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Abstract

We examine if two fundamental blockchain characteristics affect cryptocurrency prices.
They are computing power (hashrate) and network (number of users), which are related
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cies. We also document that cryptocurrency returns are exposed to fundamental-based
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Introduction

Identifying the determinants of asset prices is an important question in finance. Traditional

asset pricing theories argue that fundamentals, like earnings, should determine equity prices

(Gordon, 1959; Campbell and Shiller, 1988). In contrast, behavioral theories suggest that

investor sentiment forces prices to deviate from fundamentals (Shiller, 1981; Baker and Wur-

gler, 2006; Stambaugh, Yu, and Yuan, 2012). Pástor and Veronesi (2003, 2006) argue that

price run-ups can arise when future profitability is uncertain with prices eventually tracing

fundamentals. Similarly, Bartram and Grinblatt (2018) show that even if prices deviate from

their estimates of fair value, they eventually converge to fundamentals.

However, studying the impact of fundamental factors on equity prices is challenging be-

cause fundamentals are often difficult to measure and vary significantly across firms. For

instance, fundamental firm characteristics like reputation and goodwill are unobservable,

while the fundamentals of a technology firm, for example, are different from those of a hotel

chain. The diversity in firm fundamentals might be the reason for the plethora of asset pric-

ing factors (Cochrane, 2011). Many factors are based on fundamentals like investments and

profitability (Fama and French, 2015; Hou, Xue, and Zhang, 2015) and others capture behav-

ioral phenomena like investor inattention and mispricing (Hirshleifer and Jiang, Hirshleifer

and Jiang; Daniel, Hirshleifer, and Sun, 2017; Stambaugh and Yuan, 2017).

Unlike public firms, cryptocurrencies have common fundamentals. Specifically, theory

suggests that the computing power and network size of blockchains determine cryptocurrency

values. These blockchain measures capture the trustworthiness and transaction benefits of a

blockchain (Pagnotta and Buraschi, 2018; Biais, Bisiere, Bouvard, Casamatta, and Menkveld,

2018). Despite the robust theoretical predictions that cryptocurrency values are determined

by fundamentals, there is almost no related empirical work.

In this paper, we fill the gap in the literature and carefully examine if cryptocurrency

prices are empirically related to computing power and network size. We refer to these two

blockchain measures as cryptocurrency fundamentals and offer two sets of novel findings.
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First, we show that in the long run, the prices of cryptocurrencies depend on their com-

puting power and network. Second, we construct asset pricing factors related to aggregate

computing power and aggregate network and show that they can explain the time series

variation of cryptocurrency returns. Our factor analysis is quite extensive, goes beyond Bit-

coin, and it includes a total of 39 cryptocurrencies. Further, we explicitly recognize that

factors like investor-sentiment that are unrelated to fundamentals may affect cryptocurrency

returns. In our asset pricing tests we account for these effects by controlling for Bitcoin

returns and cryptocurrency momentum.

We analyze the relationship between prices and fundamentals using five prominent cryp-

tocurrencies that rely on miners to produce and secure the underlying blockchain. These

are Bitcoin, Ethereum, Litecoin, Monero, and Dash. We focus on these cryptocurrencies

because they are among the oldest and most established cryptocurrencies. As such they

have reliable data on prices and fundamentals for a relative long time period. Specifically,

we collect daily prices from August 7th, 2015 to June 28th, 2019 and aggregate them to the

weekly frequency. We focus on the weekly frequency following Biais et al. (2018) to mitigate

the impact of day-of-the-week effects. In our asset pricing factor tests, we also consider an

extended sample of 34 cryptocurrencies. For the additional 34 cryptocurrencies, we are able

to collect price data from March 31st, 2017 to June 28th, 2019.

We also gather information on network and computing power for each of the five main

cryptocurrencies. We measure network by the number of unique users that transact on

the blockchain. Computing power is measured in terahashes and it is directly related to

the resources expended by miners creating blocks in the blockchain. These resources are

electricity consumption, purchases of hardware and software as well as the cost of setting up

mining farms. Even if we cannot measure these costs directly, computing power is a sufficient

statistic of the resources spent on cryptocurrency mining. For example, Saleh (2018) suggests

a positive relationship between computing power and electricity consumption. Additionally,

we compare our computing power measure (i.e., hashrate) to the Cambridge Bitcoin Energy

Consumption Index (CBECI), which takes into account the cost of producing Bitcoin vis-

à-vis the efficiency of mining equipment and the costs of running mining facilities. We find
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that our hashrate measure is highly correlated with the CBECI.

Our empirical analysis starts with tests at the cryptocurrency level. Specifically, for

each of the five baseline currencies, we examine if prices are related to computing power

and network. Because these three variables are non-stationary, OLS regressions of prices on

the two blockchain fundamentals are spurious (Phillips, 1986). Therefore, we estimate the

corresponding (cointegration) relationship using the dynamic ordinary least squares (DOLS)

of Stock and Watson (1993). The DOLS methodology has been used in the asset pricing

literature because it accounts for the endogeneity of economic variables that are jointly

determined in equilibrium. For example, Lettau and Ludvigson (2001) use DOLS to estimate

the relation between consumption, income, and wealth, while Lustig and Van Nieuwerburgh

(2005) use DOLS to estimate the trend of U.S. housing wealth with income.

We estimate full-sample and rolling DOLS regressions. The full-sample results show that

there is strong cointegrating relationship between prices, computing power, and network.

In particular, the cointegration parameters related to fundamentals are positive and sta-

tistically significant for all cryptocurrencies. Further, the results from the rolling DOLS

regressions show that cryptocurrencies face periods when prices deviate from fundamentals.

The average duration of the price-deviation episodes are from 6 to 11 weeks. The existence

of this price-deviation episodes is consistent with prior work showing that factors, which are

not necessarily related to blockchain fundamentals, may affect cryptocurrency returns (e.g.,

Makarov and Schoar (2019)).

Next, we examine the asset pricing ability of the blockchain fundamentals. For this

analysis, we follow the asset pricing literature and estimate factor regressions. The DOLS

results suggest that prices are, on average, related to computing power and network, but

in some periods prices deviate from fundamentals. We therefore create one set of factors

related to fundamentals and a second one aiming to capture deviations from fundamentals.

Motivated by the existing results for equity markets, we conjecture that price deviations

from fundamentals are related to investor sentiment trading (e.g., Baker and Wurgler (2006)).

We consider two investor-sentiment factors. The first one is a cryptocurrency momentum
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factor, which we calculate following Jegadeesh and Titman (1993). We consider cryptocur-

rency momentum because momentum effects have been linked to investor psychology (e.g.,

see Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998),

and Hong and Stein (1999)).

The second factor is Bitcoin. We conjecture that Bitcoin is susceptible to sentiment

trading because it is the most traded cryptocurrency. Thus, it can capture periods when

trading forces that are unrelated to fundamentals are strong. Also, from a completely differ-

ent perspective, Bitcoin is the largest cryptocurrency in terms of market capitalization and

it can be used as a proxy for cryptocurrency market-wide risk. Whether Bitcoin captures

investor sentiment or is a proxy for systematic cryptocurrency risk, it is important that we

include it in our empirical factor models.

We use the aforementioned crypto-momentum and Bitcoin factors to estimate a baseline

2-factor model. We find that the Bitcoin factor is statistically significant for Ethereum,

Litecoin, Monero, and Dash, with betas ranging from 0.76 to 0.96. For the cryptocurrency

momentum factor, we find significant exposures for Monero, Litecoin, and Dash.

Next, we examine whether cryptocurrency returns are exposed to aggregate factors

based on blockchain fundamentals. Constructing these factors is not straightforward since

blockchain measures are not in the same units and cannot be summed across cryptocur-

rencies. For example, computing power is not comparable across cryptocurrencies that use

different hashing algorithms. To address this issue, we project the blockchain measures on

the space of cryptocurrency returns using the factor-mimicking-portfolio (FMP) methodol-

ogy (Knez, Litterman, and Scheinkman, 1994; Lamont, 2001; Vassalou, 2003). Specifically,

for each cryptocurrency, we project its computing power and network growth rates on the

space of cryptocurrency returns. We then aggregate these factor-mimicking portfolios to

obtain market-wide fundamental factors related to computing power and network.

We test two predictions to show that the fundamental factors are procyclical asset pricing

factors. Cochrane (2005) suggests that procyclical factors should indicate “good” and “bad”

times for investors and should carry a positive risk premium. For cryptocurrency investors,
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“good” times are when aggregate computing power and network size are high because, as

suggested by existing theories and our DOLS results, this is when prices are typically high.

Consistent with our intuition, we find that the fundamental factors earn positive risk premia

and have reasonable Sharpe ratios. For example, the Sharpe ratio of the computing power

factor is 0.197. For the same period, the Sharpe ratio of the U.S. stock market is 0.124.

Our second prediction is that if the computing power and network factors are procyclical,

then the exposures (betas) of cryptocurrency returns to these factors should be positive

because cryptocurrencies earn high average returns. To test this hypothesis, we estimate

three distinct 3-factor models. These models include the two factors from the baseline model,

i.e., the Bitcoin return and the cryptocurrency momentum factor, combined with either the

computing power factor, the network factor, or a cumulative factor. The cumulative factor

is based on the singular value decomposition (SVD) of the two fundamental factors.

We find that the 3-factor models perform better than the 2-factor one. For Ethereum, for

example, the adjusted R2 rises from 20% in the 2-factor model to 67% in the 3-factor model

with computing power. Cryptocurrency returns are also exposed to the fundamental factors

since we estimate statistically significant positive betas ranging from 0.48 to 1.19 (0.72 to

1.44) for the aggregate computing power (network) factor. Further, in the presence of the

fundamental factors, the Bitcoin and momentum betas become less significant.

Finally, we show that our results are robust to changes to our methodology. Our first ro-

bustness test is motivated by that fact that if the fundamentals-based factors are true sources

of cryptocurrency risk, they should price the returns of any cryptocurrency. We test this

hypothesis with a set of 34 cryptocurrencies that excludes the five baseline currencies. This

is an out-of-sample test because the fundamentals of the new cryptocurrencies are excluded

from the construction of the fundamental factors. We estimate pooled and currency-specific

OLS regressions with the fundamental factors controlling for the momentum factor and the

Bitcoin return. The estimation results show that the new cryptocurrencies have statistically

positive exposures to the aggregate computing power and network factors. We find almost

identical results when we control for the Ethereum return as opposed to the Bitcoin return.
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The out-of-sample results indicate that the pricing ability of the two fundamental factors is

neither mechanical nor is an artifact of the way we construct them.

In the next robustness test, we examine the effect of Bitcoin on our findings. Given that

Bitcoin is the largest cryptocurrency, the significance of the computing power and network

factors may be driven by Bitcoin’s dominance. We therefore compute new aggregate com-

puting power and network factors that are based on FMP regressions that exclude Bitcoin

from the basis assets. Also, the new factors exclude the factor mimicking portfolios related

to the fundamentals of Bitcoin. We find that the explanatory power of the new Bitcoin-free

factors for cryptocurrency returns remains strong both in- and out-of-sample.

In the final robustness test, we expand the number of basis assets in the factor-mimicking-

portfolio (FMP) regressions that we use to create the fundamental factors. Specifically, we

add the 34 out-of-sample cryptocurrency returns so that each FMP regression has 38 basis

assets. The new factors are computed for the time period for which the out-of-sample

cryptocurrency data are available (i.e., March 31st, 2017 to June 28th, 2019). We find that

the exposures of cryptocurrency returns on the new factors are still positive and significant.

Overall, our empirical findings contribute to the nascent literature on cryptocurrencies.

Pagnotta and Buraschi (2018) provide a theory linking cryptocurrency prices to computing

power, which reflects the network’s trustworthiness, and the number of users, which captures

network externalities. Biais et al. (2018) propose an overlapping generations model where

the fundamental value of cryptocurrencies depends on transactional benefits. Abadi and

Brunnermeier (2018) highlight that decentralized ledgers can become unstable because new

ledgers can fork off (i.e., split off) an existing blockchain. Sockin and Xiong (2018) note that

the “trustless” aspect of decentralized networks is a key innovation of blockchain technology,

which also contributes to the value of the blockchain. We confirm the prediction of these

theoretical papers that computing resources and network size affect prices.

One open question in the literature is identifying the asset pricing factors that drive cryp-

tocurrency prices. Baur, Hong, and Lee (2018) find that Bitcoin is uncorrelated to other

assets like equity, bonds, or commodities. Liu and Tsyvinski (2018) show that cryptocur-
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rencies are exposed to momentum, captured by lagged cryptocurrency returns, and investor

attention, captured by Google searches and Twitter activity. Liu, Tsyvinski, and Wu (2019)

reach similar conclusions highlighting the importance of a cryptocurrency-based size factor.

We complement these papers in several ways. First, our factors are based on theoretical

predictions that highlight the importance of blockchain characteristics. Specifically, we use

computing power and network size because theoretical models relate these characteristics to

the trustworthiness and transactional benefits of a blockchain. Second, instead of using long-

short trading strategies, we estimate the proposed fundamentals-based asset pricing models

at the cryptocurrency-level using five prominent cryptocurrencies. More importantly, we

conduct an out-of-sample estimation using an extended set of 34 cryptocurrencies.

