is an increasing relation between demand elasticity and asset

returns.16

In my theoretical framework, different exposures to the elasticity of demand are partially

explained by systematic risk, i.e. CAPM betas line up weakly with stock returns. To test this

prediction, I perform standard time-series tests and regress the returns of the elasticity-sorted

portfolios on the market portfolio as well as on the Fama and French (1993) three factors. Let

Re
i,t be the excess return on elasticity-sorted portfolio i, Re

m,t be the excess market return, and

16Table A2 from the appendix shows some of the financial properties of the firms in each portfolio.
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Xt be a time-series vector with the Fama and French (1993) size and value factors. I run the

following time-series regression using daily data over my sample:

Re
i,t = αi + βiR

e
m,t + ΓiXt + ui,t (18)

If the model is correctly specified, then exposure to market risk and to the remaining two

factors should be enough to explain the elasticity-sorted portfolio’s excess returns. This implies

that the intercept αi of the time-series regression (18) should be zero. Panel A of Table 6 shows

the results for the Fama-French type regressions and Panel B reports the results for standard

CAPM regressions. The first row of the table reports α’s for each portfolio in annualized terms.

The intercepts range from 0.0 for the low-elasticity portfolio to 0.05 for the high-elasticity

portfolio. Most estimates are statistically indistinguishable from zero. Furthermore, a portfolio

that is long on firms that face a high elasticity of demand for their products and short on firms

that face a low elasticity of demand earns an alpha of 4.6% per year, that is statistically zero.

This implies that CAPM as well as the Fama-French model fully explain the cross-section of

returns. As a robustness table A3 from the appendix runs the Fama-French 5-factor model,

and compares the R2 fit of different models. Around 84% to 90% of the variation in returns can

be explained by a simple CAPM model. Adding additional factors, only marginally improves

the explanatory fit.

The third row of Table 6 shows the market betas of each portfolio. Market betas are

monotonically increasing, ranging from 0.92 for the low-elasticity portfolio to 1.047 for the

high-elasticity portfolio. The fifth and seventh rows of the table show the loadings on book-

to-market and size, respectively. Both of these factors also help to explain the cross-section of

returns.

Panel B of the same table reports the results of the CAPM model, i.e. the estimates of

running regression (18) using only the market as a factor. The results are similar to before:

intercepts are statistically zero for most portfolios and CAPM betas line up well with expected

returns. The low-elasticity portfolio has a beta of 0.97 and the high-elasticity portfolio has a

beta of 1.12. The beta estimates are statistically significant at the 1% confidence level.

The results are robust to the exclusion of weeks surrounding holidays and occasions. These

are days where there may be predictable changes in the prices of products. For example, retailers

often discount their products on Black Friday. Therefore, if agents anticipate significant price

changes during that day, this might bias the elasticity estimates, as demand would not be
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Table 6: CAPM Regressions

Panel A: Fama-French Model
Low

Elasticity
2 3 4

High
Elasticity

H-L

Annualized Alpha 0.000 0.028 0.030 0.046 0.046 0.046
Std. Error [0.001] [0.001] [0.001] [0.001]*** [0.001]*** [0.002]
Rm-Rf 0.921 0.928 0.989 0.967 1.047 0.126
Std. Error [0.01]*** [0.009]*** [0.01]*** [0.008]*** [0.01]*** [0.013]***
Book-to-Market 0.424 0.198 0.414 0.276 0.355 -0.069
Std. Error [0.018]*** [0.016]*** [0.017]*** [0.015]*** [0.018]*** [0.023]***
Size -0.083 -0.030 -0.015 -0.058 0.010 0.094
Std. Error [0.019]*** [0.017]** [0.019] [0.016]*** [0.019] [0.024]***

Panel B: CAPM model
Low

Elasticity
2 3 4

High
Elasticity

H-L

Annualized Alpha -0.006 0.025 0.023 0.043 0.040 0.046
Std. Error [0.002] [0.001] [0.002] [0.001]*** [0.002]** [0.002]
Rm-Rf 0.970 0.966 1.073 1.018 1.121 0.122
Std. Error [0.010]*** [0.008]*** [0.010]*** [0.008]*** [0.010]*** [0.011]***

This table reports results for Fama-French 3-factor model (Panel A) and CAPM model (Panel
B) time-series regressions. I regress returns of the 5 elasticity-sorted portfolios and the return
on the High-Low Elasticity Portfolio on the market, size and book-to-market factors (Panel A)
and on the market (Panel B). The regressions are done with daily data, and the factors data
is taken from the Kenneth French data library. The first row of Panel A reports the intercept
of the regression in annual terms. The third, fifth and seventh rows report the loadings on the
market, size and book-to-market factors. The first row of Panel B reports the intercept of the
CAPM regression in annual terms. The third row reports the loadings on the market. The
standard errors are reported in brackets. The sample ranges from January 2011 to April 2017.

stable. To alleviate this concern, I run the same portfolio sorts excluding the major holidays

and festivities along with a 7-day window around these days. Panel A of Table 7 reports

the results of the portfolio sorts when Christmas, New Year, Valentine’s, Thanksgiving, Black

Friday, Father’s day and Mother’s day are excluded from the sample.17 The pattern is fairly

similar to the pattern from Table 5. Higher elasticity portfolios earn higher excess returns

with an economically and statistically meaningful spread of 7.2% (slightly higher than the 6.2%

17For Christmas and New Year, I also exclude the full set of days between these dates.
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spread when holidays and occasions are not excluded).

Table 7: Elasticity-Sorted Portfolios - Robustness

Panel A: Portfolio Sorts Excluding Holiday Days and Occasions
Low

Elasticity
2 3 4

High
Elasticity

H-L

Ri −Rf 0.124 0.1694 0.1578 0.1738 0.196 0.072
t-stat [1.96]** [2.83]*** [2.35]*** [2.71]*** [2.76]*** [2.47]***
FPA (months) 4.79 4.83 5.23 4.7 5.03

Panel B: Portfolio Sorts and Frequency of Price Adjustment
Low

Elasticity
2 3 4

High
Elasticity

H-L

Ri −Rf 0.129 0.156 0.168 0.18 0.191 0.062
t-stat [2.01]*** [2.57]*** [2.48]*** [2.85]*** [2.71]*** [2.15]***
FPA (months) 4.89 4.72 5.2 4.92 4.86

This table reports time-series averages of annual excess returns of elasticity-sorted portfolios.
Panel A in this table is the same as the first Panel of Table 5, but with an additional line
that reports the frequency of price adjustment at the portfolio level. I compute frequency
of price adjustment for each firm using the methodology of Midrigan (2011). Panel B shows
the results of the portfolio sorts when a week surrounding a holiday or occasion is excluded
(except for Christmas and New Year, where I also exclude the full period between those two
dates). I exclude the days around Christmas, New Year, Valentine’s, Thanksgiving, Black
Friday, Father’s day and Mother’s day.

Finally, another important concern is whether heterogeneity in the frequency of price ad-

justment might be affecting the results. If the portfolios sorted by elasticity of demand correlate

with the degree of nominal rigidities, then this might bias the results. Panel B of the same

table reports the results of the elasticity-sorted portfolios along with the frequency of price

adjustment within each portfolio. It seems that firms facing high elasticities of demand do not

adjust their prices more often than firms facing low elasticities of demand. In the robustness

section, I formally address this hypothesis and test whether there is any relation between the

two.

