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Abstract: We employ a theoretical microstructue model with overconfident traders (Kyle,

Obizhaeva, Wang 2017) to demonstrate how market differences effect an arbitrageurs abil-

ity/willingness to engage in price correcting trades. The markets differ in the rates at which

traders adjust their inventories towards their target levels, ”trading speeds”. The extent to

which trading speed differences across markets effect the degree of price convergence or diver-

gence depends on the arbitrageur’s preexisting positions in each market. If the arbitrageur

trades towards their target in each market at the same prevailing speed the prices converge.

Trading speeds are found to be time invariant and the effect of a financial constraint on the

arbitrageur increases in the difference between market speeds.
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1 Introduction

This paper contemplates how differences in markets effects an arbitrageurs ability or will-

ingness to engage in price correcting trading, enforcing the law of one price.

Theoretically if we take some arbitrary return r multiply it by the stochastic dis-

count factor m and take the expectation of the product we should recover the fundamental

pricing equation 1 = 〈mr〉 (Cochrane 2009). Any asset pricing model, H : returns→ prices,

amounts to an estimation of the homomorphism 〈m · 〉 which maps elements of a return space

to some price space with any r /∈ ker(H) being seen as a mispricing in the eyes of the model.

Since prices effect returns, asset pricing models amount to restrictions on the price gener-

ating process. In reality prices are the results of trading games (i.e. markets) which can

be seen as a homomorphism G : information→ prices that maps information to the price

space. The assumptions made by a pricing model must necessarily restrict or prescribe the

behavior of the participants of these games (H restricts G). One such assumption, which

serves as a bedrock assumption underlying many asset pricing models, is the law of one price

which is often justified through no-arbitrage arguments.

As financial economists studying prices we are often able to sidestep the dirty issue

of individual preferences and whether or not they are rational by employing no-arbitrage

arguments in order to evoke the law of one price. The general no-arbitrage argument is as

follows: deviations from the law of one price are mispricings which present profit opportu-

nities to arbitrageurs, taking advantage of these mispricings simultaneously serve to correct

the mispricing, hence in equilibrium we can expect arbitrageurs to correct any mispricing.

This argument allows us to remain agnostic concerning the origins of the mispricing and is

a much less restrictive and presumptuous way of getting to the law of one price as opposed

to getting it by making assumptions directly on the preferences of the underlying agents.

The no-arbitrage argument does not hold perfectly in reality, a fact which has motivated the

limits to arbitrage literature where apparent mispricings are explained by constraints on the

arbitraguer’s actions.

Returning to the sentiment expressed in the opening paragraph, we can think of
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the arbitrageurs engaging in the price correcting trade as the behavior prescribed by the

law of one price assumption (i.e. the restriction on the price generating process). Since

the arbitrageur often takes positions in different markets, the law of one price ”connects”

the various trading games through the arbitrageur in order to justify itself. Intuitively

constraining the arbitrageurs would weaken the law of one price. Even if we presume that

the varying trading games are structurally the same in the sense that the games are played

by the same rules, they can still vary in some underlying parameters, such as the number of

players, their wealth levels, the precision of their signals and so on. So a natural question

would be how differences in these parameters across the games effect, if at they do at all, the

degree to which the arbitrageur engage in price correcting behavior. In this paper we model

these kinds of differences by varying the number of traders in the markets by applying the

smooth trading with overconfidence model which we borrow from Kyle, Obizhaeva, Wang

(2017). The difference in market populations result in differences in trading speeds, the rate

at which traders adjust their current inventories towards their target levels, and examine

how these different trading speeds effect the degree to which an arbitrageur trades to correct

a mispricing.

1.1 Literature Review

The question of how mispricings can exists in a world with arbitrageurs is one which is largely

tackled by the limits to arbitrage literature, in particular this paper looks to contribute

to the strand of the literature stemming from Shleifer & Vishny (1997) who use agency

costs to constrain arbitrageurs by having investors pull their funds in the arbitrageur if

the arbitrageur has too many losses, even though the arbitrage strategy’s expected return

increases.

Besides Kyle, Obizhaeva, & Wang (2017) which I build the paper around we will

largely rely on the work done by Gromb & Vayanos (2002) who explicitly model the arbi-

trage opportunity by allowing arbitrageurs exclusive access to otherwise segmented markets

and constraining them through the use of margin, making their constraint a function of

the arbitrageurs wealth. Brunnermeier & Pedersen (2008) link market liquidity to funding
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liquidity, the topic of arbitrageur contagion as a wealth effect is covered by Kyle & Xiong

(2001) where convergence traders can be forced to trade in direction of noise trade and

Boyson, Stahel & Stulz (2010) who empirically find that the deterioration of hedge fund

liquidity increases probability of contagion. As previously mentioned the use of the notion

of ”trading speed” relates directly to the work of Kyle & Obizhaeva (2016,2017) and their

market microstructure invariance papers.

1.2 Model Overview

We employ a segmented market setup that is similar in spirit to that of Gromb & Vayanos

(2002) where a single arbitrageur has unique access to two markets that trade the same

underlying and trades to take advantage of their unique position. We differ by explicitly

modeling the microstructure in each market using the model with overconfident traders

from Kyle, Obizhaeva, Wang (2017), though we drop the inclusion of a public signal for

simplicity.

General Structure/Assumptions In the paper we explore three different specifications

of our trading model, which can be roughly summarized by the following setup.

• There are two markets that are physically and informationally segmented but for a

single arbitrageur .