Overall, our results are related to the asset pricing literature. Pástor and Veronesi (2003,

2006) argue that valuation uncertainty leads to equity price run-ups. Similarly, the increase

in cryptocurrency prices in late 2017 could be related to potentially disruptive capabilities

of the blockchain technology (Catalini and Gans, 2016). Daniel et al. (2017) propose behav-

ioral factors for explaining equity returns. We also consider a behaviorally-oriented factor,

namely, cryptocurrency momentum. Finally, Harvey, Liu, and Zhu (2016) argue that the

statistical significance of new factors should be high because of data mining. Following their

conclusions, we conduct both in-sample and out-of-sample tests and show that the statistical

significance of the fundamentals-based cryptocurrency factors clears their proposed hurdles.

The rest of the paper is organized as follows. Section 1 reviews cryptocurrencies, the

literature, and presents our hypothesis. Section 2 describes our data and presents summary

statistics. Section 3 presents our long-term analysis. Section 4 reports our factor analysis

while Section 5 reports our out-of-sample factor analysis. Section 6 concludes the paper.

1. Background and Literature Review

We preface our analysis with a brief discussion on cryptocurrencies, computing power, and

network. We also provide a brief literature review and present our central hypothesis.
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1.1. Cryptocurrencies and Blockchain

There are two types of cryptocurrencies: mineable and non-mineable ones. In our main anal-

ysis we focus on five prominent mineable cryptocurrencies, namely Bitcoin, Ethereum, Mon-

ero, Litecoin, and Dash. Mineable cryptocurrencies are rewards to solving a cryptographic

algorithm via a process known as mining. The miner that first solves the cryptographic algo-

rithm generates a block and receives a reward. The block reward is in units of the respective

cryptocurrency. In the process of mining blocks, miners verify transaction records into that

block, which is then added (i.e., chained) to the prior block, thereby forming the blockchain

(Nakamoto, 2008; Narayanan, Bonneau, Felten, Miller, and Goldfeder, 2016). By verifying

transactions, miners also receive a fee for each transaction they record in the block.

Contrary to mineable cryptocurrencies, the distribution and creation of non-mineable

cryptocurrencies (NMCs) is decided ex-ante and is generally based on the protocol of their

founders. Cong, Li, and Wang (2018) discuss the economics of non-mineable currencies,

which they refer to as “tokens.” We exclude NMCs from our main analysis because the

absence of mining activity implies that they do not have a measure of computing power.

However, we use NMCs in our out-of-sample robustness tests presented in Section 5.1.

1.2. Computing Power

An important characteristic of blockchains of mineable cryptocurrencies is computing power.

Computing power is measured in hashes, with one hash referring to one function solved by a

computer. Saleh (2018) argues that computing power is related to the resources expended to

maintain the blockchain. Specifically, he reports that Bitcoin and Ethereum, which have the

highest computing powers of all cryptocurrencies, “collectively consume more energy on an

annual basis than all but 69 countries individually.” Unfortunately, there is no data available

for the energy consumption of most cryptocurrencies. Thus, we use computing power as a

proxy for overall resources spent on crypto-mining, including electricity.

Computing power is important because it facilitates the fast and secure record-keeping
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of transactions. For example, a rogue miner needs more than 50% of the existing computing

power of a cryptocurrency to hijack its blockchain and record transactions to her private

benefit. This is currently impossible for cryptocurrencies with high computing power like

Bitcoin (Kroll, Davey, and Felten, Kroll et al.; Eyal and Sirer, 2018).

1.3. Network

The other characteristic of blockchains, which is as important as computing power, is the

size of the cryptocurrency network. Network is the number of unique active users that that

transact the cryptocurrency, whose unique address is publicly available on the blockchain .

Analogous to established fiat currencies that have a large number of entities willing to accept

them for transactions, a large network is indicative of greater adoption of the cryptocurrency.

A large number of unique blockchain users is also suggestive of enhanced liquidity of the re-

spective cryptocurrency. Moreover, a large network attracts developers to build applications

for the cryptocurrency’s blockchain, which increase the usability of the currency. For exam-

ple, cryptocurrencies with large networks such as Bitcoin and Ethereum have a multitude of

Android, iOS, and Windows wallet applications.

1.4. Literature Review

Despite the significance of computing power and network size for the efficient functioning

of blockchains, the existing literature has not carefully studied how they relate to cryp-

tocurrency prices. Instead, many studies have focused on whether cryptocurrencies are real

currencies. Yermack (2015) argues that Bitcoin is not yet a proper currency because it is

not a widespread medium of exchange or unit of account. He concludes that Bitcoin is a

speculative asset due to its high price volatility relative to other currencies. Selgin (2015)

and Baur et al. (2018) argue that Bitcoin combines features of fiat and commodity curren-

cies. More recently, Pagano and Sedunov (2019) posit that Bitcoin is a true form of money

in recent years as more vendors accept it as medium of exchange.
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One hurdle with using cryptocurrencies as media of exchange or store of value is that

their secondary markets are underdeveloped. For example, Auer and Claessens (2018) argue

that because of market segmentation, regulatory news in a jurisdiction affects the prices of

cryptocurrencies traded in that jurisdiction. Makarov and Schoar (2019) study the prices of

Bitcoin, Ethereum, and Ripple across different exchanges. They find that sometimes prices

differ across exchanges for weeks, which imply large arbitrage profits. Such arbitrage profits

can lead to persistent price run-ups or jumps as documented by Cheah and Fry (2015), who

find that during July 2010 to July 2014 Bitcoin went through a number of “bubble-like”

periods. Cheah and Fry (2015) conclude that Bitcoin has zero fundamental value and its

price is driven by investor sentiment.

Another concern with cryptocurrencies is their use for illegal transactions. The extent to

which cryptocurrencies, and Bitcoin in particular, is used for illicit activities is only based

on approximations and it varies significantly across studies. Foley, Karlsen, and Putniņš

(2019) estimate that over the 2009 to 2017 period about 46% of Bitcoin’s trading volume

was related to illegal activities. They also find that the portion of illegal activity started

decreasing in 2013 with a substantial decrease in 2015. Consistent with Foley et al. (2019),

Fanusie and Robinson (2018) find that over the 2013 to 2016 period less than 1% of Bitcoin

transactions entering conversion services (i.e., services exchanging cryptocurrencies for fiat

money) can be linked to money laundering.

Overall, in recent years, the use of Bitcoin for illegal activities have been decreasing.

Therefore, if the value of Bitcoin were mainly determined by its use by criminals, its prices

should have been decreasing. The drop in its price should have been especially strong

after the major Bitcoin seizures by authorities in 2013, which demonstrated that Bitcoin

transactions are traceable.1. In contrast, the price of Bitcoin kept increasing after 2013 and

all through 2017, suggesting that facilitating illicit activities is not the main driver of its

value in recent years.

Despite the concerns related to cryptocurrencies, cryptocurrencies have facilitated the

1On October 1, 2013, the FBI seized the Bitcoins of Ross William Ulbricht, the founder of Silk Road. On
October 2, 2013, it seized the Bitcoins kept in the Silk Road escrow accounts
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introduction of the blockchain technology in our economic life, which constitutes a signif-

icant innovation. Yermack (2017) highlights that blockchain usage can improve corporate

governance. Cong and He (2019) emphasize that blockchain technology can lead to execut-

ing contracts automatically. Chiu and Koeppl (2019) show that the blockchain technology

improves the settlement of securities.

An important open issue is the relation of the nascent cryptocurrency market with other

financial markets as well as identifying the asset pricing factors that drive cryptocurrency

expected returns. Baur et al. (2018) find that Bitcoin is uncorrelated to equity, bonds,

and commodities. Liu and Tsyvinski (2018) show that Bitcoin, Ripple, and Ethereum are

unrelated to equity, bonds, currencies, and precious metals markets. They also find that

cryptocurrencies are not exposed to existing financial factors but instead, they are exposed

to two cryptocurrency-specific factors. These factors are momentum, which is captured by

lagged cryptocurrency returns, and investor attention, which is measured by Google searches

and Twitter activity. Liu et al. (2019) reach similar conclusions for a much larger set of

cryptocurrencies while highlighting the importance of a cryptocurrency-based size factor.

Bianchi (2018) also finds strong momentum effects in Bitcoin returns.

Existing theoretical work studies the fundamental value of currencies in decentralized

financial networks. Pagnotta and Buraschi (2018) show that the fundamental values of

mineable cryptocurrencies should depend on consumer preferences (i.e., aversion to risk and

censorship) and usefulness of the currency (captured by trust and adoption levels). Trust is

related to the absence of fraud, resistance to censorship, and protection from cyber-attacks

and it is related to the computing power devoted to the currency. Biais et al. (2018) highlight

the importance of transactional benefits for cryptocurrency values, which are related to the

number of cryptocurrency users.

Finally, there is important work focusing on microstructure issues. For instance, Easley,

O’Hara, and Basu (2018) explore the role of transaction fees paid to miners for the evolution

of the Bitcoin market. They argue that transaction fees are important to keep the blockchain

viable as more and more blocks are being mined. Abadi and Brunnermeier (2018) study the
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theoretical problem of whether record-keeping is better arranged through distributed ledgers

than through a traditional centralized institution.2

1.5. Testable Hypotheses

We form two testable hypotheses following the prior theoretical literature. First, at the

individual cryptocurrency level, we examine whether prices are related to computing power

and network size. Based on the existing theoretical models, we expect that, on average, there

should be a positive relation between prices, computing power, and network size. Given the

recent empirical evidence (e.g., Corbet, Lucey, and Yarovaya (2018), Liu and Tsyvinski

(2018), Makarov and Schoar (2019)), we also expect that there might be periods where

prices deviate from the relationship with the two blockchain fundamentals.

Second, at the cryptocurrency market level, we examine whether aggregate measures of

blockchain fundamentals capture sources of systematic risk. Given the strong theoretical

relation between cryptocurrency prices and fundamentals, the aggregate factors related to

computing power and network should be able to explain cryptocurrency returns. We test

this conjecture with traditional factor analysis inspired by the asset pricing literature.

2. Data and Descriptive Statistics

In this section, we describe our data sources and sample summary statistics. For complete-

ness, we also provide descriptions of the main variables in Table A1 of the Appendix.

2.1. Cryptocurrency Price Data

In our main analysis, we focus on Bitcoin, Ethereum, Litecoin, Monero, and Dash, which

have dominated the market in terms of capitalization. For instance, they account for 70%

2The importance of computing power, adoption levels, and transaction fees for the proper functioning of
a blockchain is also highlighted in Houy (2014), Malinova and Park (2017), Tinn (2017), Huberman, Leshno,
and Moallemi (2017), Cong et al. (2018), Li, Ma, and Chang (2018), Prat and Walter (2018), Chiu and
Koeppl (2019), Cong and He (2019), and Iyidogan (2019).
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to 95% of the aggregate cryptocurrency market when including NMCs and over 98% when

excluding them (see Table 1). Because these 5 currencies are among the oldest and most

established one, we can collect a relative large sample of prices and blockchain measures.

We use daily price from Coinmetrics.io. Coinmetrics.io obtains prices from liquid cryp-

tocurrency exchanges and weighs them by the trading volume of each exchange. We use

this volume-weighted price. Coinmetrics.io uses data from 22 established exchanges out of

the approximately 260 exchanges currently operating.3 To filter out illiquid or unreliable

exchanges, Coinmetrics.io uses 35 criteria that exchanges must meet in order for their prices

to be included in the volume-weighted aggregation.4 The prices are quoted in U.S. Dollars.

The daily prices are as of 00:00 UTC time of the following day (i.e., Friday’s prices are

recorded as of 00:00 UTC Saturday). We compute weekly returns by averaging the daily log

prices over a 7-day period, and taking the first difference of the weekly averages. The 7-day

period ends on Friday similar to the Friday convention in the weekly Fama-French factors.

We repeat our analysis using various ending days for our 7-day period, such as Sunday or

Monday, and find qualitatively very similar results. We use 7-day intervals that include

weekends because cryptocurrency exchanges run around the clock. We average prices across

the 7-day period to mitigate any day-of-the-week effects and the problems with outliers.

2.2. Computing Power and Network Data

Our proxies for cryptocurrency fundamentals are computing power and network, which are

also provided by Coinmetrics.io. Computing power is measured in terahashes (1 terahash =

1012 hashes). Network measures the number of unique active addresses transacting on the

blockchain. Addresses that conduct multiple transactions are not double-counted. We are

unable to gather the number of active addresses for Monero because this cryptocurrency uses

ring signatures to mask transactions across multiple addresses obfuscating the true address

3Please see https://coinmarketcap.com/rankings/exchanges/3 for a non-exhaustive list of exchanges
4Bitwise presented a report to the SEC that 95% of volume on some exchanges was faked (

https://www.sec.gov/comments/sr-nysearca-2019-01/srnysearca201901-5164833-183434.pdf). Examples of
suspicious exchanges were CoinBene, OkEX, IDAX, LBank, Exrates, and BitForex. The Coinmetrics.io
data does not include any of these exchanges.
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count (Narayanan et al., 2016). Based on the daily blockchain measure, we construct weekly

growth rates using the same approach as with weekly cryptocurrency returns.