C. Panel Regressions and Implications for Markups

The model from Section III.A predicts that firms with higher demand elasticities have lower

markups. To test this hypothesis, I make use of the heterogeneity in demand elasticities across
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firms and run standard panel regressions. Specifically, I run the following regression at an

annual frequency:

Yf,t = α + βεf × εf + γt + ut,i (19)

where Yf,t is the outcome variable of interest (returns or markups), εf is a variable that indicates

the elasticity quintile of firm f (higher value means more elastic demand) and γt are year-fixed

effects.18 Table 8 shows the results. The first column of the table reports the results for the

regression using returns as a dependent variable. Moving from a firm in the lowest quintile of

elasticity (more inelastic demand) to the highest quintile of elasticity yields a return differential

of 5.5%, which is in line with the estimates in Table 5.19

Table 8: Panel Regressions of Demand Elasticity on Firm Returns and Markups

Return Return Return Markups Markups Markups
Elasticity Quintiles 0.015 0.015 0.015 -0.054 -0.053 -0.031
(t-stat) (2.25)*** (2.45)*** (2.25)*** (-4.23)*** (-4.21)*** (-2.55)***

Year FE N Y N N Y N
Year × Industry FE N N Y N N Y
R2 0.004 0.112 0.118 0.010 0.010 0.121
# Obs 1374 1374 1374 1564 1564 1564

This table reports the results estimating equation (19). The regression is done using annual
data. Standard errors are clustered at the firm level and t− stats are reported in parentheses.

Adding time-fixed effects or time× industry-fixed effects to the regression (column 2 of Table

8) does not significantly change the coefficient of the regression. This implies that industry-

specific factors are not driving the results. The fourth column shows the results of regressing

markups on the elasticities. Compustat accounting data does not allow direct estimation of

markups. Therefore, as a proxy for markups, I use gross margin as in Bustamante and Donan-

gelo (2017) and Corhay, Kung, and Schmid (2017) (in Appendix AVI, I detail how I compute

markups and discuss the literature on the relation between markups and the cross-section of

returns). As we move from a firm with a low elasticity to a higher elasticity quintile, markups

18The panel regression results are robust to the use of terciles, quintiles or deciles.
19Moving a quintile up in the elasticity yields a return differential of 1.1%; therefore moving from the first to

the last quintile yields a return differential of 1.1%× 5.
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decrease by 5 percentage points. This yields a margin differential of around 25 percentage

points between the lowest and highest quintiles.

This empirical evidence on markups allows me to differentiate the mechanism that generates

the spread in returns from other mechanisms that have been proposed in the literature. Weber

(2015) argues that the frequency of price adjustment is a dimension of heterogeneity that also

generates a spread in returns: in particular, firms with a lower frequency of price adjustment

earn higher expected returns. However, in his model, the predictions for markups would go in

the opposite direction (see Table 2). The empirical evidence on markups is consistent with the

theoretical implications of differences in elasticity of demand.

The model also has implications for firms’ revenues and markups. In the model firms facing

higher demand elasticities have higher revenues and lower profit margins (as a consequence of

the lower markup they charge). I qualitatively test that relationship in the data (see table A5)

and find that indeed firms with higher demand elasticity have lower profit margins and higher

revenues.20.

D. Robustness

In this section, I run several robustness tests. First I replicate the main finding that firms

with higher demand elasticity earn on average higher returns using instrumental variables to

estimate demand. Next, I validate whether the results are robust to an out-of-sample period

and whether elasticities are stable over time. Finally, I establish the relation between the degree

of price stickiness and elasticity of demand.

D.1. Demand Elasticity using Instrumental Variables

I replicate the main result estimating demand elasticity using instrumental variables. Given

the nature of my data, a feasible instrument to identify demand is prices of the same products

in other markets. These are the so called “Hausman (1996)) Instruments”. The underlying

assumption is that demand for a product in a given market m is uncorrelated with demand for

the same product in another market n. Therefore, using prices in market n to instrument for

prices in market m captures supply shifts and traces demand.

I rely again on the Keepa database and extract time-series information for all the products

in my sample, but in the Canadian Amazon market. In Appendix AIV, I detail how I match the

20Moving a quintile up in the elasticity yields a decrease in profit margin of 0.1 percentage points and the
same move would lead to an increase in revenues of around 6%
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data between the US Amazon market and the Canadian Amazon market. If demand shocks are

uncorrelated across the US market and the Canadian market, then prices on Amazon Canada

can be reliably used as instruments. In particular I run the following specification:

log(SRj,m,t) = δj,m log(pj,m,t) + wj,n,t (20)

where SRj,m,t (pj,m,t) is the log of sales rank (price) of product j in market m at time t. I

instrument for price pj,m,t using the price of the same product at time t in another market n.

The coefficient of interest is δj,m, which can be interpreted as the elasticity of demand. I average

the estimates δj,m to get an average elasticity faced by a firm. The main drawback of using this

methodology to compute demand elasticity is the reduction in sample size. The sample now

contains 94 firms, with an average of 237 products and a median of 77.

I follow the same methodology as before and sort stocks into portfolios based on the elasticity

of demand. Given the lower number of stocks in my sample, I sort stocks into four portfolios

instead of five. This ensures that a significant number of stocks is included in each portfolio.

Panel A from Table 9 reports the results of the instrumental variable sort. The portfolio

of firms that face high average elasticities of demand earns an average of 19.0% per year,

whereas the low-elasticity portfolio earns 12.8% per year. These estimates are in line with with

those reported in Table 5. The difference between the high- and low-elasticity portfolios is

7%, which is statistically significant. Panel B from the same table reports the results using

the high-frequency demand elasticity estimation method, where only the products and firms

used in the IV estimation are included. Most firms are assigned to the same portfolio using

either method (instrumental variables or high-frequency), so the results of the portfolio sorts

are fairly similar. This confirms the hypothesis that the high-frequency elasticity estimation

method delivers results that are consistent with standard instrumental variables methods for

estimating demand.

D.2. Stability of Elasticities and Out-of-Sample

An important assumption underlying the results of the portfolio sorts is that demand elasticities

are stable over time. It is important that this is indeed the case, because the estimated portfolios

were not rebalanced. I test this assumption using two different approaches. First, I set a

cutoff date that splits the sample exactly into two identically sized time series and I estimate

elasticities at the firm level on both samples. If elasticities are stable over time, there should be
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Table 9: Portfolios Sorted by Demand Elasticity estimated using Instrumental Variables

Average Annual Excess Returns - instrumental variables
Low

Elasticity
2 3

High
Elasticity

H-L

Average Returns
Ri −Rf 0.128 0.169 0.168 0.192 0.063
t-stat [1.95]* [2.45]*** [2.42]*** [3.03]*** [2.09]***

Average Annual Excess Returns - high frequency
Low

Elasticity
2 3

High
Elasticity

H-L

Average Returns
Ri −Rf 0.132 0.179 0.157 0.181 0.049
t-stat [2.17]* [2.87]*** [2.24]*** [2.54]*** [1.5]*

This table reports time-series averages of annual excess returns of elasticity sorted portfolios
where I use Hausman Instruments to estimate elasticity of demand. In particular, I use prices
of the same SKU (stock keeping unit) in Amazon Canada to instrument for prices in Amazon
USA. Firms are then assigned to one of five portfolios based on the average elasticity of demand
they face for their products. Portfolio low (high) has the stocks with the lowest (highest)
demand elasticity. The last column of the table reports the return on a portfolio that is long
high-elasticity stocks and short low-elasticity stocks. The sample ranges from January-2011 to
March -2017.

no differences between the two samples. Figure 10 plots the results for the sample splits. The

blue dots in the figure are the elasticities of each of the 250 firms in my sample. The x-axis

displays the elasticities for the earlier part of the sample and the y-axis shows the elasticities

for the latter part of the sample. If elasticities are indeed stable, the points should cluster

around the 45-degree line. This seems to be the case. To formally test this hypothesis, I run

a Wilcoxon signed rank test. This is an extension of the standard t-test for equality of means

when there are multiple means and the normality of the data cannot be assumed. The null

hypothesis of the test is that all the means of the two samples are pairwise identical. The test

leads to a failure to reject the null hypothesis, meaning that elasticities are indeed stable over

time (p− value of 0.50).