• Each market J ∈ {A,Z} has NJ number of non-arbitrageur traders (j-traders) plus

the arbitrageur.

• Each j-trader observes a private signal of assets value, the arbitrageur does not observe

a private signal.

• The j-traders are overconfident in their signal precision, and they all agree to disagree

on it.

• The j-traders treat the arbitrageur as just another overconfident trader.
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• The arbitrageur knows that the assets will have the same liquidation value.

In the model, the markets effectively treat the arbitrageur as just another overconfident

trader trades towards her target inventory at the equilibrium trading speed after observing

some private signal. In actuality however the arbitrageur does not observe a private signal

and trades towards her target at a different rate, where her trades and target inventories

are functions of the price gap between the two markets. Whereas the trades and target

inventories of the others are functions of the private signals they actually observed. If she

instead were to trade towards her target inventory in each market at the prevailing trading

speed then her resulting trades would have the effect that the prices would converge. In order

to isolate the pure convergence trade from the portion which relied on the arbitrageurs’ own

(possibly incorrect) estimation of the liquidation value we introduced the no-information

presumption which states that the arbitrageur views the prices in each market as containing

no information at all about the liquidation value. The no-information presumption leaves

the arbitrageur agnostic about the liquidation value and results in trades which solely rely

on the arbitrageur’s privileged position. The no-information presumption is analogous to

an arbitrageur trading to profit on a price difference with no regard as to which price is

more ”correct” or what caused the initial divergence. An arbitrageur does not need know

anything about cryptography to buy a bitcoin at $80 in one market and sell another at $100.

Regardless of whether or not the arbitrageur presumes no-information the price difference

in equilibrium would be halved if she had no initial inventory. However if she does have

preexisting positions in the markets then under certain circumstances the price convergence

could be less than expected or could even diverge. In a multiperiod setup it’s assumed that

the arbitrageur begins with no inventories and builds them up by trading over time, this

allows for the situation in which the arbitrageur can trade in the direction of price divergence.

The rest of the paper is as follow: section 2 presents and solves a one period model,

section 3 presents a multiperiod generalization of the single period model and demonstrates

the invariance of trading speeds across time, section 4 considers a special case of a constrained

arbitrageur in a two period version of the model and section 5 proposes a possible empirical

test of the model and section 6 concludes.
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2 One-Period Model

In this section we examine a single period segmented market model in which the market’s

traders observe a private signal concerning the tradeable’s liquidation value and engage in

one round of trading before the liquidation value is made public. We begin with two risky

assets J ∈ {A,Z}, which are traded in separate markets, each in zero net supply, and three

kinds of traders; A-traders, Z-traders, and an arbitrageur. A-traders exchange in asset A

in market A and do not participate in market Z where asset Z is exchanged. Z-traders

are similarly restricted to market Z where they exclusively trade in asset Z. Both A and Z

traders are strategic in that they take into account the effect of their trades on the price and

the trades of others. Were it not for the arbitrageur, the two markets would otherwise be

segmented, allowing LJ to denote the population of participants in market J ∈ {A,Z}, the

arbitrageur’s ”privileged position” is characterized as:

LA = {NA, arb}, LZ = {NZ , arb}, NA ∩NZ = ∅, LA ∩ LZ = {arb} (1)

where NJ denotes both the cardinality and the set of J-traders (i.e. NJ = {1, 2, ..., NJ}).

We often refer to the arbitrary non-arbitrageur trade in market J as j or ”j-trader”.

An additional assumption to that of market population segmentation is that of

informational segmentation which in this context simply means that any A-trader does not

condition their trading decision s on the prevailing market price in Z and Z-traders do not

condition on what’s going on in market A. This lack of cross market can be interpreted in

a number of ways, traders may not believe in or be ignorant of any relationship between

assets A and Z, they may have limited attention or perhaps monitoring costs are too high

so it may be too costly to monitor multiple possibly unrelated markets in order to trade in

only one market.

Meanwhile the arbitrageur is aware of a relationship between the two assets, namely

that the two assets will share the same liquidation value vA = vZ = v, knowledge of this rela-

tionship can be interpreted as specialized knowledge that the arbitrageur as a sophisticated

investor has access to. The lack of cross-conditioning coupled with the arbitrageur’s special-

ized knowledge about the relationship between the two assets means that (1) constitutes a
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privileged position insofar that it permits the arbitrageur to take positions in each market

that’ll allow her to profit off of her specialized knowledge by trading what’s essentially the

same asset in different contexts.

The liquidation value is a normally distributed random variable ṽ ∼ N [0, τ−1v ].

All non-arbitrageur traders observe private noisy signals regarding signals regarding the

normalized liquidation value τ
−1/2
v v:

∀a ∈ NA, a ^ ia = τ 1/2a τ 1/2v v + ea, where ea ∼ N [0, 1]

∀z ∈ NZ , z ^ iz = τ 1/2z τ 1/2v v + ez, where ez ∼ N [0, 1]
(2)

where ^ is used to denote ”observes”, so a ^ b would read ”a observes b”. For purposes of

tractability all random variables are assumed to be normally distributed and independent

from one another. In alignment with the informational segmentation, the arbitrary j-trader

can not distinguish between the arbitrageur and any other J-trader, and treats her as just

another J-trader. This is because the traders don’t believe that there exists an arbitrageur,

the disbelief in an arbitrageur follows from the assumption of overconfidence that follows;

the existence of an arbitrageur would present the possibility of someone having access to

more precise information and contradict the assumption.