2.3. Validation of the Computing Power Measure

We argue that computing power, measured by the hashrate, is a sufficient statistic for the

resources expended to maintain a blockchain. We can not use a direct measure of resources

because it is unavailable for almost all cryptocurrencies. However, we validate our comput-

ing power measure by comparing it to the energy cost indices of Bitcoin and Ethereum. For

Bitcoin, in untabulated results, we find a 99% correlation of its hashrate with the Cambridge

Bitcoin Energy Consumption Index (CBECI).5 We also validate the computing power mea-

sure for Ethereum’s hashrate using data from Digiconomist’s Ethereum Energy Consumption

Index. In untabulated results, we find a 89.53% correlation between the Digiconomist index

and our hashrate measure.6 These results suggest that computing power captures the real

resources expended on powering the blockchain.

2.4. Descriptive Statistics

As described above, our main variables are the weekly growth rates of prices, computer power,

and network. We report their descriptive statistics in Table 2 and Table A2 in the Appendix

for the period August 7th, 2015 to June 28th, 2019. As we see in Panel A of Table 2, all

five cryptocurrencies have positive average returns. Also, they demonstrate significant return

fluctuations as their standard deviations are substantially larger than their respective means.

For example, the standard deviation of Ethereum is 5.59 times larger than its mean. This

finding is not surprising since cryptocurrencies are a new asset class. For instance, Pástor

and Veronesi (2003) find that the return volatilities of young firms are much greater than

5The high correlation is not surprising since the research examining the costs of mining, including the
CBECI, relies on the hashrate as a key parameter to proxy some costs related to the cost of producing
Bitcoin. For the full methodology of CBECI, please visit https://www.cbeci.org/methodology/.

6We are only able to obtain data from May 2017 onwards for the Ethereum Energy Consumption In-
dex. Please see the graph of Ethereum’s energy consumption at https://digiconomist.net/ethereum-energy-
consumption. The methodology follows from De Vries (2018). In untabulated results, we also find a 98%
correlation between Bitcoin’s hashrate and Digiconomists’s Bitcoin Energy Consumption Index.
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their average returns. Similarly, the computing power growth (Panel B) and average network

growth (Panel C) have standard deviations that are greater than their respective averages.

Overall, these descriptive statistics confirm the prior literature that cryptocurrencies have

high volatility in prices and fundamentals.

Finally, in Table A2 in the Appendix, we report the correlation estimates across the five

cryptocurrencies. We find that the five cryptocurrencies are positively correlated. However,

the magnitude of these correlations, which ranges from 0.33 to 0.63, is weaker than those

of standard equity portfolios used in asset pricing tests. For instance, the cross-correlations

(untabulated) of the weekly returns for the six Fama-French portfolios sorted on size and

book-to-market range from 0.74 to 0.96 over the same sample period.

3. Prices and Fundamentals in the Long-Term

In this section, we estimate the relationship between cryptocurrency prices and fundamentals.

We find that the price of a cryptocurrency is typically high when its computing power and

network are also high. This finding enables us to claim in Section 4 that aggregate computer

power and aggregate network are procyclical risk factors that indicate “good” and “bad”

times for cryptocurrency investors. Without this cryptocurrency-level “micro” evidence, we

cannot claim that the aggregate blockchain measures are procyclical risk factors.

3.1. Graphical Analysis of Prices and Fundamentals

We begin by plotting the price of Bitcoin, Ethereum, and Monero along with their computing

power (network) in Figure 1 (Figure 2). We present the graphs for Litecoin and Dash in

Figures A1 and A2 of the Appendix, respectively. In these figures, we normalize each time

series by subtracting their means and dividing by their standard deviations.

Overall, we observe a positive relation between prices and fundamentals. However, some-

times prices deviate from the trend with fundamentals. For example, according to Panel A

of Figure 1, after September 2017 the price of Bitcoin rises above the trend with computing
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power. From late 2018 onward, the price of Bitcoin moves below the trend and eventually

retraces back to the trend with computing power in early 2019. In the case of Ethereum

(Panel B of Figure 2), the trend in prices falls below the trend in network size during the

later months of 2018 and retraces back towards the common trend in mid 2019.

3.2. Evidence of Non-Stationarity

The graphical evidence suggests that cryptocurrency prices are related to computing power

and network. The graphs also suggest that these three variables might be non-stationary.

Therefore, we test for units roots with the augmented Dickey and Fuller (1979) (ADF) test.

For the ADF test, we use a regression that includes a constant, a linear time trend, and four

lags. In untabulated tests, we find that the inference of the ADF test is robust to using up

to eight lags and no linear time trend in the ADF regression.

We report the ADF test statistic as well as descriptive statistics for the log-levels of

prices, computing power, and network size in Table A3 of the Appendix. Given the size of

our time series sample, the ADF test statistic would imply a rejection of the null hypothesis

of a unit root at the 5% significance level if its value were lower than −3.55. According to

Table A3, our estimated ADF test statistics range from −3.017 to +0.262 suggesting that

the time series of prices and fundamentals are non-stationary.

3.3. Evidence of Cointegration

Based on the evidence of non-stationarity, we cannot estimate the relationship between prices

and fundamentals with ordinary least squares because such regressions would be spurious

(e.g., Phillips (1986)). Instead, we proceed with cointegration analysis. Following Lettau

and Ludvigson (2001) and Lustig and Van Nieuwerburgh (2005), we determine the number of

cointegrating relationships with the Johansen test (Johansen, 1988, 1991). According to the

Johansen trace statistics, in untabulated results, we find that there is only one cointegrating

relationship between price, computing power, and network for all five cryptocurrencies.
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3.4. Dynamic Ordinary Least Squares Methodology

Since there is only one cointegrating relationship, we can use the dynamic ordinary least

squares (DOLS) of Stock and Watson (1993) to estimate it. The DOLS provides a consistent

estimate of the cointegrating vector when regressors are endogeneous and jointly determined

in equilibrium. Lettau and Ludvigson (2001) use DOLS to estimate the trend of aggregate

consumption with income and wealth. For instance, Lustig and Van Nieuwerburgh (2005)

use DOLS to estimate the relationship between U.S. housing wealth and income.

We apply the DOLS methodology as follows. Theory predicts that there is a positive

relationship between prices and blockchain fundamentals. We take this prediction to the

data and assume that empirically there is a linear cointegrating relationship between log

prices (Price), log computing power (CP ), and log network (NET ). As in Lustig and

Van Nieuwerburgh (2005), we impose the restriction that the cointegrating vector eliminates

any deterministic trends. This set up implies the following empirical linear model:

Pricet = α + δ × t + βCP × CPt + βNET ×NETt + et. (1)

Above, et is a white noise process implying that deviations from the relationship between

Price, CP , and NET are temporary.

Since CP and NET are endogenous, they are correlated with et in equation (1) and the

OLS estimates of βCP and βNET are biased. The way to resolve the endogeneity problem

in the Stock and Watson (1993) framework is to project et onto the first difference of CP

(∆CP ) and NET (∆NET ) and obtain the following linear projection for et:

et =
k∑

τ=−k

βCP,τ ×∆CPt+τ +
k∑

τ=−k

βNET,τ ×∆NETt+τ + εt. (2)

In equation (2), the new error term εt is orthogonal to et. Finally, we combine equations (1)

and (2) to derive the DOLS regression:

Pricet = α + δ × t + βCP × CPt + βNET ×NETt +
k∑

τ=−k

βCP,τ ×∆CPt+τ (3)

+
k∑

τ=−k

βNET,τ∆NETt+τ + εt.
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Stock and Watson (1993) show that under mild conditions, the ordinary least squares

estimates of βCP and βNET from the DOLS regression (3) are not affected by endogeneity

because all the right-hand-side variables in equation 3 are orthogonal to εt. For parsimony, we

use one lead and one lag for the first differences of the right-hand-side variables in equation

(3). The estimation results are similar when using up to 3 leads and 3 lags. From the

estimation results, we focus on the estimates of βCP and βNET . We compute their t-statistics

with robust Newey-West standard errors corrected for autocorrelation. The length of the

autocorrelation is determined by automatic bandwidth selection.

3.5. Full Sample DOLS Estimation

We present the results of the DOLS estimation for our full sample in Table 3. According

to our findings, cryptocurrency prices are positively related to fundamentals. In particular,

the cointegration parameters for computing power and network are positive and statistically

significant for all five cryptocurrencies with the exception of the computing power estimate

of βCP for Litecoin (column (4) of Panel A).

For instance, in the case of Bitcoin (column (1) in Panel A), the cointegration parameter

for computing power (βCP ) is positive and significant (estimate = 1.298; t-statistic = 5.88).

Similarly, the cointegration parameter for computing power for Ethereum (column (2) in

Panel A) is also positive and significant (estimate = 0.912; t-statistic = 3.53). The currency

with the strongest relationship with its computing power is Monero with a cointegration

parameter of 1.526 (t-statistic = 11.25).

The cointegration parameters for network (βNET ) are also positive and significant for all

currencies. For example, in the case of Bitcoin, the cointegration parameter estimate is 1.802

(t-statistics = 3.76). In the case of Ethereum, the cointegration parameter estimate is 0.612

(t-statistics = 2.20). Overall, the results in Panel A of Table 3 provide evidence that in the

long-run, cryptocurrency prices share the same trend with blockchain fundamentals.
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3.6. Rolling DOLS Estimation

Prior research suggests that there might exist periods when prices deviate from fundamentals

(e.g., Makarov and Schoar (2019)). To identify these periods, we estimate rolling DOLS

regressions. From the rolling regressions, we focus on the statistical significance of the

βCP and βNET parameter estimates. In particular, we identify periods during which the

estimates of βCP and βNET are either statistically insignificant (i.e., −2 ≤ t-statistic < 2)

or inconsistent with economic theories (i.e., t-statistic < −2). We call these periods price-

deviation episodes. We also examine the severity of these price deviations, by calculating

the average number of weeks that prices deviate from fundamentals

We estimate 180 rolling DOLS regressions across the 202 weeks using 20-week windows.

We report the number and the average length of the price-deviation episodes for computing

power (network) in Panel B (C) of Table 3. We find that cryptocurrencies experience between

6 to 9 and 8 to 11 episodes during which prices deviate from the trend with computing power

and network, respectively. In the case of Bitcoin, for example, we count 6 and 9 such episodes

where its price is unrelated to computing power and network size, respectively. We also find

that the average duration of these episodes is about 22 weeks for computing power and only

6.44 weeks for network.

Overall, the DOLS estimates suggest that in the long-run cryptocurrency prices share a

common trend with their blockchain fundamentals. Temporarily, however, the strength of

this relationship may weaken.

4. Aggregate Fundamentals as Asset Pricing Factors

In this section, we conduct standard asset pricing tests shifting our attention from individual

cryptocurrencies to the aggregate cryptocurrency market.
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4.1. Testable Predictions: Procyclical Factors

Our asset pricing tests are based on the hypothesis that computing power and network size

are procyclical asset pricing factors. This hypothesis follows from the existing theoretical

models and our DOLS results.

Specifically, theoretical models (e.g., Pagnotta and Buraschi (2018)) suggest that cryp-

tocurrency prices are high when the trustworthiness and transaction benefits of the currency

are also high. Thus, at the aggregate level, when the overall trustworthiness and transaction

benefits are high, prices of most currencies should also be high. These periods are good times

for cryptocurrency investors because the value of their cryptocurrency wealth is high. The

DOLS analysis from Section 3.5 confirms these theoretical insights since we find that good

times in the cryptocurrency market, i.e., periods of high prices, are associated with larger

values for computing power and network size. Based on this evidence, computing power and

network should be procyclical cryptocurrency factors.

We test whether the two fundamental factors are procyclical following the intuition in

Cochrane (2005). To begin with, procyclical asset pricing factors that are also traded assets

(e.g., Fama and French (2015)) should carry positive risk premia because they deliver high

(low) returns during good times when marginal utility of wealth is low (high). Further,

assets that earn positive risk premia should have positive exposures to procyclical asset

pricing factors. Based on this intuition, we first examine whether the aggregate computing

power and network carry positive risk premia. Second, since cryptocurrencies earn large and

positive risk premia (see Table 2), we test whether their betas with respect to the procyclical

fundamental factors are positive.

4.2. Construction of Fundamental-Based Cryptocurrency Factors

We follow the asset pricing literature and construct return-based fundamental factors. Sim-

ilar to consumption growth (e.g., Lettau and Ludvigson (2001)), computing power, and

network are non-traded factors. Therefore, we use the factor-mimicking-portfolio method-
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ology to project them on the space of cryptocurrency returns. This is similar to creating

factor-mimicking portfolios for macroeconomic factors such as U.S. consumption growth or

U.S. GDP growth (e.g., see Knez et al. (1994) and Vassalou (2003)).

Projecting the blockchain measures on returns serves two purposes. First, because the

fundamentals of each cryptocurrency are now expressed in “return” units, we can aggregate

them across currencies. To the contrary, raw values of blockchain measures of different

cryptocurrencies cannot be summed since, according to Table A4 in the Appendix, they

use different hashing algorithms. Second, the return-based cryptocurrency factors allow

us to test the two predictions implied by the asset pricing analysis. Specifically, we can

test whether computing power and network are procyclical factors that command positive

risk premia and whether cryptocurrencies with large positive expected returns have positive

exposures to these procyclical factors.

To construct the factor-mimicking portfolios (FMPs), we project the growth rate of com-

puting power and network of the five currencies on the returns of the other four currencies.