Second, I make an out-of-sample exercise, by repeating the portfolio sorts done in Section

V.B, using a different sample from the one with which I estimated the elasticities. If elasticities

are indeed stable over time, then the return spreads from Table 5 should be similar in an
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Figure 10: Subsample Splits

In this figure, I split the sample into two. The first sample ranges from February 2015 to
February 2016, and the second sample from March 2016 to April 2017. I compute average
elasticities per firm for the two subsample periods. The resulting elasticities are plotted in a
scatter plot with the earlier sample on the x-axis and the later sample on the y-axis.

out-of-sample period. Remember that I have estimated the elasticities using a sample that

started in February 2015. Usually, out-of-sample exercises are forward-looking, meaning that,

conditionally on an estimate, researchers look to the period ahead ( e.g. Welch and Goyal

(2007)). However, an out-of-sample exercise should also be robust to backward-looking, which

is often more challenging. Given the data, I estimate the elasticities using the Keepa sample

and look backward in time. I use an out-of-sample time series ranging from January 2001 to

January 2010. The start date of this subsample is chosen to ensure that at least 30 firms are

kept in each portfolio at any point in time. The last date is chosen just before Keepa started

tracking Amazon products. The results are shown in Table 10 and are similar to the ones

presented before. The portfolio of firms that face a higher elasticity of demand earn excess

returns that are on average 4.55% larger than the low-elasticity portfolio. This is slightly lower

than the previous estimate for the later sample, but economically and statistically significant.
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Furthermore, although the returns on the five portfolios are not strictly monotonic, I still reject

the null of a flat relationship in returns according to the Patton and Timmermann (2010) test.

Table 10: Portfolio Sorts Out-of-Sample

Average Annual Excess Returns - out-of-sample
Low

Elasticity
2 3 4

High
Elasticity

H-L

Ri −Rf 0.174 0.191 0.200 0.186 0.219 0.046
t-stat [2.50]*** [2.68]*** [3.07]*** [2.70]*** [2.98]*** [1.98]**

This table reports time-series averages of annual excess returns of elasticity-sorted portfolios.
Stocks are assigned to one of five portfolios based on the average elasticity of demand they face
for their products. The elasticity estimates are done using a sample from February 2015 to
April 2017. The portfolio returns are out-of-sample with a sample ranging from January 2001 to
January 2010. Portfolio low (high) has the stocks with the lowest (highest) demand elasticity.
The last column of the table reports the return on a portfolio that is long high-elasticity stocks
and short low-elasticity stocks.

D.3. Degree of Price Stickiness and Demand Elasticities

Up until now, I have argued that firms with higher demand elasticities are riskier in equilibrium

and therefore earn higher expected returns. It would be plausible that these firms, with higher

demand elasticity, would adjust prices more often (in fact, Weber (2015) shows that different

firms adjust prices with different frequencies). If firms facing higher demand elasticities are

riskier, then one could expect that these firms would change their prices more frequently. To

test this relation formally, I estimate the following regression:

εi = α + βFPAFPAi +
∑
n

βnXt,i,n + +µt + εi,t (21)

where εi is the elasticity of demand of firm i, FPAi is the frequency of price adjustment, Xt,i

is a set of time-varying controls and µt are time-fixed effects. Table 11 reports the results.

The first column shows the results of regressing elasticity on frequency of price adjustment.

The coefficient is positive and marginally significant. This implies that there is a weak positive

association between the degree of nominal rigidities and elasticity, i.e. firms facing more elastic

demands adjust prices more often.

This result can also be seen graphically: Panel A of Figure 11 illustrates at the firm level
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Table 11: Demand Elasticity and Frequency of Price Adjustment

(1) (2) (3) (4) (5) (6)
freqpradj 0.00431* 0.00457

(1.729) (1.648)
hhi 0.0259 0.0617**

(0.901) (2.047)
beta -0.0810*** -0.0974***

(-4.754) (-4.523)
size -0.00245 -0.00693**

(-1.192) (-2.196)
b2m 0.0108** 0.00785

(1.995) (1.073)

Year Fixed Effects Y Y Y Y Y Y
Observations 1,456 1,449 1,358 1,623 1,546 890
R-squared 0.002 0.001 0.016 0.001 0.003 0.035
t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table reports the results of regressing demand elasticity faced by a firm on the degree
of price stickiness and several firm characteristics. The regression is done using annual data.
Standard errors are clustered at the firm level and t− stats are reported in parentheses.

the relation between price stickiness and elasticity. The relation is weakly positive. Panel B of

the same figure illustrates the relation but at the industry level. Again the relation is positive

but weak, as the slope coefficient is not statistically different from zero.21

Remember from Table 7 that portfolios sorted on demand elasticity did not show differences

in their degree of nominal rigidities. This is an important and puzzling finding that demand

elasticity is if anything weakly related to sticky prices, and it might help future researchers to

explain the drivers of heterogeneity in the degree of price adjustment. Another way of looking

into this, is by double sorting portfolios, based on the degree of price elasticity and the degree

of nominal rigidities. I do so in Table A4 from the appendix. Consistent with the results above,

21Once a set of standard controls from the literature are added to the panel regression above, the coefficient
becomes insignificant. The last column of Table 11 reports the results when firm and industry controls are
added to the regression, namely size, book-to-market, Herfindahl-Hirschman index (HHI), and the CAPM beta.
Most of the variation in elasticities can be explained by differences in systematic risk (or beta). This is the
same result as the one from Section V.B: heterogeneity in demand elasticities is fully captured by differences
in systematic risk.
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firms with higher elasticity have higher returns, but the degree of price adjustment does not

seem to influence returns in my sample.