Trading will ultimately be motivated through overconfidence in signal precision,

each non-arbitrageur trader believes that their signal is of high precision τ whilst the signal

of all other market participants is of low precision π. Trader’s agree to disagree about their

beliefs regarding the relative precision of their signals, put formally:

∀a ∈ NA, τa = τ > π = τa′ , ∀a′ 6= a, a′ ∈ LA

∀z ∈ NZ , τz = τ > π = τz′ , ∀z′ 6= z, z′ ∈ LZ
(3)

Each trader believes themselves to be endowed with a high precision signal whilst everyone

else is stuck with low precision signals, and they agree to disagree about who has this

coveted high precision signal. The arbitrageur does not observe a private signal. It is this

disagreement in signal precision which motivates trading in the assets which are in net zero

supply:

ηA +

NA∑
a=1

sa = ηZ +

NZ∑
z=1

sz = 0 (4)
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where ηJ denotes the arbitrageurs’ current inventory in market J and sj denotes the current

inventory of the j-trader in that market. Each trader a ∈ NA and z ∈ NZ trades the amounts

xa and xz respectively, and the arbitrageur trades the amount ψA of asset A in market A

and ψZ of asset Z in market Z, market clearing requires that:

ψA +

NA∑
a=1

xa = ψZ +

NZ∑
z=1

xz = 0 (5)

It is common knowledge that the asset is in zero-net supply, and while the traders may agree

to disagree about who’s signal has high precision of τ and who has a low precision π signal

they do agree on the values of τ and π, additionally each trader in market J knows that the

population of market participants is |LJ | = NJ + 1.

As previously mentioned, the non-arbitrageur traders in each market treat the

arbitrageur as if she were just another overconfident trader. Someone who assigns a low

precision to the information inferred by the trades of others and assigns a high precision to

their own information. In effect were the arbitrageur to come clean and tell one of the other

traders about the other market and their privileged position, the other trader would simply

not believe them treating the information as cheap talk. Since traders agree to disagree about

their beliefs concerning signal precision and can’t distinguish the arbitrageur, believing the

arbitrageurs story would contradict these assumptions and subsequently collapse into a no-

trade result.

2.1 Linear Trade Conjectures

All non-arbitrageur traders conjecture that every other market participant trades linearly in

their private signal ij, the market price PJ , and their inventory sj:

∀a ∈ NA, a believes that: x′a = βAi
′
a − γAPA − δAs′a , ∀a′ ∈ LA

∀z ∈ NZ , z believes that: x′z = βZi
′
z − γZPZ − δZs′z ,∀z′ ∈ LZ

(6)

We proceed to solve for the trades x∗j in the same way as in Kyle, Obizhaeva, & Wang (2017).

Summing up across all the other traders the market clearing condition implies:

−xj =
∑
k∈LJ

xk = βA
∑
k∈LJ

ik −NJγJPJ − δJ
∑

k∈LJ\j

sk (7)
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allowing i−j denote the average non-j signal which is to say i−j = 1
NJ

∑
k∈LJ\j ik, and using

the zero net supply condition we get:

−xj = NJβAi−j −NJγJPJ + δJsj (8)

Rearranging [8] to write the price as a function of j’s trade, xj and inventory sj:

PJ =
βJ
γJ
i−j +

δJ
NJγJ

sj +
1

NJγJ
xj (9)

In equilibrium j knows the values of the constants, βJ , γJ , and δJ ; since j will also know

their trade xj and inventory sj, the price PJ will be a sufficient statistic for the average

other signal i−j, this means that the j-trader’s information set is composed of {ij, i−j}. Let

V arj[v] denote j’s estimate of the variance of the liquidation value v conditioned on their

information, so from j’s perspective the total precision in the market is determined by:

τJ = (V arj[v])−1 = τv(1 + τ +NJπ) (10)

Since all the stochastic variables are jointly normally distributed, then by the projection

theorem, j’s expectation of the liquidation value conditioned on their information, denoted,

vj, is given by:

vj =
τ
1/2
v

τJ
(τ 1/2ij +NJπ

1/2i−j) (11)

2.2 Utilities and Objective Functions

All traders, as well as the arbitrageur, share the same form of time additively separable

expected utility of 〈−e−ρwj〉 where ρ is a common/shared CARA parameter and wj denotes j’s

terminal wealth. Each A- and Z-trader choses their trade xa or xz in order to maximize their

expected utility, whilst the arbitrageur choses both her trade in market A, ψA and her trade

in Z ψZ so as to maximize her own expected utility. Trader j’s terminal expected terminal

wealth is given by their net position multiplied by their expectation of the liquidation value,

less the cost of the change in their position. Trader j assigns an expected value of to their

terminal wealth as well as it’s variance, conditioned on his information of:

〈wj〉 = vj(xj + sj)− xjPJ(xj), and V arj[wj] = (sj + xj)
2V arj[v] =

1

τJ
(sj + xj)

2 (12)
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So j’s expected utility is given by:

〈−e−ρwj〉 = −exp
[
− ρ(vj(xj + sj)− xjPJ(xj)) +

ρ2

2τJ
(sj + xj)

2
]

(13)

Maximizing the expected utility function above is equivalent to maximizing the following

objective function:

objj(xj) = vj(xj + sj)− xjPJ −
ρ

2τJ
(xj + sj)

2 (14)

Since the arbitrageur shares the same kind of utility function their expectations of their

terminal wealth and it’s variance is the same as that of the j-trader but for the fact that the

arbitrageur is able to take positions in both assets A and Z:

〈warb〉 = varb(ψA + ηA + ψZ + ηZ)− ψAPA − ψZPZ

V ararb[warb] =
1

τarb
(ψA + ηA + ψZ + ηZ)2

(15)

Where varb is the arbitrageurs expectation of the liquidation value conditioned on her avail-

able information and τarb denotes the arbitrageurs view of total precision, both of these

quantities will be explicitly defined later. Given that the arbitrageur shares the same form

of CARA type utility function as the other traders, maximizing the expected utility of

〈U(warb)〉 = 〈−e−ρwarb〉 is equivalent to maximizing the following objective function:

objarb(ψA, ψZ) = varb(ψA + ηA + ψZ + ηZ)− ψAPA − ψZPZ −
ρ

2τarb
(ψA + ηA + ψZ + ηZ)2

(16)

Definition: (Segmented Market Equilibrium with Overconfidence) We define a

linear trading equilibrium as a set of prices and linear trading strategies of the A-trader, the

Z-traders, and arbitrageur in market A {(ψ∗A, {x∗a}a∈NA
, P ∗A} and a set of trading strategies

{(ψ∗Z , {x∗z}z∈NZ
, P ∗Z} such that each non-arbitrageur trader maximizes their objective func-

tions as well as the arbitrageur, such that both the markets clear and the zero net supply
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conditions hold:

∀a ∈ NA, x
∗
a ∈ arg max

xa

[
va(xa + sa)− xaPA −

ρ

2τA
(xa + sa)

2
]

∀z ∈ NZ , x
∗
z ∈ arg max

xz

[
vz(xz + sz)− xzPZ −

ρ

2τZ
(xz + sz)

2
]

(ψ∗A, ψ
∗
Z) ∈ arg max

(ψA,ψZ)

[
varb(ψA + ηA + ψZ + ηZ)− ψAPA − ψZPZ −

ρ

2τarb
(ψA + ηA + ψZ + ηZ)2

]
ηA +

NA∑
a=1

sa = ηZ +

NZ∑
z=1

sz = ψA +

NA∑
a=1

xa = ψZ +

NZ∑
z=1

xz = 0

(17)

The trading equilibrium described above is the same as the traditional notion of a Bayesian

Nash Equilibrium less the presumption of a shared common prior. The lack of a common

prior is needed in order to have the market participants agree to disagree (Aumann 1976)

about their relative overconfidences.

2.3 Solving For Non-Arbitrageur Trades

We first solve for the optimal trades of the A- and Z-traders. Plugging equations [9] and [11]

into [14] we have trader j choosing xj so to maximize:

obj(xj) =
τ
1/2
v (sj + xj)

(
τ 1/2ij + π1/2NJ i−j

)
τJ

− xj (sjδJ + xj + βJNJ i−j)

γJNJ

− ρ (sj + xj)
2

2τJ
(18)

Solving for xj by the objective function’s first order condition yields:

xj =
τ 1/2ijγJNJτ

1/2
v − ρsjγJNJ − sjδJτJ − βJNJτJ i−j + π1/2γJN

2
J i−jτ

1/2
v

ργJNJ + 2τJ
(19)

Rearranging equation [9] to solve for i−j, yields:

i−j →
−sjδJ − xj + γJNJPJ

βJNJ
(20)

Plugging in [20] into [19] and rearranging yields:

xj =
[ τ 1/2βJγJNJτ

1/2
v

βJτJ + γJNJ

(
ρβJ + π1/2τ

1/2
v

)]ij +
[ γJNJ

(
−ρβJ − π1/2δJτ

1/2
v

)
βJτJ + γJNJ

(
ρβJ + π1/2τ

1/2
v

)]sj
+
[ γJNJ

(
π1/2γJNJτ

1/2
v − βJτJ

)
βJτJ + γJNJ

(
ρβJ + π1/2τ

1/2
v

)]PJ
(21)
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Clearly the j-trader trades linearly in their private signal ij, the prevailing market price PJ ,

and their current inventories sj in agreement with the linear trade conjecture. Given that

the j-trader believes that the rest of the market is populated with similarly overconfident

traders, they trade believing in a symmetric equilibrium meaning that we can solve for the

trade coefficients βJ , γJ , and δJ by matching the coefficients in the linear conjecture [6] with

those in equation [21]

βJ =
τ
1/2
v

(
NJ

(
τ 1/2 − 2π1/2

)
− τ 1/2

)
ρNJ

γJ =
τJ
(
NJ

(
τ 1/2 − 2π1/2

)
− τ 1/2

)
ρNJ (π1/2NJ + τ 1/2)

δJ =
NJ

(
τ 1/2 − 2π1/2

)
− τ 1/2

NJ (τ 1/2 − π1/2)

(22)

By plugging in the beta and gamma values in [22] into equation [19] and simplifying allows

us to write the trades by:

xj =
τ
1/2
v (ij − i−j)

(
NJ

(
τ 1/2 − 2π1/2

)
− τ 1/2

)
ρ (NJ + 1)

− sjδJ

xj =
βJNJ (ij − i−j)

NJ + 1
− sjδJ

(23)

And plugging [22], [23] into the price function [9] results in the price being equal to the

average expected liquidation value of the traders in the market. In this set up the traders

must be overconfident enough in their signal precision so that they’d place a high enough

weight on their own information so that they believe it’s profitable to trade in the direction

of their private signal and not just in the direction of the average valuation for which the

prevailing price is a sufficient statistic. The required amount of overconfidence needed is

given by checking the second order condition of the trader’s optimization problem.