We exclude the respective cryptocurrency when calculating its projection on cryptocurrency

returns to avoid mechanical correlations between the cryptocurrency returns and the corre-

sponding factor. For example, in the case of computing power, we estimate OLS regressions

of the changes in log computing power of each cryptocurrency on the returns of the other

four cryptocurrencies. We normalize the OLS estimates and calculate portfolio weights for

the four cryptocurrencies. We compute the FMP of computing power by multiplying the

OLS-based weights with the returns of the respective four cryptocurrencies.

We repeat this procedure for each of the five cryptocurrencies. We then calculate the

aggregate computing power factor as the rank-weighted average of the computing power

FMPs. The weights are based on ranks created using the market capitalization rates of the

five cryptocurrencies in the prior period.7 We denote the aggregate computing power factor

7To construct the rank-based weights, we rank the five cryptocurrencies by market capitalization. We
assign ranks 1 to 5 to the cryptocurrency with the lowest to highest market capitalization. We transform
ranks into the respective weights 1/15, 2/15, 3/15, 4/15, and 5/15. We find qualitatively similar results
when using weights based on actual market capitalization rates. However, to avoid mechanical correlations
between market capitalization rates and cryptocurrency returns, we use the rank-weighted approach.
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by ACP. We follow a similar procedure for the aggregate network factor where we exclude

Monero due to unreliable network data. We denote the aggregate network factor by ANET .

Finally, we construct a cumulative fundamentals factor by combining the ACP and ANET

factors using the singular value decomposition (SVD) methodology.

Once concern with our FMP methodology is that we are only using 4 basis assets in

the FMP regressions. As a robustness test, in Section 5.4, we increase the number of basis

assets to include 34 additional cryptocurrencies. After computing these new fundamental

factors, we repeat our asset pricing tests, and find similar results compared to the results

with the original factors. In our main analysis, we maintain the original factors because we

can compute them for a longer time period (August 7th, 2015 to June 28th, 2019). The

sample with the additional currencies is much shorter and starts from March 31st, 2017.

4.3. Investor-Sentiment Cryptocurrency Factors

The results from our rolling DOLS regressions suggest that factors other than fundamentals

may influence cryptocurrency prices causing them to deviate from the trend with computing

power and network. To account for this finding in our asset pricing tests, we consider two

factors which we conjecture are related to investor sentiment.

The first one is the Bitcoin return, which we denote by ∆Price(BTC). Bitcoin is the most

important cryptocurrency since it constitutes about 51% to 84% of the aggregate market

capitalization inclusive of NMCs (see Table 1). Because of its popularity and high trading

volume, we posit that it is susceptible to sentiment trading. Therefore, as a factor, the

return of Bitcoin may be able to capture the trading forces that create short-term deviations

between prices and fundamentals.

Although we classify Bitcoin as an investor-sentiment factor, we acknowledge that because

of its large market capitalization, it can also be considered a proxy for cryptocurrency market-

wide risk. According to the results in Liu et al. (2019) (see Table 1 and Figure 1 in Liu

et al. (2019)), the return on Bitcoin exhibits very similar statistical properties to the overall

cryptocurrency market. Whether Bitcoin captures investor sentiment or systematic risk, it
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is important to include it as a separate factor in our empirical analysis.

Our second investor-sentiment factor captures momentum effects. We construct a cryp-

tocurrency momentum factor following Jegadeesh and Titman (1993). Specifically, our mo-

mentum factor is the difference between the contemporaneous return of the cryptocurrency

with highest return (winner) in the prior period and the contemporaneous return of the

cryptocurrency with lowest return (loser) in the prior period. We exclude Bitcoin from the

momentum factor because we include its return as a separate factor. We include the cryp-

tocurrency momentum factor in our empirical analysis because the asset pricing literature

has shown that momentum effects can be attributed to investor psychology (e.g., see Bar-

beris et al. (1998), Daniel et al. (1998), and Hong and Stein (1999)). Liu and Tsyvinski

(2018) also examine momentum effects using the lagged returns of each cryptocurrency and

Liu et al. (2019) construct momentum factors similar to ours.

4.4. Summary Statistics of Cryptocurrency Factors

Table 4 reports summary statistics for the cryptocurrency factors. We also include summary

statistics for the returns of the U.S. stock market and the 30-day Treasury bill obtained from

Kenneth French’s data library. We use the summary statistics to test our first asset pricing

hypothesis. Namely, if aggregate computing power and network factors are meaningful

procyclical risk factors for cryptocurrency markets then they should earn positive risk premia.

Consistent with this hypothesis, we find that the three fundamentals-based risk factors have

a positive risk premium over the return of the 30-day Treasury bill.8 In particular, the

average weekly returns of the ACP , ANET , and the SVD factors are 2.27%, 2.06%, and

1.45%, respectively. In the same period, the return for the 30-day Treasury bill was 0.020%.

The cryptocurrency factors not only have high average returns, but they also have high

standard deviations compared to the U.S. equity market. However, their Sharpe ratios are

comparable to that of the U.S. stock market. For example, the Sharpe ratio of the ACP

8In the absence of a “risk-free” asset for the cryptocurrency market, we follow the asset pricing literature
and use the 30-day Treasury bill returns to compute risk premia.

23



factor is 0.197 while the Sharpe ratios of the ANET and SVD factors are 0.218 and 0.206,

respectively. Comparatively, the Sharpe ratio of the U.S. equity market is 0.124. Overall,

the cryptocurrency factors reflect the high reward/high risk trade-off of this market.

An important question is how correlated these factors are to each other. We report their

correlations in Panel A of Table A5 in the Appendix. We find that the momentum factor

has the lowest correlation with the other factors. The return of Bitcoin is correlated with

the ACP and ANET factors with correlation coefficients ranging from 0.617 to 0.762. The

highest correlation is between ACP and ANET with a correlation coefficient of 0.96. We

also run some factor-spanning tests that confirm that ACP and ANET seem to have similar

information.9

The high correlation between the ACP and ANET factors might be related to the small

number of basis assets in the FMP regressions. In our robustness analysis in Section 5.4,

we increase the number of basis assets using newer cryptocurrencies, for which we have data

from March 31st, 2017 to on June 28th, 2019, and find that the correlation between ACP

and ANET decreases. We maintain the original factors in our main analysis because we can

compute them for a longer time period (August 7th, 2015 to June 28th, 2019).

4.5. Factor Analysis with Bitcoin and Crypto-Momentum

To provide a benchmark for the explanatory power of the fundamental blockchain factors, we

estimate a baseline 2-factor model with the Bitcoin return and cryptocurrency momentum.

We estimate the 2-factor model for the five cryptocurrencies using ordinary least squares

(OLS). When Bitcoin is the test asset, we exclude the Bitcoin return as a factor. We report

the estimation results in Panel A of Table 5. We find that Ethereum, Monero, Litecoin, and

Dash are significantly exposed to Bitcoin with Bitcoin betas ranging from 0.76 to 0.96.

The estimates of the cryptocurrency momentum betas (CryptoMom) are also statistically

9For the spanning tests, we follow Huberman and Kandel (1987) and Hou, Mo, Xue, and Zhang (2018) and
project each factor on the another one and test if the alphas from the spanning regressions are significant. We
report these results in Panel B of Table A5 in the Appendix. Since both alphas are statistically insignificant,
the spanning test reveals that the two factors render each other redundant. However, it seems that the
ANET factor possesses marginally more explanatory power than the ACP factor.
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significant in 3 out of 5 instances and range from 0.03 to 0.32. In terms of explanatory

power, we find that the 2-factor model with Bitcoin return and cryptocurrency momentum

can explain between 20% to 41% of the time series variation in cryptocurrency returns.

Overall, the evidence in Panel A of Table 5 suggest that Bitcoin is a significant factor for

cryptocurrencies. Consistent with Liu and Tsyvinski (2018) and Liu et al. (2019), we also

find that momentum is an important phenomenon in the cryptocurrency market.

4.6. Factor Analysis with Computing Power and Network Size

Next, we test if cryptocurrency returns have positive exposures to the fundamental factors.

The ACP and ANET are procyclical factors and their betas should be positive because

all cryptocurrencies in our sample earn large, positive average returns in excess of the risk-

free rate. We estimate the risk exposures to the fundamental factors using various 3-factor

models that include either the ACP or the ANET or the cumulative SVD factors.10 We do

not include all the factors in one factor model because they are highly correlated (Please see

Table A5 in the appendix).

4.7. Computing Power Factor

We examine the asset pricing ability of computing power by estimating a 3-factor model

with the ACP factor termed the ACP model. We present the estimation results in Panel

B of Table 5. We find that the exposures to the ACP factor are positive and statistically

significant for all cryptocurrencies. For example, for Bitcoin and Ethereum, the estimated

betas are 0.48 (t-statistic = 11.13) and 1.19 (t-statistic = 17.06), respectively.

When we introduce the ACP factor to the model, the exposures of the five cryptocur-

rencies to the Bitcoin and cryptocurrency momentum factors become less significant. For

example, the Bitcoin beta for Ethereum decreases from 0.76 in the 2-factor specification of

10In untabulated results, we estimate 8-factor specifications that include the Fama and French (2015) five
factors and the factors from our 3-factor model. The results are identical to the ones reported here since the
equity-based Fama-French factors have no explanatory power in our cryptocurrency sample (e.g., Liu and
Tsyvinski (2018)).

25



Panel A to −0.19 in the 3-factor ACP model of Panel B. Similarly, the Bitcoin betas for

Monero, Litecoin, and Dash, respectively, decrease from 0.88, 0.96, and 0.66 in the 2-factor

model to 0.40, 0.38, and −0.02 in the ACP model.

Given that the ACP factor is statistically significant, the explanatory power of the 3-

factor ACP model is also higher than that of the 2-factor specification. Specifically, there is

a significant increase in the adjusted R2’s reported in Panel B for the ACP model compared

to those in Panel A for the 2-factor model (Bitcoin and crypto-momentum). For example,

in the case of Ethereum, the adjusted R2 increases from 20% in Panel A to 67% in Panel

B of Table 5. Similarly, for Monero and Litecoin, the adjusted R2’s increase from 36% and

41% in Panel A to 48% and 64% in Panel B, respectively.

4.8. Network Factor

Next, we estimate a 3-factor model that includes the aggregate network factor (ANET ).

We refer to this specification as the ANET model and present its estimation results in

Panel C of Table 5. Similar to the ACP factor, we find that all cryptocurrencies have

positive and statistically significant exposures to the ANET factor. We also find that the

explanatory power of the 3-factor ANET model is higher than that of the 2-factor model.

In the case of Ethereum, for example, the introduction of the ANET factor increases the

fit of the asset pricing model from 20% in Panel A to 51% in Panel C of Table 5. Further,

including the ANET factor in the model decreases the significance of the exposures of the

four cryptocurrencies to the Bitcoin factor.

4.9. Cumulative SVD Factor

We combine the ACP and ANET factors into a single factor using the singular value de-

composition (SVD) methodology. We denote the cumulative factor with SVD. The SVD

procedure is similar to the principal component analysis (PCA). We use the SV D factor

because it preserves the mean of the computing power and network factors. In contrast, as

shown in Wang (2017), PCA factors have zero mean thus inflating alphas in factor regres-
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sions. For completeness, we present the results of a 3-factor model using the PCA of the

aggregate computing power and network factors in Table A6 of the Appendix.

We estimate a 3-factor specification with the SV D factor and refer to it as the SVD model.

We report its estimation results in Panel D of Table 5 and find that all cryptocurrencies have

positive and statistically significant exposures to the SVD factor. The explanatory power

of the 3-factor model with the SV D factor is also higher than that of the 2-factor model

with the Bitcoin and crypto-momentum factors alone. Overall, the evidence in Table 5

demonstrates that the returns of individual cryptocurrencies are exposed to the aggregate

fundamental factors of the cryptocurrency market.

5. Robustness Analysis

In this section, we conduct additional tests to examine the robustness of our main results.

5.1. Out-of-Sample Tests

Our conjecture is that the computing power and network factors proxy for the trustworthiness

and transaction benefits of the cryptocurrency market. Hence, they should constitute sources

of risk for all cryptocurrencies and not just the ones in the baseline sample. Thus, we explore

their out-of-sample pricing power with a set of cryptocurrencies that does not include the

five baseline currencies. The new set of currencies includes mineables and non-mineable

currencies (NMCs). The distribution and creation of NMCs is generally decided ex-ante and

does not require any computing power spent on mining.

We include NMCs in our out-of-sample tests to strengthen our conjecture that computing

power and network are valid procyclical asset pricing factors. Our conjecture is that the

marginal cryptocurrency investor should always under-value any cryptocurrency, mineable or

non-mineable, that pays well during good times, i.e., during times when aggregate computing

power, network size, and cryptocurrency wealth (prices) are high. Hence, we should to find

a positive relation between the computing power factor and the price of NMCs even though
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these currencies do not rely on mining.

5.1.1. Out-of-Sample Cryptocurrencies

For the out-of-sample analysis, we rely on 34 cryptocurrencies for which we could obtain

a balanced panel for a relatively long time series. We report the list of the out-of-sample

cryptocurrencies in Table A7 of the Appendix. The extended set of cryptocurrencies in-

cludes 16 mineable and 18 non-mineable cryptocurrencies. Some of the more prominent

cryptocurrencies included in this sample are Ripple, Stellar, Zcash, and Dogecoin.