It is beyond the scope of this paper to understand why such correlation is so low, though I

provide some plausible explanations. The first possible explanation for such a low correlation is

that firms are uncertain about the demand elasticity they face and learn through their pricing

decisions. This would be in accordance with the recent study of Argente and Yeh (2017),

who find that the magnitude and likelihood of a price change is higher in the early stage of a

product life-cycle. In their model, firms face an intertemporal trade-off between maximizing

static profits and learning about demand. Firms with high elasticity of demand might indeed

change their prices less often, as price changes can be very costly for them. Second, if not all

consumers are informed about prices of goods, it might indeed be the case that firms have the

incentive to charge different prices (even for homogeneous goods) and the degree of demand

elasticity is related to the amount of informed/uninformed consumers in the market and not to

how often a firm changes its price. This intuition can be seen in the models of Varian (1980),

Burdett and Judd (1983) and Stahl (1989). In these models, price dispersion among firms

arises endogenously, as there is no pure strategy price equilibrium. The proportion of informed

consumers drives the degree of demand elasticity whereas frequency of price adjustment is

purely determined by changes in marginal costs. A third possible explanation for why firms

with higher elasticities adjust prices more often comes from the supply side. If firms face shocks

that affect their marginal costs and the frequency or magnitude of these shocks is related to the

demand elasticity of their products, then it is possible to empirically observe a lack of relation

between nominal rigidities and demand elasticity.

VI. Conclusion

In this paper, I have studied the relationship between demand elasticities, sticky prices and

asset prices. I have generalized a multi-sector New-Keynesian model to allow for differences

in demand elasticity faced by firms. I have shown theoretically that firms with more elastic

demands earn higher returns and have lower markups in equilibrium.

To test the theoretical predictions, I have developed a novel way of estimating demand

elasticities at the firm level by exploiting high-frequency data on products sold on Amazon.

I show that demand elasticity matters for cross-section market outcomes: firms facing higher

elasticities of demand earn higher returns in equilibrium. The spread in returns is weakly
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explained by systematic risk: firms with high demand elasticities also have higher CAPM

betas. The results are not driven by industry characteristics and are consistent with a standard

New-Keynesian model in which firms have different elasticities of demand.

Nominal rigidities are crucial for the heterogeneity in returns driven by different elasticities

of demand. In the absence of sticky prices, there would be no differences in expected returns

of firms with different demand elasticities. Interestingly, firms with high demand elasticities

do not adjust prices more frequently. This evidence deepens the puzzle regarding the micro-

foundations of sticky prices. Standard Calvo models and menu cost models cannot account for

the low degree of price synchronization observed in online markets. In future work, I plan to

use this high-frequency dataset to study what drives price stickiness and heterogeneity in price

stickiness.
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Figure 11: Cross-sectional Relation Between Price Stickiness and Demand Elasticity

This figure shows the relation between the degree of price stickiness (x-axis) and the demand
elasticity (y-axis). Panel A plots the scatter plot at the firm level. The fitted line is an
ordinary-least-squares regression. Panel B plots the same scatter plot and fitted line, but at
the industry level.
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AI. Static Model

AI.A. Static Model

Consider a one-period (two-date) partial equilibrium model. There is a continuum of monopo-

listic competitive firms that maximize profits subject to the demand for their products. Demand

for goods produced by firm i is given by:

Qi =

(
Pi
P

)−ηi
Y (I.1)

where Qi is the quantity demanded, Pi is the price set by firm i, P is the price index of goods sold

in the sector and Y is the aggregate sectoral demand.22 It follows from the above specification

that the own-price elasticity of demand for good i is given by ηi. For simplicity, assume that

firms have quadratic costs of producing goods such that total costs are given by: C = ciQ
2,

where ci > 0 is a parameter. Firms face a nominal friction and with probability θi are unable

to adjust their price Pi. In the optimal symmetric equilibrium, each firm i will set a price P ?
i

that is a markup over marginal cost:

P ?
i = P =

η

η − 1
2cY (I.2)

Now consider a shock that moves marginal costs c to all firms i. In an equilibrium model,

this could be motivated by a shift in aggregate productivity. What would happen to the firm’s

profit if the firm could not adjust its price? Panel A of Figure A1 plots the profit loss due to

price stickiness if a shock to ci occurs. Profit loss is defined as the difference between the profit

the firm makes when it is not allowed to change its price (π) and the profit it makes if allowed

to change its price (π?), divided by the latter:

πloss =
π − π?

π?
(I.3)

The measure is plotted for several values of ηi. If there is no change in costs, there is

no profit loss. This is the middle point in the graph. If c moves then the profit losses start

to increase. The larger the shock, the further away firm i is from the optimal price and the

bigger its losses are. The loss is more pronounced for cost increases than for cost decreases,

22This demand function can be micro-founded through a Dixit and Stiglitz (1977) aggregator over different
varieties.
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this is due to the fact that a cost increase reduces the markup the firm receives, whereas a

cost decrease actually increases it. The loss in profit is an order of magnitude larger if the

elasticity of demand is larger, meaning that for the same shock, firms with greater demand

elasticity want to move their prices by more and therefore are further away from their optimal

price. Notice that regardless of whether the shock is positive or negative, there is always an

inefficiency driven by the existence of nominal rigidities. This is the key mechanism that will

be present in the dynamic model in the next section: when facing a shock, firms with a greater

elasticity of demand are more likely to be further away from their optimal price and therefore

are riskier in equilibrium. The nominal rigidity plays a key role in this mechanism. Given that

price stickiness is more costly for firms with higher elasticity of demand, these firms should

adjust their prices more frequently. This should dampen the difference in risk among firms

with different elasticities. In the quantitative model below, I allow for this possibility.
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Figure A1: Comparative Statics on the Elasticity of Demand η

This figure plots the loss in profits when firms do not adjust their prices after a change in cost
(Panel A) and demand (Panel B). The comparative statics is done concerning the elasticity of
demand parameter η. The parameters underlying the figure are: c = 5, Y = 5 and η ∈ {4, 5, 6}.
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AII. Dynamic Model

AII.A. Households

A representative agent has preferences given by:

Et

∞∑
t=0

[
(Ct − νCt−1)1−γ

1− γ
− φL

∫ 1

0

n1+σ
t,i

1 + σ
di

]
(II.1)

Utility depends on current consumption Ct relative to lagged consumption (the external habit

reference level), and nt,i the number of hours worked. Households maximize utility subject to

their budget constraint:

PtCt =

∫ 1

0

wi,thi,tdi+Rt−1Bt−1 −Bt +Dt (II.2)

where Pt is the aggregate price level, Rt−1 is the nominal gross return on a zero-coupon bond

which is in zero net supply and Dt are aggregate profits.

Let λt be the Lagrange multiplier of the constraint. The first-order conditions with respect to

consumption and bond holdings are given by:

(Ct) : (Ct − bCt−1)−γ − λtPt = 0 (II.3)

(Bt) : − λt + Et[βλt+1Rt] = 0 (II.4)

Combine the first-order conditions to get the Euler equation:

1 = βRtEt

[
1

πt+1

(Ct+1 − bCt)−γ

(Ct − bCt−1)−γ

]
(II.5)

Each type of household i is specialized in one type of labor that is supplied monopolistically,

and in each period only a fraction of labor types can adjust their posted nominal wage.23 Their

reset wage w?t,i is defined as the solution to the following problem:

max
w?s,i

s=0∑
∞

{
(βθw)s

[
− φL

n1+σ
s,i

1 + σ
+ λsw

?
s,ins,i

]}
(II.6)

23This assumption can be interpreted as households/workers specialized in a given labor service represented
by a trade union.
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subject to labor demand on the part of firms:

ni,t =

(
w?s,i
Wt

)−ηw
(II.7)

where ηw is the elasticity of substitution between labor types and Wt is the aggregate wage

rate: Wt =

[ ∫ 1

0
W 1−ηw
t,i

] 1
1−ηw

. In a symmetric equilibrium, the solution to the maximization

problem (II.6) is the optimal reset wage:

(w?t,i)
1+ηwσ = φl

ηw
1− ηw

W ηwσ
t

Et
∑∞

s=0(βθw)s
[(

Wt

Wt+s

)−ηw(1+σ)

N1+σ
t+s

]
Et
∑∞

s=0(βθw)s
[
λt+s

(
Pt
Pt+s

)(
Wt

Wt+s

)−ηw
Nt+s

] (II.8)

which only depends on aggregate state variables. Equation II.8 has a very simple interpretation.