2.4 Disagreement Requirement

A key to the validity of the trader optimization is the second order condition that would

require 2
γJNJ

+ ρ
τJ
> 0 this condition can hold if and only if:

τ 1/2

π1/2
− 2− τ 1/2

π1/2NJ

> 0 (24)
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This is identical to the requirement in Kyle, Obizhaeva, Wang (2017) that their measure of

disagreement denoted ∆H is greater than zero with a trading population of NJ + 1 rather

than NJ . Simply put each traders needs to believe that their signals are more than twice as

precise as those of the other traders in order for them to put a large enough weight on their

own information such that there’ll be enough disagreement amongst the traders to motivate

trade. This condition guarantees that δJ > 0

2.5 Implied Signal and Price Function

If from the point of view of the arbitrary j-trader, the arbitrageur trades according so some

signal denoted iJarb, this is the signal that would have to be observed by a non-arbitrageur

in order to engage in a trade that’s identical to that of the arbitrageur. Backing out this

’implied signal’ from the the average non-j-trader signal i−j = 1
NJ

(
iJarb +

∑
k∈NJ\{j} ik

)
and

adding up all the non-arbitrageur trades implies through market clearing and zero net supply:

ψJ = −
NJ∑
j=1

xj = − NJβJ
(NJ + 1)

 NJ∑
j=1

ij +
1

NJ

NJ∑
j=1

iJarb +
∑

k∈NJ\{j}

ik

+ δJ

NJ∑
j=1

sj

ψJ = − NJβJ
(NJ + 1)

(
NJ īJ − iJarb − (NJ − 1) īJ

)
− δJηJ =

NJβJ
(NJ + 1)

(
iJarb − īJ

)
− δJηJ

(25)

Hence the arbitrageur trades as if she were an arbitrary j-trader who observed iJarb, given

the beliefs of the non-arbitrageur traders the arbitrageur knows that she’ll be mistaken for

just such a trader. If the arbitrageur trades a high positive amount of the asset the market

reacts as if a trader got a high positive signal iJarb >> 0, if she sells a high amount of the

asset the market would react as if someone got a very negative signal iJarb << 0. This is the

mechanism through which the prices react to the arbitrageurs trades. The implied signals

iAarb and iZarb are presumed to take the form of iJarb = π1/2τ
1/2
v v + earb, where earb ∼ N [0, 1].

By writing the price as a function of the implied signal and the average J-trader signal it is

easily shown that the equilibrium price from the perspective of the J-trader is the average

of all the trader valuations:

PJ =
τ
1/2
v

τJ

(
τ 1/2 +NJπ

1/2

NJ + 1

)(
iJarb +NJ īJ

)
(26)
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Writing the implied arbitrageur signal as a function of the arbitrageur trade and inventory:

iJarb = iJ +
(NJ + 1) (δJηJ + ψJ)

βJNJ

(27)

And plugging equation [27] into [26] and simplifying results in the price function:

PJ =
[τ 1/2v

(
π1/2NJ + τ 1/2

)
τJ

]
iJ +

[δJτ 1/2v

(
π1/2NJ + τ 1/2

)
βJNJτJ

]
ηJ +

[τ 1/2v

(
π1/2NJ + τ 1/2

)
βJNJτJ

]
ψJ

(28)

Which after substitution reduces to PJ = βJ
γJ
iJ + δJ

γJNJ
ηJ + 1

γJNJ
ψJ which is consistent with

the price function from equation [9]. Allowing uA = βAiA
γA

and uZ = iZβZ
γZ

where uJ is the

average non-arbitrageur valuation in market J, the price function becomes:

PJ = uJ +
δJ

NJγJ
ηJ +

1

NJγJ
ψJ (29)

2.6 Solving for Arbitrageur Optimal Trades

Similar to the non-arbitrageur traders, since the price is given by equation [28] the arbitrageur

can, by observing the prevailing market price infer iJ the average non-arbitrageur signal

in that market. The arbitrageur’s privileged position allows her to observe the prevailing

prices in both market A and market Z, and agree to disagree assumption would imply

that the arbitrageur assigns a low precision π to the non-arbitrageur signals, so effectively

the arbitrageur observes the following two ”constructed” signals given that the arbitrageur

assigns low precision to all the non-arbitrageur traders:

arb ^ iA =
1

NA

NA∑
a=1

ia =
1

NA

NA∑
a=1

(τ 1/2a τ 1/2v v + ea) = π1/2τ 1/2v v +N−1A

NA∑
a=1

ea = π1/2τ 1/2v v + ēA

arb ^ iZ =
1

NZ

NZ∑
z=1

iz =
1

NZ

NZ∑
z=1

(τ 1/2z τ 1/2v v + ez) = π1/2τ 1/2v v +N−1Z

NZ∑
z=1

ez = π1/2τ 1/2v v + ēZ

(30)

Where ēA ∼ N [0, N−1A ] and ēZ ∼ N [0, N−1Z ] by signal independence. ∀a, a′ ∈ NA, a 6=

a′, ẽa ⊥ ẽa′ , and ∀z, z′ ∈ NZ , z 6= z′, ẽz ⊥ ẽz′ . Scaling by the square root of the market

trader population to get the signals in the same form as [2], the arbitrageur observes the
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following two scaled signals:

arb ^ hA =
√
NAπ

1/2τ 1/2v v +
√
NAēA =

√
NAπ

1/2τ 1/2v v + εA, where εA ∼ N [0, 1]

arb ^ hZ =
√
NZπ

1/2τ 1/2v v +
√
NZ ēZ =

√
NZπ

1/2τ 1/2v v + εZ , where εZ ∼ N [0, 1]
(31)