We extract our sample of cryptocurrencies from Bittrex, which is one of the largest and

most liquid cryptocurrency exchanges in the U.S.A. This sample begins on March 31st, 2017

and ends on June 28th, 2019. We use the daily prices from Bittrex, which we convert from

Bitcoin units into U.S. dollars. We compute weekly returns as with the baseline currencies.

We report the average and standard deviation of the returns of the 34 cryptocurrencies in

the last two columns of Table A7. According to these statistics, the risk-return profiles of

the currencies are very diverse and span a wide spectrum of reward-to-risk ratios.

5.1.2. Pooled OLS Regressions

Using the out-of-sample cryptocurrencies, we estimate pooled OLS regressions of four models.

We first estimate a 2-factor model using the Bitcoin return and cryptocurrency momentum.

Next, we estimate 3-factor models by including either the ACP, ANET, or SVD factor.

To account for time series dependence and heteroscedasticity in the error terms, we follow

Petersen (2009) and double-cluster the standard errors by currency and week. The advantage

of the pooled OLS regression with clustered standard errors is that it provides estimates of

the average exposures to each factor as well as properly calculated standard errors.

We report the estimation results of the 2-factor model in column (1) of Table 6. We find

a strong exposure of the 34 cryptocurrencies to Bitcoin with a statistically significant beta of

1.02 (t-statistic = 9.05). However, the cryptocurrency momentum is not very important in

the new sample, which includes a lot of small cryptocurrencies. This finding is consistent with
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Liu et al. (2019), who show that momentum effects are weaker for smaller cryptocurrencies.

Next, we examine the exposures of the cryptocurrencies to the fundamental factors by

estimating 3-factor models. In these models, we include either the ACP , or the ANET , or

the SV D factors. We report the results in columns (2) to (4) of Table 6. We find that the

returns of the 34 cryptocurrencies are significantly exposed to the fundamental factors. The

exposures to Bitcoin are also muted in the 3-factor models. For example, in column (3), we

show that embedding the network factor into the 2-factor model reduces the magnitude of

the Bitcoin beta from 1.02 to 0.17 and its t-statistic from 9.16 to 0.82.

Further, the adjusted R2’s of the 3-factor models exceed that of the 2-factor model. For

instance, the 3-factor model with ACP increases the explanatory power of the 2-factor model

from 25% to 34%. In untabulated tests, we find that single-factor models with either the

ACP , ANET , or SV D factors have adjusted R2’s ranging around 32%. This finding suggests

that the fundamentals factors alone provide greater explanatory power than Bitcoin.

5.1.3. Beta Estimates for Out-of-Sample Cryptocurrencies

We also estimate time series factor regressions for each cryptocurrency. Our goal is to ex-

amine whether the statistical significance of the fundamental betas in the pooled regressions

is driven by specific currencies. For this analysis, we estimate the 3-factor ACP, ANET, and

SVD models for each cryptocurrency and tabulate the betas and t-statistics related to the

ACP , ANET , and SV D factors. We report the results in Table A8 of the Appendix.

We find that all 34 currencies have positive and significant factor betas with a few ex-

ceptions. In particular, the ACP , ANET , and SV D betas are statistically insignificant

for 3 currencies: Groestlcoin, Monacoin, and Spherecoin. The fact that the ACP factor

loads positively and significantly for all but 1 non-mineable cryptocurrency (Spherecoin) is

important. Non-mineable cryptocurrencies have no computing power and there is no possi-

bility of a mechanical correlation between their returns and the ACP factor. Therefore, the

statistical significance of the ACP beta can only be attributed to the validity of ACP as a

procyclical risk factor in the cryptocurrency market
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5.1.4. Gibbons-Ross-Shanken Statistic

We further examine the efficiency of the asset pricing models in the sample of the 34 cryp-

tocurrencies using the Gibbons, Ross, and Shanken (1989) (GRS) test for time series alphas.

We compute the GRS statistic for the factor models in Table 6. For each currency, we es-

timate time series factor regressions and obtain a total of 34 alphas for each model, which

are then used to compute the GRS statistics reported in Table 6. We find that the GRS test

statistic for the 2-factor model is 1.29 and it is statistically insignificant (p-value = 0.16).

Nevertheless, the GRS statistic decreases greatly in the 3-factor models. For example, the

GRS is 0.22 (0.34, 0.26) in the specification with the ACP (ANET , SV D) factor.

Overall, the out-of-sample analysis provides evidence that the broader cryptocurrency

market is exposed to the risks captured by the aggregate computing power and network

factors. Further, the out-of-sample analysis alleviates any concerns that the significance of

the two fundamental factors is created mechanically because they are projections on the

return space of the five baseline cryptocurrencies.

5.2. Robustness to Bitcoin’s Dominance

Bitcoin has consistently dominated the cryptocurrency market since its inception. Hence,

our results could be driven by the inclusion of Bitcoin’s computing power and network in the

two fundamentals-based factors. We address this concern and derive aggregate computing

power and network factors by excluding Bitcoin’s returns from the construction of the factor-

mimicking-portfolios (FMPs) of the other cryptocurrencies. We also exclude Bitcoin’s own

factor-mimicking portfolio from the construction of the aggregate computing power and

network factors (ACP and ANET ). We denote these alternative Bitcoin-free factors by

ACP \ BTC and ANET \ BTC. Similar to the main tests in Panels B and C of Table 5,

we run time series regressions with the five baseline cryptocurrencies and present the results

in Table A9 of the Appendix.

We find that the Bitcoin-free fundamental factors have similar explanatory power to the
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original factors. For Ethereum for example, we estimate a statistically significant positive

beta of 1.13 for the ACP \BTC factor along with an adjusted R2 of 55%. This R2 is higher

than the R2 of the 2-factor model with Bitcoin return and crypto-momentum that we report

in Panel A of Table 5.

Lastly, we estimate new 3-factor models with the ACP \BTC and ANET \BTC factors

in the extended set of 34 cryptocurrencies, and present the results in Table A10. We find

that the out-of-sample results are robust to excluding Bitcoin from the construction of the

fundamentals-based factors. For example, the loading for the ANET \BTC factor is positive

and statistically significant (beta estimate = 0.84; t-statistic = 5.45). This estimate is

qualitatively similar to the ANET beta of 0.94 (t-statistic = 4.45) in column (4) of Table 6.

Furthermore, the adjusted R2 in Table A10 is 33%, which is very similar to the one reported

in Table 6. Overall, excluding Bitcoin from the construction of aggregate computing power

and network factors does not affect our results.

5.3. Controlling for Ethereum’s Return

In our next test, we examine the robustness of our out-of-sample results to the return of

Ethereum. The intuition behind this robustness check is that the out-of-sample cryptocur-

rencies are relatively new and emerged around late 2016 and early 2017. Therefore, their

returns may be more closely tied to the returns of younger prominant cryptocurrencies, like

Ethereum, as opposed to the returns of Bitcoin, which appeared in 2009. Therefore, we

re-run the analysis in Table 6 by replacing the return of Bitcoin with the return of Ethereum

(∆Price(ETH)). We report the new results in Table A11 of the Appendix.

We find that the new betas of the ACP , ANET , and SV D factors remain positive and

statistically significant. Also, the 3-factor models possess greater explanatory power than

the 2-factor specification with the return of Ethereum and crypto-momentum. Overall, the

results in Tables 6 and A11 suggest that controlling for Bitcoin or Ethereum does not affect

the asset pricing ability of the fundamental factors.
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5.4. Fundamental Factors with Many Basis Assets

A final issue we address is the number of cryptocurrency returns used to form the factor

mimicking portfolios (FMP) for computing power and network growth. In our baseline

analysis, the growth rates of the fundamentals of a cryptocurrency are projected on the

returns of the other 4 cryptocurrencies. Because of the small number of basis assets, the

ACP and ANET factors might be reflecting the return behavior of the few basis assets and

not the behavior of the growth in aggregate fundamentals.

We address this concern by expanding the number of basis assets in the FMP regressions.

In particular, we estimate the FMP regressions using the returns of 4 baseline cryptocurren-

cies and the returns of the 34 out-of-sample cryptocurrencies. That is, each FMP regression

has 38 basis assets. We denote the new factors as ACP (38), ACP (38), and SV D(38) (please

see Table A1 in the Appendix for a detailed description of these factors). We compute the

new factors for the period from March 31st, 2017 to June 28th, 2019.

The summary statistics in Table A12 show that the new factors have higher average

returns and standard deviations compared to the original ACP and ANET factors. However

they have similar Sharpe ratios. Also, the correlation between ACP (38) and ACP (38) is

only 0.10 and it is substantially lower compared to the correlation between ACP and ACP ,

which is 0.98. Overall, the descriptive statistics suggest that the new factors are more

volatile probably because they use the newer out-of-sample cryptocurrencies, which are less

stable than the 5 baseline, more established, cryptocurrencies. However, the ACP (38) and

ACP (38) factors are not correlated, so we can use them together in our asset pricing tests.

We repeat the analysis in Section 5.1.2 and estimate pooled OLS regressions of the returns

of the 34 out-of-sample cryptocurrencies on the ACP (38), ACP (38), and SV D(38) factors.

We report the new estimation results in Table A13 in the Appendix. Consistent with our

previous results, we find that the betas of the new factors are positive. Albeit statistically

significant, their t-statistics are lower compared to those reported in Table 6 for the ACP ,

ACP , and SV D factors. This result is not surprising since the new factors are more volatile
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compared to the original ones (Please see the standard deviations reported in Table A12 in

the Appendix). Overall, the new evidence suggests that the pricing power of the fundamental

factors is not driven by the number of the basis assets in the FMP regressions.

6. Conclusion

The core hypothesis of this paper is that cryptocurrencies have an intrinsic value related

to their blockchain’s computing power and network adoption. This hypothesis is motivated

by the fact that miners expend real resources to generate the computing power required to

secure and operate the blockchain. Further, an optimally performing blockchain serves as a

medium for transactions and attracts users, developers, and intermediaries, thereby leading

to an increase in the cryptocurrency’s network size.

We examine our core hypothesis with Bitcoin, Ethereum, Litecoin, Monero, and Dash.

We use DOLS regressions and find that there is a positive and statistically significant rela-

tionship among price, computing power, and network size. Next, we use factor analysis and

show that aggregate computing power and network constitute risk factors in the cryptocur-

rency market. The exposure of the various cryptocurrencies to these factors are economically

and statistically significant even after controlling for the pricing effects of Bitcoin and cryp-

tocurrency momentum. In out-of-sample tests, we also find that the computing power and

network factors price the returns of an extended set of 34 cryptocurrencies. These out-of-

sample results reinforce our conjecture that the two fundamental factors proxy for systematic

risks in the cryptocurrency market.

More broadly, our paper serves as an important step towards better understanding cryp-

tocurrency prices. In particular, we are the first to provide concrete evidence that computing

power and network size are empirically related to cryptocurrency prices and can be used to

construct asset pricing factors. Undeniably, other important factors might surface as the

cryptocurrency market matures. For example, regulation risk and political risk may also be-

come important for cryptocurrency returns. Our analysis could serve as a tool for identifying

these additional factors.
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Figure 1: Price and Computing Power of Bitcoin, Ethereum, and Monero

This figure plots weekly averages of the daily log price and log computing power (log hashrate) for Bitcoin,
Ethereum, and Monero over the sample period from 8/7/2015 to 6/28/2019. We normalize prices and
computing power by subtracting the mean and dividing by the standard deviation of each time series.
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Figure 2: Price and Network Size of Bitcoin and Ethereum

This figure plots weekly averages of the daily log price and log network size (log of unique active addresses)
for Bitcoin and Ethereum over the sample period from 8/7/2015 to 6/28/2019. We normalize prices and
network size by subtracting the mean and dividing by the standard deviation of each time series.
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Table 1: Cryptocurrency Market Capitalizations

In this table, we report the market capitalization (in millions U.S.D.) of the five cryptocurrencies
used in our empirical analysis: Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Dash (DSH),
and Monero (XMR). We obtain weekly snapshots from Coinmarketcap.com on the weeks ending
in 8/30/2015, 9/4/2016, 9/3/2017, and 9/2/2018 using the Historical Snapshots Index. Rank is
the rank of each cryptocurrency in terms of capitalization. Market percentage is the ratio of the
capitalization of each cryptocurrency over the total capitalization of the top-15 cryptocurrencies.
The total capitalization of the top-15 cryptocurrencies accounts for 95% of the market capitalization
of all cryptocurrencies during our sample, which runs from 8/7/2017 to 6/28/2019.

In U.S.D. Millions BTC ETH LTC DSH XMR Sum

August 30th, 2015

Market Capitalization $3,346 $89 $121 $15 $4 $3,575

Rank 1 4 3 5 15

Market Percentage 84% 2% 3% 0.4% 0.1% 90%

September 4th, 2016

Market Capitalization $9,491 $972 $186 $74 $148 $10,871

Rank 1 2 4 8 5

Market Percentage 82% 8% 2% 1% 1% 95%

September 3rd, 2017

Market Capitalization $76,620 $33,307 $4,203 $2,717 $1,897 $118,744

Rank 1 2 5 9 7

Market Percentage 51% 22% 3% 2% 1% 80%

September 2nd, 2018

Market Capitalization $125,427 $29,942 $3,815 $1,972 $1,762 $162,920

Rank 1 2 7 11 12

Market Percentage 60% 14% 2% 1% 1% 78%
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Table 2: Descriptive Statistics: Growth in Prices, Computing Power, and Network

This table reports descriptive statistics for the weekly growth rates in prices (∆Price), computing
power (∆CP ), and network (∆NET ) of the five cryptocurrencies in our sample: Bitcoin (BTC),
Ethereum (ETH), Monero (XMR), Litecoin (LTC), and Dash (DSH). Weekly growth rates are the
first differences of the weekly averages of the respective daily log values. In Panel A, we present the
growth rates in prices. In Panel B, we report the growth rates in computing power, and in Panel C,
we show the growth rates in network. Our sample period begins on 8/7/2015 and ends on 6/28/2019.