If given the opportunity, the household resets its wage to the expected weighted sum of future

marginal rates of substitution between consumption and labor.24

AII.B. Two-Tier Consumption Baskets

The household consumes an index of goods produced by two sectors k = 1, 2:

Ct = [ω
1
η

1 C
η−1
η

1,t + ω
1
η

2 C
η−1
η

2,t ]
η
η−1 (II.9)

There is a final good producer assembling this basket in a perfectly competitive manner. The

price index associated with it is given by:

Pt = [ω1P
1−η
1,t + ω2P

1−η
2,t ]

1
1−η (II.10)

and the demand for each basket of goods produced by sector k is given by:

Ck,t =

(
Pk,t
Pt

)−η
Ctωk (II.11)

24Notice that if θw = 0 then the optimal decision of the agent would be Wt = φL
ηw
ηw−1

Nσt
(Ct−bCt−1)−σ

, i.e.

marginal rate of substitution between labor and consumption equals the real wage, which is exactly what you
would get in a frictionless benchmark.
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In each sector k = 1, 2 there is a continuum of firms indexed by j who produce goods Ct,k,j.

The individual goods produced by each firm are aggregated in a sectoral consumption basket

according to the following aggregator:

Ck,t =

[ ∫ 1

0

C
ηk−1

ηk
t,k,j dj

] ηk
ηk−1

(II.12)

The optimality conditions imply the following demands and price indexes:

Ct,k,j = Ck,t

(
Pt,k,j
Pk,t

)−ηk
(II.13)

Pk,t =

(∫ 1

0

P 1−ηk
k,t,j dj

) 1
1−ηk

(II.14)

AII.C. Goods Producers

Consider firm j in sector k. Firms maximize the present value of real dividends:

max E0

[ ∞∑
t=0

m0,t
dt,k,j
Pt

]
(II.15)

subject to:
dj,k,t
Pt

=
Pt,k,j
Pt

Yt,k,j −
wt
Pt
ht,k,j (II.16)

Yt,k,j = Atht,k,j (II.17)

Yt,k,j =

(
Pt,k,j
Pk,t

)−ηk
Yk,t (II.18)

at+1 = ρaat + σaεt+1,a (II.19)

Each period, only a fraction θp of firms are allowed to change their prices. Any reoptimizing

firm solves the following problem:
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max
P ?t,k,j

E0

{ ∞∑
t=0

(βθp)
tm0,t

Pt+1

Pt

[
P ?
t,k,jYt,k,j −Wtht,k,j

]}
(II.20)

Replace equation (II.17), (II.18) and make use of market clearing conditions to get:

max
P ?t,k,j

E0

{ ∞∑
s=0

(βθp)
smt,t+sPt

[(
P ?
t,k,j

Pt

)1−ηk( P ?
t

Pt+s

)1−ηk(Pt+s,k
Pt+s

)ηk(Pk,t+s
Pt+s

)η
−(

Wt+s

Pt+s

)(
1

At+s

)(
P ?
t,k,j

Pt

)−ηk(Pk,t+s
Pt+s

)−η(
Pt
Pt+s

)−ηk]
Yt+s

}
(II.21)

Take first-order condition w.r.t. P ?
t,k,j to get the firm’s optimal reset price:

P ?
t,k,j

Pt
=

ηk
ηk − 1

E0

∑∞
s=0(βθp)

smt,t+s

(
Wt+s

Pt+s

)(
1

At+s

)(
Pt+s,k
Pt+s

)ηk(
Pk,t+s
Pt+s

)−η(
Pt
Pt+s

)−ηk
Yt+s

E0

∑∞
s=0(βθp)smt,t+s

(
Pt+s,k
Pt+s

)ηk(
Pk,t+s
Pt+s

)−η(
Pt
Pt+s

)1−ηk
Yt+s

(II.22)

Economically, this means that a firm that is allowed to reset its price sets a price that is

a markup ηk/(ηk − 1) over future weighted marginal costs, where the weights are given by

marginal utility of wealth times the probability of the firm having to stick with the price over

the horizon.
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Equilibrium Conditions and Taylor Rule

This section writes all the equilibrium conditions needed to solve the model. I start by

normalizing all prices by the aggregate price level Pt. Therefore, I define: pk,t ≡ Pk,t
Pt

for

k ∈ {1, 2}, wt ≡ wt
Pt

and rt ≡ log(Rt). Also, define Ht as aggregate labor supplied by households

and Lt as aggregate labor demanded by firms. Define wdt, pd1,t, pd2,t pdt as aggregate wage

dispersion, sector 1 and 2 price dispersion and aggregate price dispersion respectively.

The variables in the model are: p?t,1, F p
t,1, Kp

t,1, pt,1, pdt,1, p?t,2, F p
t,2, Kp

t,2, pt,2, pdt,2, λt, at, Yt, πt,

Ct, wt, w
?
t , F

w
t , Kw

t , πwt , wdt, pdt, rt, lt, ht, ut, Ωt.

Firms:

p?t,1 =
η1

η1 − 1

F p
t,1

Kp
t,1

(II.1)

F p
t,1 = λtwt

(
1

At

)(
pt,1

)η1(
pt,1

)−η
Yt + βθ1

(
πt+1

)η1
F p
t+1,1 (II.2)

Kp
t,1 = λt

(
pt,1

)η1(
pt,1

)−η
Yt + βθ1

(
πt+1

)η1−1

Kp
t+1,1 (II.3)

p1−η1
t,1 = (1− θ1)

(
p?t

)1−η1
+ θ1

(
pt−1,1

πt

)1−η1
(II.4)

pdt,1 = (1− θ1)

(
p?t

)−η1(
p1

)η1
+ θ1

(
pdt−1,1

)(
pt−1,1

)−η1(
πη1t p

η1
1

)
(II.5)

p?t,2 =
η2

η2 − 1

F p
t,2

Kp
t,2

. (II.6)

F p
t,2 = λtwt

(
1

At

)(
pt,2

)η2(
pt,2

)−η
Yt + βθ2

(
πt+1

)η2
F p
t+1,2 (II.7)

Kp
t,2 = λt

(
pt,2

)η2(
pt,2

)−η
Yt + βθ2

(
πt+1

)η2−1

Kp
t+1,2 (II.8)

p1−η2
t,2 = (1− θ2)

(
p?t

)1−η2
+ θ2

(
pt−1,2

πt

)1−η2
(II.9)
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pdt,2 = (1− θ2)

(
p?t

)−η2(
p2

)η2
+ θ2

(
pdt−1,2

)(
pt−1,2

)−η2(
πη2t p

η2
2

)
(II.10)

Aggregate Stuff:

1 =
2∑

k=1

ωk

{
(1− θk)