The arbitrageur uses the information from these two inferred signals to construct an expec-

tation of the liquidation value varb and an estimation of total precision τarb. In other words

the arbitrageur effectively observes NA A-traders receiving an average signal of iA and NZ

Z-traders receiving an average signal of iZ , and so assigns a value to total precision of;

τarb = τv (NAπ +NZπ + 1) (32)

and per the projection theorem, the arbitrageurs expected liquidation value is:

varb =
τ
1/2
v

(
iANAπ

1/2 + iZNZπ
1/2
)

τarb
(33)

Plugging her estimation of total precision [32], her expectation of the liquidation value [33],

and the price functions [29] into [16] returns the objective function:

objarb →
π1/2τ

1/2
v (iANA + iZNZ) (ηA + ψA + ηZ + ψZ)

τarb
− ρ (ηA + ψA + ηZ + ψZ) 2

2τarb

−ψA
(
δAηA + ψA
γANA

+ uA

)
− ψZ

(
δZηZ + ψZ
NZγZ

+ uZ

) (34)

Solving for the optimal trades ψA and ψZ by first order condition yields after some algebra:

ψA =
[
− γANA (2uAτarb + ρNZγZ (uA − uZ))

2 (ργANA + 2τarb + ρNZγZ)

]
+
[ γANAτarb
ργANA + 2τarb + ρNZγZ

]
varb

+
[ ργANA (δZ − 2)

2 (ργANA + 2τarb + ρNZγZ)

]
ηZ −

[(δA (2τarb + ρNZγZ) + 2ργANA)

2 (ργANA + 2τarb + ρNZγZ)

]
ηA

ψZ =
[NZγZ (ργANA (uA − uZ)− 2τarbuZ)

2 (ργANA + 2τarb + ρNZγZ)

]
+
[ τarbNZγZ
ργANA + 2τarb + ρNZγZ

]
varb

+
[ ρ (δA − 2)NZγZ

2 (ργANA + 2τarb + ρNZγZ)

]
ηA −

[(δZ (ργANA + 2τarb) + 2ρNZγZ)

2 (ργANA + 2τarb + ρNZγZ)

]
ηZ

(35)

The No-Information Presumption It is worth recognizing that so far we have placed

no restriction on the arbitrageurs trading and hence can make use of her privileged position

in the market to not only engage in the trades that take advantage of any differences in

prices but also to construct their own expectation of the liquidation value based off of the

15



two average market signals iA and iZ and trade on that information. Since we’re interested

in the level of the trading dedicated to taking advantage of price differences we look to

restrict our arbitrageurs trading. It can be shown that the introducing a restriction that

requires ending inventories to be net zero, ηA + ψA + ηZ + ψZ = 0, the optimal trades

under this restriction is equivalent to the limit of the unrestricted trades as τarb → 0. The

condition that τarb → 0 can be interpreted as the arbitrageur presuming there to be no

valid informative value in any of the signals (i.e. sees them as noise) and as a result the

arbitrageur would not place any weight on any portion of their trades that are reliant on

their expectation of the liquidation value. This can also be seen as an exogenous restriction

that the arbitrageur is disallowed from holding any exposure at the end of trading. This ”no

information” assumption by the arbitrageur will correspond to the following optimal trades

ψA =
[ γANANZγZ

2 (γANA +NZγZ)

]
(uZ − uA)−

[(2γANA + δANZγZ)

2γANA + 2NZγZ

]
ηA +

[ γANA (δZ − 2)

2 (γANA +NZγZ)

]
ηZ

ψZ =
[ γANANZγZ

2 (γANA +NZγZ)

]
(uA − uZ) +

[ (δA − 2)NZγZ
2 (γANA +NZγZ)

]
ηA −

[(γANAδZ + 2NZγZ)

2γANA + 2NZγZ

]
ηZ

(36)

Presuming no-information is equivalent to taking the limit of the trades without the pre-

sumption as τarb → 0. Note that ψA + ψZ = −(ηA + ηZ) consistent with the condition that

the arbitrageur takes perfectly offsetting positions in each market in terms of the prevailing

market prices

ψA = −γANA (ηA +NZγZ (PA − PZ) + ηZ)

γANA +NZγZ

ψZ =
NZγZ (−ηA + γANA (PA − PZ)− ηZ)

γANA +NZγZ

(37)

2.7 Equilibrium

The equilibrium is characterized by the set of non-arbitrageur trades, arbitrageur trades,

and prices {(ψ∗A, {x∗a}a∈NA
, P ∗A), (ψ∗Z , {x∗z}z∈NZ

, P ∗Z)} such that each trade maximizes their

individual objective functions and markets clear:

∀j ∈ NJ : x∗j =
βJNJ (ij − i−j)

NJ + 1
− sjδJ ∀J ∈ {A,Z}

ψ∗A =
[ γANANZγZ

2 (γANA +NZγZ)

]
(uZ − uA)−

[(2γANA + δANZγZ)

2γANA + 2NZγZ

]
ηA +

[ γANA (δZ − 2)

2 (γANA +NZγZ)

]
ηZ
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ψ∗Z =
[ γANANZγZ

2 (γANA +NZγZ)

]
(uA − uZ) +

[ (δA − 2)NZγZ
2 (γANA +NZγZ)

]
ηA −

[(γANAδZ + 2NZγZ)