Panel A: Price Mean Median St. Dev. Obs.

∆Price(BTC) 0.019 0.010 0.087 202
∆Price(ETH) 0.027 0.009 0.151 202
∆Price(XMR) 0.017 0.005 0.131 202
∆Price(LTC) 0.025 −0.001 0.154 202
∆Price(DSH) 0.020 0.007 0.127 202

Panel B: Computing power Mean Median St. Dev. Obs.

∆CP (BTC) 0.025 0.031 0.061 202
∆CP (ETH) 0.035 0.037 0.080 202
∆CP (XMR) 0.029 0.021 0.076 202
∆CP (LTC) 0.016 0.018 0.139 202
∆CP (DSH) 0.054 0.030 0.128 202

Panel C: Network Mean Median St. Dev. Obs.

∆NET (BTC) 0.006 0.007 0.067 202
∆NET (ETH) 0.027 0.018 0.409 202
∆NET (LTC) 0.011 0.002 0.129 202
∆NET (DSH) 0.013 0.009 0.159 202
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Table 3: Dynamic Ordinary Least Squares Regressions

This table reports estimates of the cointegrating relationship among cryptocurrency prices (Price),
computing power (CP), and network (NET) for the five cryptocurrencies: Bitcoin (BTC), Ethereum
(ETH), Monero (XMR), Litecoin (LTC), and Dash (DSH). The cointegrating relationship is defined
as Pricet = α + δ × t + βCP × CPt + βNET × NETt. The main parameters of interest are the
estimates of βCP and βNET . To estimate these prameters, we apply the dynamic ordinary least
squares (DOLS) specification of Stock and Watson (1993) to our sample that runs from 8/7/2015
to 6/28/2019. In Panel A, we report the cointegration parameters for computing power and
network along with their respective Newey-West corrected t-statistics. In Panel B (C), we report
the number of periods in which cryptocurrency prices deviate from the cointegrating relation with
computing power (network) along with the average duration of such periods. We estimate price de-
viations using 180 rolling DOLS regressions with 20-week windows across the 202 weeks in our sample.

(1) (2) (3) (4) (5)

BTC ETH XMR LTC DSH

Panel A: Cointegration Parameters

βCP 1.298∗∗∗ 0.912∗∗∗ 1.526∗∗∗ −0.031 0.445∗∗∗

t-statistic 5.88 3.53 11.25 −0.28 3.04

βNET 1.802∗∗∗ 0.612∗∗∗ 1.372∗∗∗ 1.874∗∗∗

t-statistic 3.76 2.20 10.45 2.89

Panel B: Price deviations from CP

Num of price-deviation episodes (t < 2) 6 6 8 9 8

Average duration of episodes (weeks) 22 11.83 7.75 11.22 12.50

Panel C: Price deviations from NET

Num of price-deviation episodes (t < 2) 9 8 8 11

Average duration of episodes (weeks) 6.44 6.00 10.50 5.00
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Table 4: Factor Analysis: Descriptive Statistics

This table reports the descriptive statistics of the asset pricing factors used in our empirical
analysis. These factors are the return of Bitcoin (∆Price(BTC)), the cryptocurrency momentum
factor (CryptoMom), the aggregate computing power factor (ACP ), the aggregate network factor
(ANET ), the singular value decomposition of the two factors (SVD), the return of the U.S. equity
market, and the risk free rate. Details on the construction of CryptoMom, ACP , ANET , and
SVD are provided in Table A1 of the Appendix. The sample period runs from 8/7/2015 to 6/28/2019.

Mean St. Dev. Sharpe Ratio Obs.

∆Price(BTC) 1.922 8.641 0.220 201
CryptoMom 5.581 15.857 0.351 201

ACP 2.271 11.446 0.197 201
ANET 2.060 9.341 0.218 201
SVD 1.447 6.921 0.206 201

Equity market return 0.256 1.904 0.124 201
Risk-free rate 0.020 0.016 201
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Table 5: Factor Analysis: 3-Factor Models with Fundamental Factors

This table reports estimates from time series regressions of the weekly returns of the five baseline
cryptocurrencies on three asset pricing factors. The cryptocurrencies are Bitcoin (BTC), Ethereum
(ETH), Monero (XMR), Litecoin (LTC), and Dash (DSH). In Panel A, the 2-factor asset pricing
model includes the return of Bitcoin (∆Price(BTC)) and the cryptocurrency momentum factor
(CryptoMom). In Panel B (C), we add the aggregate computing power factor ,ACP (aggregate
network factor ANET ), to the 2-factor specification. In Panel D, we include the SVD factor to
the 2-factor specification. t-statistics are in parentheses. The superscripts ***, **, and * indicate
significance at the 0.01, 0.05, and 0.10 level, respectively. The sample is from 8/7/2015 to 6/28/2019
and consists of 201 weekly observations.

(1) (2) (3) (4) (5)

Panel A: 2-factor BTC ETH XMR LTC DSH

∆Price(BTC) 0.76∗∗∗ 0.88∗∗∗ 0.96∗∗∗ 0.66∗∗∗

(6.85) (8.73) (11.59) (7.23)
CryptoMom 0.03 0.10 0.32∗∗∗ 0.09∗∗ 0.11∗∗

(0.86) (1.63) (5.76) (2.09) (2.21)

α (×100) 1.74∗∗∗ 0.67 -0.85 −0.60 0.16
(2.68) (0.65) (−0.91) (−0.78) (0.18)

Adjusted R2 -.0013 .20 .36 .41 .22

Panel B: 3-factor ACP BTC ETH XMR LTC DSH

∆Price(BTC) −0.19∗∗ 0.40∗∗∗ 0.38∗∗∗ −0.02
(−2.14) (3.43) (4.63) (−0.19)

CryptoMom −0.04 −0.06 0.24∗∗∗ −0.00 −0.00
(−1.43) (−1.57) (4.59) (−0.08) (−0.11)

ACP 0.48∗∗∗ 1.19∗∗∗ 0.60∗∗∗ 0.72∗∗∗ 0.85∗∗∗

(11.13) (17.06) (6.65) (11.31) (12.52)

α (×100) 1.08∗∗ 0.70 −0.84 −0.58 0.18
(2.11) (1.06) (−0.99) (−0.97) (0.28)

Adjusted R2 .38 .67 .48 .64 .56

Panel C: 3-factor ANET BTC ETH XMR LTC DSH

∆Price(BTC) −0.41∗∗∗ 0.29∗ 0.01 −0.47∗∗∗

(−3.00) (1.95) (0.07) (−4.88)
CryptoMom −0.04∗ −0.02 0.26∗∗∗ 0.00 −0.00

(−1.75) (−0.33) (4.89) (0.02) (−0.04)

ANET 0.72∗∗∗ 1.44∗∗∗ 0.73∗∗∗ 1.17∗∗∗ 1.39∗∗∗

(16.81) (11.24) (5.24) (13.17) (15.27)

α (×100) 0.68 0.61 −0.88 −0.65 0.10
(1.63) (0.75) (−1.00) (−1.15) (0.17)

Adjusted R2 .59 .51 .44 .69 .64

Panel D: 3-factor SVD BTC ETH XMR LTC DSH

∆Price(BTC) −0.31∗∗∗ 0.34∗∗∗ 0.24∗∗∗ −0.18∗∗

(−2.92) (2.69) (2.82) (−2.02)
CryptoMom −0.05 −0.05 0.24∗∗∗ −0.00 −0.01

(−1.62) (−1.11) (4.69) (−0.10) (−0.14)

SVD(ACP,ANET) 0.87∗∗∗ 1.99∗∗∗ 1.00∗∗∗ 1.33∗∗∗ 1.57∗∗∗

(13.25) (14.81) (6.20) (12.09) (13.61)

α (×100) 0.92∗ 0.66 −0.85 −0.60 0.15
(1.93) (0.93) (−1.00) (−1.03) (0.25)

Adjusted R2 .47 .62 .46 .66 .60
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Table 6: Factor Analysis: Out-of-Sample Cryptocurrencies

This table reports estimates from pooled OLS regressions of weekly cryptocurrency returns (∆Price)
on our asset pricing factors. The test assets are the 34 cryptocurrencies described in Table A7
of the Appendix. In column (1), the 2-factor asset pricing model includes the return of Bitcoin
(∆Price(BTC)) and the cryptocurrency momentum factor (CryptoMom). The 3-factor models
in columns (2), (3), and (4) additionally include the aggregate computing power factor (ACP ),
the aggregate network factor (ANET ), and the singular value decomposition of the computing
power and network factors (SVD), respectively. Standard errors are double-clustered by week and
currency. t-statistics are in parentheses. The superscripts ***, **, and * indicate significance
at the 0.01, 0.05, and 0.10 level, respectively. We also report the Gibbons et al. (1989) (GRS)
test statistics for the efficiency of the factor models along with the respective p values. The
GRS statistic is based on cryptocurrency-level alphas estimated from time series regressions for
each currency. The sample runs from 3/31/2017 to 6/28/2019 and consists of 118 weekly observations.

(1) (2) (3) (4)

2-factor 3-factor ACP 3-factor ANET 3-factor SVD

∆Price(BTC) 1.02∗∗∗ 0.35∗∗ 0.17 0.27
(9.05) (2.20) (0.82) (1.55)

CryptoMom 0.12∗ −0.01 0.02 −0.00
(1.74) (−0.18) (0.26) (−0.03)

ACP 0.71∗∗∗

(5.27)
ANET 0.94∗∗∗

(4.54)
SVD 1.22∗∗∗

(5.01)

α (×100) −0.82 −0.21 −0.40 −0.28
(−0.86) (−0.27) (−0.49) (−0.35)

Adjusted R2 0.25 0.34 0.32 0.33

GRS Statistic 1.29 0.22 0.34 0.26
p-value 0.16 1.00 1.00 1.00

Cryptocurrencies 34 34 34 34
Observations 4,012 4,012 4,012 4,012
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Appendix

Figure A1: Price and Computing Power of Litecoin and Dash

This figure plots weekly averages of the daily log price and log computing power (log hashrate) for Litecoin
and Dash over the sample period from 8/7/2015 to 6/28/2019. We normalize prices and computing power
by subtracting the mean and dividing by the standard deviation of the respective time series.
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Figure A2: Price and Network of Litecoin and Dash

This figure plots weekly averages of the daily log price and log network (log addresses) of Litecoin and Dash
over the sample period from 8/7/2015 to 6/28/2019. We normalize prices and network size by subtracting
the mean and dividing by the standard deviation of the respective time series.
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Table A1: Variable Descriptions

This table presents detailed descriptions of the main variables used in our analysis.

Variable Description

Cryptocurrency Variables

Price Average of daily log prices over the 7-day period ending on Friday. The
daily price is the fixed closing price at midnight UTC of the current day
denominated in U.S. dollars. The daily prices are from Coinmetrics.io’s
fixing/reference rate service.

CP Average of daily log hashrate over the 7-day period ending on Friday. The
daily hasharate is the mean difficulty of finding a new block multiplied by
the number of blocks mined on that day. For example, if 100 blocks of
Bitcoin were mined on a particular day and each block required an average
of 5 TH to mine, the computing power value would be 500× 1012 hashes (1
TH = 1012 hashes).

NET Average of daily log unique active addresses over the 7-day period ending
on Friday. The daily addresses are the sum of unique addresses that were
active in the network (either as a recipient or originator of a ledger change)
that day. Unique active addresses are the number of addresses from (or
to) which transactions are conducted on the cryptocurrency’s respective
blockchain. Network data for Monero are not available.

Cryptocurrency Asset Pricing Factors

CryptoMom Contemporaneous return of the cryptocurrency with the highest return
(winner) in the prior period less the contemporaneous return of the cryp-
tocurrency with the lowest return (loser) in the prior period, excluding
Bitcoin. We exclude Bitcoin from the calculation of cyrptocurrency mo-
mentum because the contemporaneous return of Bitcoin is included in our
factor analysis as a separate factor.