(
p?t,k

)1−η

+ θk

(
p1−η
t−1,k

)(
πη−1
t

)}
(II.11)

pdt = ω1p
−η
1 pdt,1 + ω2p

−η
t,2 pdt,2 (II.12)

Household Stuff:

(w?t )
1+ηwσ = φl

ηw
ηw − 1

(
wt

)ηwσ Fw
t

Kw
t

(II.13)

Fw
t = H1+σ + βtθwEt

(
πwt+1

)ηw(1+σ)

Fw
t+1 (II.14)

Kw
t = λtHt + βtθwEt

(πwt+1)ηw

πt+1

Kw
t+1 (II.15)

w1−ηw
t = (1− θw)

(
w?t

)1−ηw
+ θw

(
w1−ηw
t−1 πηw−1

t

)
(II.16)

πwt =
wt
wt−1

πt (II.17)

wdt = (1− θw)

(
w?t

)−ηw(
wηwt

)
+ θw

(
(πwt )ηwwdt−1

)
(II.18)

λt = (Ct − bCt−1)−γ (II.19)

1 = βRtEt

[
λt+1

πt+1λt

]
(II.20)

Market Clearing conditions:

Yt =
ALt
pdtwdt

(II.21)

Ct = Yt (II.22)
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Lt = Ht (II.23)

Stochastic processes and Taylor rule:

at = ρaat−1 + σae
a
t (II.24)

rt = φππt + φy log
Yt
Yt−1

+ log(
1

β̄
) + εrt (II.25)

ut+1 = ρuut + σuε
u
t (II.26)

Ωt+1 = ρΩΩt + σΩε
Ω
t ; (II.27)
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Steady State

From equations (II.1)-(II.3), we have that:

pss,1 =
η1

η1 − 1
wss ≡ µss,1wss (II.28)

From equations (II.6)-(II.8), we have that:

pss,2 =
η2

η2 − 1
wss ≡ µss,1wss (II.29)

Combine the two equations above with equation (II.11) to get:

wss =

(
1

ω1µss,1 + ω2µss,2

) 1
1−η

(II.30)

Now combine equations (II.13)-(II.15) and (II.19) to get:

φlH
σ
ss

ηw
ηw − 1

− wss(Css − bCss)−γ (II.31)

Use the market clearing condition in the steady state:

Css =
Hss

pdss
(II.32)

The two equations above can be solved numerically for hss and Css.

Then all the other steady state values follow directly.
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AIII. Model Calibration and Aggregate Moments

In this section, I discuss the model fit as well as the calculation of the model’s empirical coun-

terparts. Table A1 presents key macroeconomic statistics from the data and the model. The

model is calibrated at a quarterly frequency and all statistics are annualized. The series for real-

ized real consumption volatility is calculated using the non-durables and services consumption

data series from the BEA and following the Beeler and Campbell (2009) computation method.

I start by fitting an AR(1) process to the consumption growth series:

∆ct = γ0 + γ1∆ct−1 + ut (III.1)

Then the annual realized volatility is computed as Vt,t+4 =
∑4−1

j=0 | ut+j |. The inflation time

series is computed using the GDP implicit price deflator from the BEA (series mnemonic:

A191RD).

To calculate per-capita hours in the data, I follow Smets and Wouters (2007) and Herbst

and Schorfheide (2015). I take the index of average weekly nonfarm business hours (FRED

mnemonic / BLS series PRS85006023 ) and call it HOURSt. Then I take the number of

employed civilians (FRED mnemonic CE160N ) and call it EMPt. Finally, as a measure of

population, I use the quarterly average of the Civilian Non-institutional Population (FRED

mnemonic CNP160V ). Change in per-capita hours is then computed as:

∆l = ∆ln

(
HOURStEMPt

POPt

)
(III.2)

To compute frequency of price adjustment in the Amazon data, I follow the standard in

the literature and identify regular prices using an algorithm discussed in Kehoe and Midrigan

(2015) and Midrigan (2011). The algorithm is based on the idea that if a price change is

regular then the store charges that same price frequently in a window around it. In practice,

the algorithm works in 4 steps:

1. For each period t compute the modal price pMt in a window [t− l, ...t..., t+ l]

2. For t1 set the regular price equal to the modal price

3. For each subsequent period:
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(a) if Amazon charges the modal price in that period and if 1/3 of prices in that window

are equal to the modal price set the regular price equal to the modal price

(b) otherwise set the regular price equal to the last period regular price

4. Finally, one needs to eliminate regular price changes that occur in the absence of changes

in Amazon’s actual price. Replace the regular price with the current or previous regular

price if they coincide.

Given the regular price series pR, I then calculate frequency and duration of price adjust-

ments. I first obtain the daily frequency per individual good, by calculating the number of daily

price changes over the total number of valid observations for a particular good, then I compute

implied duration using −1/ ln(1 − frequency), and convert them to quarterly durations for

calibration purposes. This is the same method used by Cavallo (2016).

The steady state markups on the high- a low-elasticity sectors are calibrated to match the

first and last decile of the markup distribution using the same dataset as Epifani and Gancia

(2011). Epifani and Gancia (2011) use a high-quality database on industry-level inputs and

outputs, covering roughly 450 US manufacturing (4-digit SIC) industries for the period 1958

- 1996. I update their data until 2011 and compute the empirical distribution of price-cost

margins. Price-cost margins are computed as the value of shipments (adjusted for inventory

change) less the cost of labor, capital, materials and energy, divided by the value of shipments.

I then take the first and last decile of this markup distribution and set the elasticity parameters

in my model to match those values.

Finally, I estimate the equity premium using S&P 500 index returns during the post-war

sample, using data from CRSP. Stock returns are continuously compounded including dividends.

The risk-free rate is the treasury-bill rate that I take from the Welch and Goyal (2007) dataset.

To compute the dividend price ratio, I use 12-month moving sums of dividends paid on the

S&P 500.
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Table A1: Macroeconomic Moments

This table presents statistics for key macroeconomic variables from the data and the model.
The model is calibrated at a quarterly frequency and all the statistics are annualized.

Model Data
σ(∆c) 0.011 0.014
σ(π) 0.028 0.023
AC1(∆c) 0.242 0.239
AC1(π) 0.706 0.760
σ(∆l)/σ(∆c) 2.182 2.630
Frequency of Price Adjustment (quarters) 4.49 4.93
SS Markup low-elasticity sector 0.08 0.08
SS Markup high-elasticity sector 0.50 0.46
Equity Premium 0.05 0.08
Sharpe Ratio 0.31 0.52
E(P/D) 33.40 36.21
σ(P/D) 0.16 0.28
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AIV. Keepa Data

The micro product data on Amazon products is from Keepa. Keepa GmbH is a German based

firm that maintains price histories for almost all products on Amazon, the worlds largest and

most trusted online merchant. Users of Keepa can individually track the price development of

products that interests them, and Keepa will notify them when the price has reached a prede-

termined threshold. As of 2018, Keepa tracks more than 500 million products from Amazon

US, UK, Germany, Japan, France, Canada, China, Italy, Spain, India, Mexico, Brazil and Aus-

tralia. More than half of products tracked are from Amazon US. Keepa started operating in

2011, the date when my sample starts.