2γANA + 2NZγZ

]
ηZ

Defining the optimal inferred signal iJ∗arb in market J by evaluating equation [27] at the

arbitrageur trade ψ∗J in [36]. Then given the set of signals {i1, i2, ..., iNJ
} in market J, the

equilibrium market price in that market will be the average valuation using the implied

signal iJ∗arb as well:

P ∗J =
1

NJ + 1

(
vJ(iJ∗arb) +

NJ∑
j=1

vj(ij)
)

=
τ
1/2
v (τ 1/2 +NJπ

1/2

τJ

( 1

NJ + 1
iJ∗arb +

NJ

NJ + 1
īJ

)

where: iJ∗arb = iJ +
(NJ + 1) (δJηJ + ψ∗J)

βJNJ

2.8 Trading Speed

Following Kyle, Obizhaeva, Wang (2017) we define the j-trader’s target inventory,φj as the

level of inventory at which the trader would choose not to trade, given by solving for sj such

that x∗j = 0.:

φj =
βJNJ (ij − i−j)
δJ (NJ + 1)

(38)

Doing this such allows us to rewrite the equilibrium trades as:

x∗j = δJ(φj − sj) (39)

Hence δJ can be interpreted as the ”trading speed”, or rate at which the j-traders adjust

their current inventories towards their target levels. Clearly δJ ∈ (0, 1), since δJ > 1 would

mean that the j-trader is overshooting his target inventory level whilst δJ < 0 would imply

that they’re trading away from their targets. δJ = 1 corresponds to the perfect competition

case since the invariance of the price to individual trades allows a trader to trade all the

way to their targets immediately; and δJ = 0 corresponds to the trivial no-trade result.

Approaching the arbitrageurs trading in a similar fashion her target inventories in A and Z

are:

φA = −γANA (τarbδZ (uA − varb) + ρNZγZ (uA − uZ))

δZ (δAτarb + ργANA) + ρδANZγZ

φZ =
NZγZ (δAτarb (varb − uZ) + ργANA (uA − uZ))

δZ (δAτarb + ργANA) + ρδANZγZ

(40)
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Restricting our attention to the no-information case (τarb → 0) simplifies the target inven-

tories to:

φA = −γAnAnZγZ (uA − uZ)

δAnZγZ + γAnAδZ
= φarb and φZ =

γAnAnZγZ (uA − uZ)

δAnZγZ + γAnAδZ
= −φarb (41)

Note that these target inventories are consistent with the no-information presumption’s

implication of zero net exposure in that φA + φZ = 0, which allows us to write φA = φarb

and φZ = −φarb. We can think of φarb as a measure of target depth of investment into the

convergence trade by the arbitrageur. In the arbitrageur’s case φarb can be loosely interpreted

as how deep of an investment into the convergence trade they’d like to make if their trading

did not effect the prevailing prices. When φarb = 0 we can interpret it as the arbitrageur as

wanting to close out of their positions in the markets, something that’ll happen whenever

uA = uZ so there’s no difference in the average non-arbitrageur valuations in either market.

This makes sense since without any disagreement between the markets, engaging in the

convergence trade would return no profits and the arbitrageur would want to correct any

existing imbalances in inventories so to net out her exposure. A variable of interest is how

this depth of target investment changes with the equilibrium trading speeds in each market:

∂δAφarb=
NAN

2
Z (uA − uZ) γAγ

2
Z

(NZγZδA +NAγAδZ) 2
, ∂δZφarb=

N2
ANZ (uA − uZ) γ2AγZ

(NZγZδA +NAγAδZ) 2
(42)

Presuming without any loss in generality that uA < uZ the level of target investment de-

creases in the trading speed in each market. Rewriting the arbitrageur’s optimal trades in

the similar form ψ∗J = dJ(φJ − ηJ) and solving for dJ returns the relatively messy equations:

dA =
(δANZγZ + γANAδZ) (γANA (2ηA +NZγZ (uA − uZ)− (δZ − 2) ηZ) + δAηANZγZ)

2 (γANA +NZγZ) (γANA (NZγZ (uA − uZ) + ηAδZ) + δAηANZγZ)

dZ =
(δANZγZ + γANAδZ) (γANA (NZγZ (uA − uZ)− δZηZ) +NZγZ ((δA − 2) ηA − 2ηZ))

2 (γANA +NZγZ) (γANA (NZγZ (uA − uZ)− δZηZ)− δANZγZηZ)
(43)

The important thing to keep in mind about dA and dZ is that neither is equal to δA or δZ .

2.9 Price Differences

The law of one price would imply that PZ − PA = 0 so naturally we’d be interested if this

price difference increases or decreases with the arbitrageur’s trading, and how the arbitrageur
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would have to trade in order to cause the prices to converge. We first consider the case when

the arbitrageur does not trade in either market nor holds any inventory so in effect this case

corresponds to when there’s no arbitrageur.

Price Difference Without Arbitrageur: P 0
Z − P 0

A = uZ − uA (44)

An interesting result is that the price difference when incorporating the optimal arbitrageur

trades is invariant to whether or not its restricted by the no-information assumption or not.