ACP Rank-weighted return of the factor-mimicking portfolios for the growth rate
of computing power (log hashes) for each of the five baseline cryptocurren-
cies (i.e., BTC, ETH, LTC, DSH, XMR). We compute ACP as follows.
First, we construct factor-mimicking portfolios for the growth rate in com-
puting power for each currency. For example, in the case of Ethereum,
we regress the change in the CP of Ethereum on the returns of the other
cryptocurrencies:

A: ∆CPETH,t,t−τ = β1×∆PriceBTC,t,t−τ + β2×∆PriceXMR,t,t−τ + β3×
∆PriceLTC,t,t−τ + β4 ×∆PriceDSH,t,t−τ

Then, we calculate factor-mimicking portfolio weights using the coefficients
from the regression A above. That is,

B: WBTC = β1/(β1 + β2 + β3 + β4); WXMR = β2/(β1 + β2 + β3 + β4)

WLTC = β3/(β1 + β2 + β3 + β4); WDSH = β4/(β4 + β2 + β3 + β4)

Next, we create a factor-mimicking portfolio (FMP) of the growth in com-
puting power of Ethereum by multiplying the returns of the other cryptocur-
rencies with the respective factor-mimicking portfolio weights obtained from
the expression B above:

C: FMP CP (ETH) = WBTC × ∆PriceBTC,t,t−τ + WXMR ×
∆PriceXMR,t,t−τ +WLTC ×∆PriceLTC,t,t−τ +WDSH ×∆PriceDSH,t,t−τ

We perform steps A, B, and C for the five baseline cryptocurrencies.
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Table A1: Variable Descriptions (continued)

Variable Description

In the final step, we create an aggregate rank-weighted return of the com-
puting power factor mimicking portfolios, which we denote as ACP :

D: ACPt = weth×FMP CP (ETH)t + wbtc×FMP CP (BTC)t + wxmr×
FMP CP (XMR)t+ wltc×FMP CP (LTC)t+ wdsh×FMP CP (DSH)t

Above, weth is the prior period rank-weighted market capitalization of
Ethereum with respect to Bitcoin, Monero, Litecoin, and Dash. To cal-
culate the rank weights, we first rank the five cryptocurrencies by market
capitalization. Then, we assign ranks 1 to 5 to the five cryptocurrencies
based on their ascending market capitalization. Finally, we transform the
ranks 1, 2, 3, 4, and 5 into the respective weights: 1/15, 2/15, 3/15, 4/15,
and 5/15.

ANET Rank-weighted return of the factor-mimicking portfolios of the growth rate
in network (log addresses) for four baseline cryptocurrencies (i.e., BTC,
ETH, LTC, DSH). The methodology for calculating the ANET factor is
identical to that for the ACP factor. Monero (XMR) is not included in the
network factor because network data are not available for this currency.

SVD Singular value decomposition of the ACP and ANET factors. SVD is
extracted from the reduced-form singular value decomposition of the m ×
n (201× 2) matrix A, which combines the time series of ACP and ANET.
In particular, we decompose A into: A = U v WT, where U is an
m×n (201×2) matrix, v is a diagonal n×n (2×2) matrix consisting of the
two singular values, and W is an n×n (2× 2) matrix consisting of the two
eigenvectors. The singular values are 2.12 and 0.28. The first eigenvector
values of the W matrix are 0.78 and 0.63 and the second eigenvector values
are −0.63 and 0.78. The cumulative factor SVD is the first column vector
of U.

PCA First principal component of the ACP and ANET factors.

Bitcoin-Free Fundamental Factors

ACP \BTC Calculated similar to ACP above, however we exclude the return of Bitcoin
(∆Price(BTC)) from the construction of the factor mimicking portfolios
for the other 4 baseline cryptocurrencies and also exclude Bitcoin’s FMP
(FMP CP (BTC)) from the construction of ACP .

ANET \BTC Calculated similar to ANET above, however we exclude the return of Bit-
coin (∆Price(BTC)) from the construction of the factor mimicking port-
folios for the other 4 baseline cryptocurrencies and also exclude Bitcoin’s
FMP (FMP NET (BTC)) from the construction of ANET .

Factors based on a Large Set of Cryptocurrencies

ACP (38) Rank-weighted return of the factor-mimicking portfolios of the growth rate
in computing power (log hashes) of each of the five baseline cryptocurrencies
(i.e., BTC, ETH, XMR, LTC, and DSH). The factor is calculated similar to
ACP . The only difference is that we are projecting the computing power
growth of each baseline cryptocurrency on the returns of other 4 baseline
cryptocurrencies and the returns of the 34 out-of-sample cryptocurrencies.
Similar to ACP , the return a cryptocurrency is excluded from the factor-
mimicking portfolio of its own computer power growth.
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Table A1: Variable Descriptions (continued)

Variable Description

ANET (38) Rank-weighted return of the factor-mimicking portfolios of the growth
rate in network (log addresses) of each of four baseline cryptocurrencies
(i.e., BTC, ETH, LTC, and DSH). The methodology for calculating the
ANET (38) factor is identical to that of the ACP (38) factor. In partic-
ular, we form the factor mimicking portfolios of the network growth of a
cryptocurrency by projecting it on the returns of other 4 baseline cryp-
tocurrencies and the returns of the 34 out-of-sample cryptocurrencies. Sim-
ilar to ANET , the return of a cryptocurrency is excluded from the factor-
mimicking portfolio of its own network growth. Monero (XMR) is not in-
cluded in the network factor because network data are not available for this
currency.

SV D(38) Singular value decomposition of the ACP (38) and ANET (38) factors. SVD
is extracted from the reduced-form singular value decomposition of the m×
n (118× 2) matrix A, which combines the time series of ACP and ANET.
In particular, we decompose A into: A = U v WT, where U is an
m×n (118×2) matrix, v is a diagonal n×n (2×2) matrix consisting of the
two singular values, and W is an n×n (2× 2) matrix consisting of the two
eigenvectors. The singular values are 2.40 and 1.86. The first eigenvector
values of the W matrix are 0.97 and 0.24 and the second eigenvector values
are −0.24 and 0.97. The cumulative factor SVD(38) is the first column
vector of U.
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Table A2: Cross-correlations of Cryptocurrency Returns

This table reports correlations for the weekly growth rates in prices (∆Price) between the five
cryptocurrencies in our sample: Bitcoin (BTC), Ethereum (ETH), Monero (XMR), Litecoin (LTC),
and Dash (DSH). Weekly growth rates are the first differences of the weekly averages of the respective
daily log values. Our sample period begins on 8/7/2015 and ends on 6/28/2019. All correlations are
significant at the 0.01 level.

∆Price(BTC) ∆Price(ETH) ∆Price(XMR) ∆Price(LTC) ∆Price(DSH)

∆Price(BTC) 1

∆Price(ETH) 0.44 1

∆Price(XMR) 0.52 0.47 1

∆Price(LTC) 0.64 0.37 0.46 1

∆Price(DSH) 0.46 0.58 0.54 0.38 1
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Table A3: Descriptive Statistics for Prices, Computing Power, and Network

This table presents descriptive statistics for the weekly averages of the daily log price, computing
power, and network for the five cryptocurrencies used in our analysis: Bitcoin (Panel A), Ethereum
(Panel B), Monero (Panel C), Litecoin (Panel D), and Dash (Panel E). The table also includes the
augmented Dickey and Fuller (1979) (ADF) test statistics calculated from ADF regressions that
include a constant, a linear trend, and four lags for the time series of prices, computing power, and
network. A test statistic below −3.55 implies a rejection of the null hypothesis that the time series
process has a unit root.

Mean Median St. Dev. ADF Obs.

Panel A: Bitcoin

Ln(Price) 7.598 7.899 1.267 −1.377 203
Ln(CP ) 32.491 32.389 1.611 −0.749 203
Ln(NET ) 13.305 13.342 0.275 −2.399 203

Panel B: Ethereum

Ln(Price) 3.947 4.809 2.157 −1.323 203
Ln(CP ) 42.087 43.181 2.267 0.262 203
Ln(NET ) 11.059 11.929 1.832 −1.474 203

Panel C: Monero

Ln(Price) 2.901 3.785 2.165 −0.939 203
Ln(CP ) 29.799 29.991 1.528 −1.168 203

Panel D: Litecoin

Ln(Price) 2.969 3.444 1.530 −1.591 203
Ln(CP ) 19.621 19.072 2.291 −1.720 203
Ln(NET ) 10.543 10.818 0.989 −1.820 203

Panel E: Dash

Ln(Price) 3.897 4.437 1.856 −0.830 203
Ln(CP ) 19.981 19.177 4.184 −1.505 203
Ln(NET ) 10.098 10.376 0.829 −3.017 203
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Table A4: Cryptocurrency Hashing Algorithims and Inception Dates

This table reports the hashing algorithms and inception dates of the five baseline cryptocurrencies in
our sample. The hashing algorithm is the basis of the cryptographic tasks that miners need to solve
in order to create the blockchain.

Currency Name Hashing Algorithm Inception

BTC Bitcoin SHA-256 01/03/2009

LTC Litecoin Scrypt 10/07/2011

DSH Dash X11 01/18/2014

XMR Monero CryptoNight 04/18/2014

ETH Ethereum EthHash 07/30/2015
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Table A5: Factor Correlations and Spanning Test

Panel A reports cross-correlations for the cryptocurrency-based asset pricing factors which are the
return of bitcoin (∆P (BTC)), the cryptocurrency momentum factor (CryptoMom), the aggregate
computing power factor (ACP ), the aggregate network factor (ANET ), and the singular value
decomposition of ACP and ANET (SV D). In Panel B, we report the results of a factor-spanning
test, where we regress ACP on ANET and vice versa in columns (1) and (2), respectively.

Panel A: Correlations ∆Price(BTC) CryptoMom ACP ANET SVD(ACP,ANET)

∆Price(BTC) 1

CryptoMom 0.06 1

ACP 0.62∗∗∗ 0.22∗∗∗ 1

ANET 0.76∗∗∗ 0.18∗∗∗ 0.96∗∗∗ 1

SVD 0.68∗∗∗ 0.21∗∗∗ 0.99∗∗∗ 0.99∗∗∗ 1

(1) (2)
Panel B: Spanning Test ACP ANET

ANET 1.18∗∗∗

(50.07)
ACP 0.79∗∗∗

(50.07)
α(×100) −0.16 0.28

(−0.70) (1.51)

Adjusted R2 .93 .93
Observations 201 201
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Table A6: Factor Analysiss: 3-Factor Model with Principal Component Factor

This table presents the estimates from time series regressions of cryptocurrency returns on a 3-factor
model. The three factors are the return of Bitcoin, the cryptocurrency momentum factor, and the
first principal component of the aggregate computing power and network factors (PCA). t-statistics
are in parentheses. The superscripts ***, **, and * indicate significance at the 0.01, 0.05, and 0.10
level, respectively. The sample period runs from 8/7/2015 to 6/28/2019.

(1) (2) (3) (4) (5)

BTC ETH XMR LTC DSH

∆Price(BTC) −0.33∗∗∗ 0.33∗∗ 0.21∗∗ −0.23∗∗

(−3.02) (2.53) (2.35) (−2.50)
CryptoMom −0.05∗ −0.04 0.24∗∗∗ −0.00 −0.01

(−1.66) (−0.98) (4.72) (−0.09) (−0.14)

PCA 0.04∗∗∗ 0.10∗∗∗ 0.05∗∗∗ 0.07∗∗∗ 0.08∗∗∗

(13.82) (14.22) (6.06) (12.29) (13.90)

α (×100) 1.74∗∗∗ 0.67 −0.85 −0.60 0.16
(2.68) (0.65) (−0.91) (−0.78) (0.18)

Adjusted R2 .49 .60 .46 .67 .61
Observations 201 201 201 201 201
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Table A7: List of Out-of-Sample Cryptocurrencies

This table lists the 34 cryptocurrencies used in the out-of-sample analysis of Section 5.1. Panel A (Panel B)
presents the alphabetical list of the mineable (non-mineable) cryptocurrencies. The table also reports the
average and standard deviation of their weekly returns. The data are obtained from the Bittrex exchange
and the sample period runs from 3/31/2017 to 6/28/2019.

Name Ticker Mean(∆Price) St. Dev.(∆Price)

Panel A: Mineable Cryptocurrencies

Decred DCR 0.01 0.14
Digibyte DGB 0.03 0.27
Dogecoin DOG 0.02 0.20
FLO FLO 0.02 0.22
EthereumClassic ETC 0.01 0.15
Groestlcoin GRS 0.04 0.25
Lisk LSK 0.02 0.19
Monacoin MON 0.04 0.23
Syscoin SYS 0.01 0.19
Viacoin VIA 0.02 0.19
Vericoin VRC 0.01 0.18
Vertcoin VTC 0.02 0.19
WAVES WAV 0.02 0.18
Verge XVG 0.05 0.34
Zcoin XZC 0.01 0.16
ZCash ZEC 0.00 0.15

Panel B: Non-mineable Cryptocurrencies

ARK ARK 0.02 0.21
Augur REP 0.01 0.15
Factom FCT 0.00 0.17
Komodo KMD 0.02 0.19
Melon MLN − 0.02 0.18
NEO NEO 0.04 0.24
Nexus NXS 0.00 0.20
NXT NXT 0.01 0.21
PIVX PIV 0.00 0.17
Reddcoin RDD 0.04 0.31
Spherecoin SPHR 0.02 0.24
SHIFT SHI 0.01 0.20
STEEM STE 0.01 0.19
SteemDollars SBD 0.00 0.19
Stratis STR 0.02 0.22
NEM XEM 0.02 0.18
Stellar XLM 0.03 0.25
Ripple XRP 0.03 0.23

57



Table A8: Factor Analysis: Time Series Regressions in Out-of-Sample Cryptocurrencies

This table reports the beta estimates and respective t-statistics for the aggregate computing power factor
(ACP ), the aggregate network factor (ANET ), and the cumulative fundamental factor (SV D) from time
series regressions using three distinct 3-factor models that include the Bitcoin return, the cryptocurrency
momentum factor, and either the computing power (ACP ), network (ANET ), or cumulative fundamental
factor (SV D). The estimates for the Bitcoin and momentum factors are not reported. The test assets are
the 34 cryptocurrencies used in the out-of-sample analysis of Section 5.1. The superscripts ***, **, and *
indicate significance at the 0.01, 0.05, and 0.10 level, respectively. Panel A (Panel B) presents the results for
the mineable (non-mineable) cryptocurrencies. The data are obtained from the Bittrex exchange and the
sample period runs from 3/31/2017 to 6/28/2019.