Keepa allows any user to track the price of any product through a graphic interface and

charges a fee to individuals and businesses who need to download the data. The Keepa database

is accessed through a proprietary Application Programming Interface (API). Access is controlled

and charged according to the number of products per minute the user wants to download, with

higher costs to download data for a larger set of products per minute. Therefore, unlike most

standard financial databases, one cannot download the full database at once. Keepa requires

the user to provide the API with a specific Amazon Standard Identification Number (ASIN),

which uniquely identifies an Amazon product in order to download its data. Figure A2 shows

the syntax of an API request to obtain data on a given product. To request a product, the

user needs to specify three things: (i) the API key that grants access to the database, (ii) the

market where the product is (US, Canada, France, etc.) and (iii) the ASIN of the product.

The difficult part is to setup a database of ASINs that belong to US public firms. Take for

example the company Fortune Brands Home Security (ticker symbol: FBHS), a US public firm

traded on the NYSE. Searching for the company name on Amazon yields almost no results. The

reason for this is that Amazon does not store the name of the parent company that produces

the goods it sells. Instead, Amazon just keeps track of the brand of the good.

Fortune Brands owns more than ten different brands and all of its brands are sold on

Amazon. It is possible therefore to search on Amazon for a specific brand and from that search

query get the ASINs that are needed to feed the Keepa API.

Thus, in order to obtain data on products sold by public firms on Amazon I need to catalogue

all brands sold on Amazon and check whether they belong to a public firm. I proceed in three

steps.

First I use the same list of companies as Huang (2016) as a starting point. Huang (2016)
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identified several companies that sold their products on Amazon and researched the impact of

positive/negative product reviews on asset returns.

Second, I web-crawl Amazon to get a list of all the brands it sells. Under each product

subcategory, Amazon stores a list of brands. Figure A3 shows a list of brands beginning with

the letter “A” that Amazon sells under its Baby & Child Care product subcategory. Amazon

has more than five-hundred product categories and under each category, it sells thousands of

brands.25 To compile a list of all such brands, I develop a Python algorithm that slowly web-

crawls Amazon webpages and builds a database with all Amazon brands. I remove from that

list all brands that sell less than 5 products on Amazon, as they are unlikely to be relevant and

unlikely to belong to a public traded firm. Using the list of brands, I manually search them on

the Global Brands Database from the World Intellectual Property Organization and on Google,

to assign a parent company to each brand. This allows me to get a list of public companies

and all the brands they sell on Amazon.

Third, I use the above list of public companies and brands and again employ a web-crawling

algorithm to retrieve all the ASINs of products that Amazon sells under a specific brand/firm

pair.

The final step is to download the data from Keepa using the list of ASINs. Each product

request to the Keepa database yields a JSON (JavaScript Object Notation) response with the

data for the requested product. Figure A4 shows the format of the JSON objects. 26 The

most important fields from the JSON object for this study are the fields csv(0) and csv3.

These two fields store the Amazon price history and Sales Rank history of the product. Each

of these fields is a two-dimensional object where the first dimension has the time/minute of the

observation and the second dimension the observation value. Importantly, Keepa only appends

a new entry to the history array if the price/value changes and not every time they update the

product. Given that Sales Rank changes much more frequently than prices, the Sales Rank

vector always has a much larger dimension than the price dimension.

The overall sample has around 280 thousand products, an average (median) of 1,100 (237)

products sold per firm (see Table 3 for details).

Close Substitutes

25See https://www.browsenodes.com/ for a full list of Amazon subcategories/nodes.
26The full list of output fields from a Keepa product API Request can be found here:

https://keepa.com/#!discuss/t/product-object/116.
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In Section IV.C, I identify products that are close substitutes for those in my original Keepa

sample. To do so, I pick each product from my sample and store its narrowest Amazon product

category or node (i.e. the narrowest product category to which the product belongs). Ama-

zon’s narrowest nodes are very precise and therefore all products in such a node are very similar

(substitutes). Keepa allows the user to make a “best sellers query” for a given product category,

i.e. given an Amazon product category, an API best seller query returns up to 500,000 ASINs

of products within that category.27 Given that I am looking into very narrow categories, this

limit is non-binding, as for any given product, the deepest Amazon category level always has

less than 500,000 products. Given the ASINs from the best seller query, I can then use the

standard product query to get the prices and sales ranks of products that are close substitutes.

The Keepa Canada Sample

The Keepa database is extremely powerful for identifying the price of the same product in

different markets. Given that Amazon ASINs uniquely identify a product and are therefore the

same across different markets, in order to obtain the price and sales rank of the products in my

sample but on the Amazon Canada market, I simply need to modify the API request to the

Canadian market instead of the US market. If a given product in my US sample is not sold on

Amazon Canada, the API request will return an empty value.

27Details of this query can be found here: https://keepa.com/#!discuss/t/request-best-sellers/1298

71



Figure A2: Keepa API Request

This figure shows how to make a Keepa API request. Requests can be made using a browser
or programming languages suited for back-end web development, such as Python or Java.
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Figure A3: Amazon Brands

This figure shows the list of brands sold on Amazon under the product category Health &
Personal Care, subcategory Baby & Child Care that begin with the letter “A”.
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Figure A4: Output of Keepa API Product Request

This figure shows the format of the JSON objects that are returned by Keepa when making a
product request for a specific ASIN.
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AV. Additional Statistics and Tests

Table A2: Financial Properties of Elasticity Sorted Portfolios

This table reports several financial variables of portfolios sorted on demand elasticity. Tobin’s
Q is the inverse of the ratio the market value of equity plus book value of debt and preferred
equity divided by book value of assets. Investment rate are the net capex expenditures divided
by assets. Size is the market value of equity. R&D and SGA to assets are the ratio of research
and expenditures and selling general and administrative expenses divided by total assets. Data
are from 2011 to 2017.

Less Elastic 2 3 4 More elastic
Difference

(5-1)
Tobin’s Q 0.434 0.400 0.472 0.417 0.391 -0.044**
Size 40.967 21.775 18.175 28.226 30.500 -10.467**
Investment Rate 0.039 0.036 0.038 0.035 0.040 0.001*
R&D to Assets 0.027 0.027 0.064 0.031 0.043 0.016
SGA to Assets 0.352 0.319 0.364 0.244 0.344 -0.008
Leverage 0.876 0.944 0.887 0.871 0.887 0.011
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Table A3: Fama-French 5-Factors

This table reports results for Fama-French 5-factor model time-series regressions. I regress
returns of the 5 elasticity-sorted portfolios and the return on the High-Low Elasticity Portfolio
on the market, size, book-to-market, profitability and investment factors. The regressions are
done with daily data, and the factors data is taken from the Kenneth French data library. The
first row of Panel A reports the intercept of the regression in annual terms. The last three rows
of this table compare the R2’s of the CAPM, Fama-French 3-Factor model and Fama-French 5
factor model. The standard errors are reported in brackets. The sample ranges from January
2011 to April 2017.