Panel A: Mineable Cryptocurrencies

Model: 3-factor ACP 3-factor ANET 3-factor SVD

Name Ticker ACP t(ACP ) ANET t(ANET ) SV D t(SV D)

Decred DCR 0.75∗∗∗ (6.71) 0.95∗∗∗ (5.71) 1.27∗∗∗ (6.38)
Digibyte DGB 0.85∗∗∗ (3.50) 1.04∗∗∗ (2.96) 1.41∗∗∗ (3.32)
Dogecoin DOG 0.82∗∗∗ (5.16) 1.19∗∗∗ (5.24) 1.45∗∗∗ (5.23)
EthereumClassic ETC 0.72∗∗∗ (6.80) 0.92∗∗∗ (5.86) 1.22∗∗∗ (6.50)
FLO FLO 0.60∗∗∗ (2.84) 0.74∗∗∗ (2.44) 1.00∗∗∗ (2.71)
Groestlcoin GRS 0.11 ( 0.44) 0.21 ( 0.58) 0.22 ( 0.49)
Lisk LSK 1.13∗∗∗ (7.94) 1.47∗∗∗ (6.86) 1.93∗∗∗ (7.60)
Monacoin MON 0.11 ( 0.52) 0.26 ( 0.84) 0.24 ( 0.64)
Syscoin SYS 0.91∗∗∗ (6.10) 1.17∗∗∗ (5.34) 1.54∗∗∗ (5.86)
Viacoin VIA 0.73∗∗∗ (4.38) 0.89∗∗∗ (3.66) 1.21∗∗∗ (4.14)
Vericoin VRC 0.75∗∗∗ (5.19) 0.92∗∗∗ (4.32) 1.25∗∗∗ (4.90)
Vertcoin VTC 0.48∗∗∗ (2.89) 0.62∗∗∗ (2.60) 0.81∗∗∗ (2.80)
WAVES WAV 0.58∗∗∗ (4.04) 0.79∗∗∗ (3.82) 1.00∗∗∗ (3.99)
Verge XVG 1.23∗∗∗ (3.75) 1.67∗∗∗ (3.52) 2.13∗∗∗ (3.69)
Zcoin XZC 0.70∗∗∗ (5.02) 0.97∗∗∗ (4.83) 1.22∗∗∗ (4.99)
ZCash ZEC 0.80∗∗∗ (8.12) 1.01∗∗∗ (6.75) 1.35∗∗∗ (7.66)

Panel B: Non-mineable Cryptocurrencies

Model: 3-factor ACP 3-factor ANET 3-factor SVD

Name Ticker ACP t(ACP ) ANET t(ANET ) SV D t(SV D)

ARK ARK 0.70∗∗∗ (3.73) 0.91∗∗∗ (3.34) 1.19∗∗∗ (3.61)
Factom FCT 0.68∗∗∗ (4.41) 0.96∗∗∗ (4.35) 1.19∗∗∗ (4.42)
Komodo KMD 0.82∗∗∗ (4.94) 1.06∗∗∗ (4.38) 1.39∗∗∗ (4.77)
Melon MLN 0.63∗∗∗ (4.23) 0.74∗∗∗ (3.36) 1.04∗∗∗ (3.93)
NEO NEO 0.94∗∗∗ (4.41) 1.20∗∗∗ (3.85) 1.59∗∗∗ (4.23)
Nexus NXS 0.88∗∗∗ (5.10) 1.12∗∗∗ (4.40) 1.49∗∗∗ (4.88)
NXT NXT 0.61∗∗∗ (3.42) 0.94∗∗∗ (3.72) 1.10∗∗∗ (3.55)
PIVX PIV 0.75∗∗∗ (4.75) 0.99∗∗∗ (4.31) 1.28∗∗∗ (4.62)
Reddcoin RDD 0.70∗∗∗ (2.48) 0.78∗∗∗ ( 1.91) 1.13∗∗∗ (2.28)
Augur REP 0.73∗∗∗ (5.97) 0.93∗∗∗ (5.19) 1.23∗∗∗ (5.72)
SteemDollars SBD 0.38∗∗∗ (2.38) 0.69∗∗∗ (3.09) 0.73∗∗∗ (2.65)
SHIFT SHI 0.78∗∗∗ (4.57) 0.99∗∗∗ (3.98) 1.32∗∗∗ (4.38)
Spherecoin SPHR 0.24 ( 1.01) 0.29 ( 0.84) 0.40 ( 0.95)
STEEM STE 0.84∗∗∗ (5.64) 1.09∗∗∗ (4.97) 1.43∗∗∗ (5.43)
Stratis STR 0.75∗∗∗ (4.50) 0.89∗∗∗ (3.64) 1.24∗∗∗ (4.21)
NEM XEM 0.83∗∗∗ (6.30) 1.15∗∗∗ (6.07) 1.44∗∗∗ (6.26)
Stellar XLM 0.67∗∗∗ (3.06) 0.94∗∗∗ (2.96) 1.17∗∗∗ (3.04)
Ripple XRP 1.01∗∗∗ (5.11) 1.38∗∗∗ (4.81) 1.75∗∗∗ (5.04)
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Table A9: Factor Analysis: 3-Factor Model with Bitcoin-Free Fundamental Factors

This table reports estimates from time series regressions of weekly cryptocurrency returns on three
factors. The cryptocurrencies are Bitcoin (BTC), Ethereum (ETH), Monero (XMR), Litecoin (LTC),
and Dash (DSH). The first two factors in the asset pricing model are the the return of Bitcoin
(∆Price(BTC)), and the cryptocurrency momentum factor (CryptoMom). The third factor is the
aggregate computing power factor, ACP \ BTC, or the aggregate network factor, ANET \ BTC,
calculated excluding Bitcoin blockchain characteristics and Bitcoin returns from the factor mimicking
portfolios. t-statistics are in parentheses. The superscripts ***, **, and * indicate significance at the
0.01, 0.05, and 0.10 level, respectively. The sample is from 8/7/2015 to 6/28/2019.

(1) (2) (3) (4) (5)

Panel A: 3-factor ACP BTC ETH XMR LTC DSH

∆Price(BTC) −0.16 0.06 0.55∗∗∗ −0.25∗∗∗

(−1.43) (0.57) (5.46) (−3.47)
CryptoMom −0.08∗∗ −0.10∗∗ 0.14∗∗∗ 0.01 −0.08∗∗∗

(−2.52) (−2.03) (3.31) (0.28) (−2.72)

ACP\BTC 0.54∗∗∗ 1.13∗∗∗ 1.03∗∗∗ 0.52∗∗∗ 1.13∗∗∗

(12.17) (12.50) (12.60) (6.28) (19.32)

α (×100) 1.07∗∗ 0.84 −0.70 −0.52 0.32
(2.17) (1.09) (−1.01) (−0.75) (0.65)

Adjusted R2 .43 .55 .65 .51 .73

Panel B: 3-factor ANET BTC ETH XMR LTC DSH

∆Price(BTC) −0.15 0.47∗∗∗ 0.52∗∗∗ −0.20∗∗∗

(−1.44) (3.86) (5.55) (−3.00)
CryptoMom −0.04 −0.03 0.26∗∗∗ 0.04 −0.01

(−1.27) (−0.71) (4.96) (0.92) (−0.44)

ANET\BTC 0.55∗∗∗ 1.27∗∗∗ 0.59∗∗∗ 0.63∗∗∗ 1.22∗∗∗

(11.18) (14.30) (5.53) (7.64) (20.97)

α (×100) 0.97∗ 0.45 −0.96 −0.71 −0.06
(1.89) (0.62) (−1.10) (−1.06) (−0.12)

Adjusted R2 .38 .61 .45 .55 .76

59



Table A10: Out-of-Sample Cryptocurrencies and Bitcoin-Free Fundamental Factors

This table reports estimates from pooled OLS regressions of weekly cryptocurrency returns (∆Price)
on three asset pricing factors. The test assets are the 34 cryptocurrencies described in Table
A7 of the Appendix. The first two factors in the asset pricing model are the return of Bitcoin
(∆Price(BTC)) and the cryptocurrency momentum factor (CryptoMom). The third factor is the
aggregate computing power factor, ACP \ BTC, or the aggregate network factor, ANET \ BTC,
calculated excluding Bitcoin blockchain characteristics and Bitcoin returns from the factor mimicking
portfolios. Standard errors are double-clustered by week and currency. t-statistics are in parentheses.
The superscripts ***, **, and * indicate significance at the 0.01, 0.05, and 0.10 level, respectively.
We also report the Gibbons et al. (1989) (GRS) test statistics along with the respective p values.
The GRS statistic is based on currency-level alphas estimated from time series regressions for each
currency. The sample runs from 3/31/2017 to 6/28/2019.

(1) (2)
3-factor ACP 3-factor ANET

∆Price(BTC) 0.26 0.31∗

(1.48) (1.90)
CryptoMom −0.02 0.01

(−0.23) (0.15)

ACP\BTC 0.81∗∗∗

(5.53)
ANET\BTC 0.84∗∗∗

(5.45)

α (×100) 0.11 −0.18
(0.13) (−0.23)

Adjusted R2 0.34 0.33

GRS Statistic 0.158 .178
p-value 1.00 1.00

Cryptocurrencies 34 34
Observations 4,012 4,012
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Table A11: Factor Analysis: Out-of-Sample Cryptocurrencies and Ethereum

This table reports estimates from pooled OLS regressions of weekly cryptocurrency returns (∆Price)
on three asset pricing factors. The test assets are the 34 cryptocurrencies described in Table A7
of the Appendix. In column (1), the factors in the asset pricing model are the return of Ethereum
(∆Price(ETH)) and the cryptocurrency momentum factor (CryptoMom). The 3-factor models in
columns (2), (3), and (4) additionally include the aggregate computing power factor (ACP ), the
aggregate network factor (ANET ), and the singular value decomposition of the computing power
and network factors (SVD), respectively. Standard errors are double-clustered by week and currency.
t-statistics are in parentheses. The superscripts ***, **, and * indicate significance at the 0.01, 0.05,
and 0.10 level, respectively. We also report the Gibbons et al. (1989) (GRS) test statistics along with
the respective p values. The GRS statistic is based on currency-level alphas estimated from time
series regressions for each currency. The sample runs from 3/31/2017 to 6/28/2019 and consists of
118 weekly observations.

(1) (2) (3) (4)
2-factor 3-factor ACP 3-factor ANET 3-factor SVD

∆Price(ETH) 0.77∗∗∗ 0.27∗∗ 0.33∗∗∗ 0.28∗∗

(9.57) (2.16) (3.02) (2.38)
CryptoMom 0.04 −0.03 −0.00 −0.02

(0.34) (−0.35) (−0.01) (−0.23)

ACP 0.67∗∗∗

(4.66)
ANET 0.74∗∗∗

(4.87)
SVD 1.08∗∗∗

(4.76)

α (×100) 0.30 0.20 −0.15 0.04
(0.35) (0.27) (−0.21) (0.06)

Adjusted R2 0.28 0.33 0.34 0.34

GRS Statistic 1.02 0.20 0.29 0.24
p-value 0.45 1.00 1.00 1.00

Cryptocurrencies 34 34 34 34
Observations 4,012 4,012 4,012 4,012
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Table A13: Factor Analysis with the ACP (38) and ANET (38) Factors

This table reports estimates from pooled OLS regressions of weekly cryptocurrency returns (∆Price).
The test assets are the 34 cryptocurrencies described in Table A7 of the Appendix. In column (1),
the factors are the return of Bitcoin (∆Price(BTC)) and the cryptocurrency momentum factor
(CryptoMom). In column (2), we add the aggregate computing power factor (ACP (38)) and the
aggregate network factor (ANET (38)). In column (3), we add the singular value decomposition
of ACP (38) and ANET (38), denoted as SV D(38). Standard errors are double-clustered by week
and currency. t-statistics are in parentheses. The superscripts ***, **, and * indicate significance
at the 0.01, 0.05, and 0.10 level, respectively. We also report the Gibbons et al. (1989) (GRS)
test statistics for the efficiency of the factor models along with the respective p values. The
GRS statistic is based on cryptocurrency-level alphas estimated from time series regressions for
each currency. The sample runs from 3/31/2017 to 6/28/2019 and consists of 118 weekly observations.

(1) (2) (3)

2-factor 4-factor SVD

∆Price(BTC) 1.02∗∗∗ 0.76∗∗∗ 0.91∗∗∗

(9.05) (5.50) (7.95)
CryptoMom 0.12∗ 0.05 0.07

(1.74) (0.84) (1.06)

ACP(38) 0.18∗∗∗

(3.13)
ANET(38) 0.17∗

(1.82)
SVD(38) 0.45∗∗∗

(3.11)

α (×100) −0.82 −0.74 −1.03
(−0.86) (−1.14) (−1.22)

Average R2 0.25 0.29 0.29

GRS Statistic 1.29 1.15 1.56
p-value 0.16 0.33 0.07

Cryptocurrencies 34 34 34
Observations 4,012 4,012 4,012
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