Less Elastic 2 3 4 More elastic
Annualized Alpha -0.009 0.011 0.021 0.035 0.037
Std. Error [0.011] [0.009] [0.010] [0.009]* [0.011]*
Rm-Rf 0.948 0.983 1.017 1.006 1.077
Std. Error [0.011]*** [0.009]*** [0.010]*** [0.009]*** [0.011]***
Book-to-Market 0.453 0.249 0.438 0.323 0.381
Std. Error [0.019]*** [0.016]*** [0.018]*** [0.015]*** [0.019]***
Size -0.150 -0.116 -0.125 -0.104 -0.081
Std. Error [0.024]*** [0.021]*** [0.023]*** [0.020]*** [0.025]***
Profitability 0.167 0.314 0.134 0.259 0.158
Std. Error [0.031]*** [0.027]*** [0.030]*** [0.026]*** [0.032]***
Investment 0.123 0.287 0.227 0.137 0.203
Std. Error [0.038]** [0.034]* [0.037]** [0.031]** [0.039]***

R2 Fama-French 5 Factor model 0.886 0.903 0.905 0.923 0.902
R2 Fama-French 3 Factor model 0.883 0.891 0.901 0.917 0.898
R2 CAPM 0.843 0.881 0.869 0.899 0.877
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Table A4: Double sorted portfolios on degree of price stickiness and demand elasticity

This table reports time-series averages for annual excess returns of double sorted portfolios
on demand elasticity and the degree of price adjustment. Firms are assigned to one of five
portfolios based on the average elasticity of demand they face for their products (columns).
Portfolio low (high) has the stocks with the lowest (highest) demand elasticity. The sample
is also split into portfolios with low degree of price adjustment (first row) and high degree
of price adjustment (second row). The last column (row), reports the difference in returns
between the portfolio with low demand-elasticity (degree of price adjustment) and the one
with high demand-elasticity (degree of price adjustment). The sample ranges from January
2011 to March 2017.

Less Elastic 2 3 4 More elastic (5)-(1)
Low FPA 0.146** 0.154** 0.186** 0.192** 0.205** 0.048*
High FPA 0.121** 0.158** 0.153** 0.165** 0.189** 0.068*
(1)-(2) 0.026 0.004 -0.033* -0.028 0.016
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Table A5: Panel Regressions of Demand Elasticity on Firm Net Income and Revenues

This table reports the results estimating equation (19). The regression is done using annual
data. Standard errors are clustered at the firm level and t− stats are reported in parentheses.

Net Income Net Income Net Income Revenues Revenues Revenues
Elasticity Quintiles -0.150 -0.148 -0.093 0.062 0.062 0.034
(t-stat) (-3.62)*** (-3.57)*** (-2.19)** (2.80**) (2.80**) (1.80*)
Year FE N Y N N Y N
Year x Industry FE N N Y N N Y

R2 0.010 0.012 0.050 0.002 0.003 0.031
# Obs 1358 1358 1358 1597 1597 1597
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AVI. Financial Data and Markups

Variable Construction

In this section, I discuss in more detail the construction of financial variables. The data

on equity prices comes from the Center for Research in Security Prices (CRSP) monthly stock

file. I manually merge the companies in my Keepa sample with the CRSP database. Balance

sheet data comes from Compustat. I use the standard in the literature to compute measures

of size and book-to-market (e.g. Lettau and Ludvigson (2001)). Market equity is the natural

logarithm of firms’ total market capitalization (price times number of shares outstanding) at

the end of June. The ratio of book to market is calculated by dividing book equity at the last

fiscal year end in the prior calendar year by the market equity at the end of December in the

prior year. Market betas and Fama and French (1993) betas are the regression coefficient on the

market factor and Fama and French (1993) factors excess returns in times-series regressions. I

make use of the Kenneth French data library to get the returns on the SMB (Small Minus Big)

and HML (High Minus Low) factors. The Herfindahl-Hirschman index (HHI) is computed as

the sum of the squares of the market shares of the firms within a given industry, where I use

net turnover of a firm as a proxy for its market size and define industry at the 4-digit Standard

Industry Classification Code (SIC) of a firm.

As a proxy for markups of firms in my Keepa sample, I use gross margin as in Bustamante

and Donangelo (2017) and Corhay, Kung, and Schmid (2017). Let the markup of firm i at time

t be defined as:

Markupt,i =
Value of Salest,i − Value of Costs of Goods Soldt,i

Value of Salest,i
(VI.1)

where value of sales is the total value of revenue of firm i (Compustat annual data item REVT)

and the value of the cost of goods sold is the Compustat annual data item COGS. I also

define measures of markups at the industry level j, where the definition of markups used is

the same as above but Value of Salest,j is the is the sum of firms sales in industry j, and

Value of Costs of Goods Soldt,j is the sum of costs of goods sold in industry j.
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Markups and the Cross-Section of Returns

In the main text, I analyzed the relation between demand elasticity and stock returns, as

well as the relation between demand elasticity and firm markups. In Section V.B of the paper, I

show empirically that firms with higher demand elasticities have higher returns, and in Section

V.C, I show that firms with higher demand elasticity have lower markups. One corollary of

these two findings is that, in my sample, returns and markups have a negative correlation.

There is mixed evidence in the literature regarding the relation between markups and re-

turns. Hou and Robinson (2006) document that firms in highly concentrated industries (higher

markups) have lower returns even after controlling for size, book-to-market, momentum and

other known return predictors. On the other hand, Kung (2015) finds, at the industry level,

that high-markup industries are associated with higher expected returns. Finally, Bustamante

and Donangelo (2017) study two different channels that affect the relation between markups

and the cross-section of returns in opposite directions. On the one hand, they argue that firms

with lower markups have a lower margin to buffer against negative shocks and therefore have a

higher exposure to risk. On the other hand, incumbents in high-margin industries face a higher

threat from entry, which makes them riskier and thus reduces their expected returns. They

find support for both channels in the data.

Although it is beyond the scope of this paper to fully understand all the economic drivers of

this relationship, Table A6 below provides some evidence on the time-series and cross-sectional

relation between markups and stock returns. In this analysis I make use of the full Compustat

universe of firms excluding financial industries (SIC codes from 6000 to 6999) and regulated

industries (SIC codes from 4900 to 4999). For each year and firm (industry) I compute their

markups using equation (VI.1) above. I then sort firms (industries) into terciles according to

their markup and compute their expected returns the following year. The first (second) columns

of Table A6 show the expected returns of firms (industries) with low and high markups using

the entire Compustat time series. At the industry level, firms with higher markups have higher

expected returns. The economic significance is the same as the one in Corhay, Kung, and

Schmid (2017). At the firm level in the full 1964-2017 sample, the pattern is the opposite.

Firms with lower markups have marginally higher expected returns. The last two columns of

the table repeat the same exercise, but using only the latter part of the sample (2011-2017). On

this latter sample, both at the industry level and at the firm level, firms with lower markups
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have higher returns (the effect is more pronounced at the industry level). The direction of this

correlation is the same as the one I find when I analyze how demand elasticity impacts on

both returns and markups. The possible structural break on the relation between markups and

returns is an empirically interesting question for future research.
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Table A6: Markups and the Cross-section of Returns

This table presents time-series and cross-sectional relations between returns and markups. For
each Compustat firm and industry, I compute a measure of markups using equation (VI.1). I
sort stocks (industries) into terciles according to their markup and compute the returns the
following year. The first two columns show the relation between markups and returns for the
overall Compustat sample (1964-2017). The first column shows the results at industry level
and the second column the results at firm level. The last two columns of the table report the
same thing, but using the same time series as the Keepa sample (2011-2017).

Excess Returns
Full Sample (1964-17) Keepa Sample (2011-17)

Industry level Firm level Industry level Firm level
Low Markup 0.125 0.137 0.147 0.128
High Markup 0.136 0.132 0.099 0.108
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