P ∗Z − P ∗A =
1

2
(uZ − uA) +

1

2

(
δZ

NZγZ
ηZ −

δA
γANA

ηA

)
(45)

When the arbitrageur begins with no initial inventory in either market ηA = ηZ = 0 then

the price difference is halved by the arbitrageur’s trades and the arbitrageur’s trading does

indeed help to bring the prices closer to the law of one price. As for the question of how

the arbitrageur would have to trade in order to cause the prices to converge it’s convenient

to view the trades in the form ψJ = dJ(φJ − ηJ). When the arbitrageur adjusts their

inventories towards their targets at their optimal rates dA and dZ , the price difference is

[45] however were the arbitrageur to trade at the prevailing trading speed in each market

instead, so ψA = δA(φarb − ηA) and ψZ = δZ(−φarb − ηZ) the resulting price difference

would be 0. So if the arbritrageur trades towards her target inventories in each market

at the same rate at which the non-arbitrageur traders do, there will be no price gap, so

its the fact that they do not trade towards their real target inventories at the prevailing

market speeds that keeps the prices from converging due to the arbitrage trade. This is

the result of the arbitrageur exercising her monopolist power over her privileged position.

Though the price difference does crucially rely on the arbitrageur’s initial inventories namely

if δZ
NZγZ

ηZ − δA
NAγA

ηA ≥ uZ −uA then the prices would diverge rather than converge. Without

any loss of generality let’s presume that uZ > uA so that intuitively the arbitrageur trades

would cause a price divergence if her position in the ”overpriced” asset Z is sufficiently more

long than her preexisting position in the ”underpriced” asset A. The degree to which the

initial inventories have to differ is driven by the prevailing trading speeds in each market.

In this one-period model we take the initial inventories as exogenously given, in order to

examine how an arbitrageur would even find themselves in such a position endogenously a
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multi-period model is needed, something we explore next, and then in a simple two period

setup in the proceeding sections.

3 General Multiperiod Model

In this generalization of the single period model structure, at the beginning of each period

the traders observe a noisy signal about the fundamental value and trade on that signal

knowing that there’s some probability that the liquidation value will be revealed at the

end of trading otherwise it’ll be revealed later and they start a new round of trading with

new signals. We assume a T-finite set of liquidation values {v1, v2, ..., vT} where each is

identically independently normally distributed, vt ∼ N [0, τ−1v ]. At the beginning of each

trading round each non-arbitraguer trader observes a noisy signal of the form j ^ ij,t =

τ
1/2
j τ

1/2
v vt + ej,t, where ej,t ∼ N [0, 1]; the error terms in the signals are i.i.d. across the

traders as well as across time. The assumption that the varying liquidation values are

independently distributed is a simplifying assumption which may not need be the case, in a

possible extension in which the liquidation values are correlated the correlation coefficients

between vt and all vt=n, n > 0 would determine the rate of signal decay. Viewed in this light

the independence of liquidation values means that we’re treating the informativeness of the

signals as short lived and decay immediately.

After a liquidation value is revealed the game ends, for each trading round t there

exists some probability pt that the liquidation value vt will be revealed at the end of round t

and the game ends after round t. Conditional on reaching round t the probability of the game

ending after that round is given by qt (so with probability of (1 − qt) the game continues).

So pt = qt
∏t−1

k=1(1 − qk). Having qT = 1 means that the game will end by round T with

certainty since the probability of continuing to round T+1 is zero. These probabilities are

common knowledge. The finites turn-based nature of the generalized model means that it

can be solved through backward induction.

Imagine you found yourself at the start of round T and it’s common knowledge the

liquidation value vT will be revealed at the end of trading, clearly the decision problem being
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faced here is identical to the one in the single period model. Since we’ve already solved the

single period model, we already know the optimal trading strategies employed at time T.

For the arbitrary j-trader define the potential objective function at time t as:

oj,t = vj,t(xj,t + sj,t)− xj,tPJ,t −
t−1∑
n=1

xj,nPJ,n −
ρ

2τJ
(xj,t + sj,t)

2 (46)

Where the period t inventory sj,t is the consequence of their initial inventory and history of

trades sj,t = sj,1 +
∑t−1

n=1 xj,n. At time T the j-trader’s objective function is equal to oj,T ,

rolling back one period to T-1 the j-trader knows that there’s a probability qT−1 that they’ll

receive a payoff according to oj,T and of (1−qT−1) that vT−l will not be revealed and will thus

implement the known optimal single period trading strategy next turn. Not knowing what

the period T signals will be, the j-trader instead takes the expected payoff implementing that

trading strategy, so objj,T−1 = (qT−1)oj,T−1 + (1 − qj,T−1)〈oj,T 〉. More generally the j-trader

trades xj,t at time t in order to maximize:

objj,t = (qt)oj,t + (1− qj,t)〈objj,t+1〉 (47)

As in the single period model the linear trade conjecture is made by the traders, so they

believe that in every turn traders trade according to xj,t = βJ,tij,t − γJ,tPJ,t − δJ,tsj,t ,∀t ∈

{1, 2, ..., T}. Since at the last period T the game reduces to the single period model the

optimal j-traders trades correspond to that in [23] and the coefficients [22].

3.1 Trading Speed Invariance

The transition from a static single period model to that of a dynamic multiperiod model in-

troduces added complexity to the equilibrium trading strategies. For some intuition consider

the case of γJ,t, recall that γJ,t denotes the sensitivity of xj,t to the prevailing price in that

market at that time PJ,t. At time T it’s known with certainty that PJ,T → vT with certainty,

whereas at time t there’s a qt chance that PJ,t → vt otherwise PJ,t → PJ,t+1 and PJ,t+1 is

unknown at time t when the decision on xj,t needs to be made, so it naturally makes sense

that γJ,t 6= γJ,t′ . A similar argument follows with the signal coefficient βJ,t, which results in

the term uJ,t =
βJ,tiJ,t
γJ,t

reflecting a dampened average of the valuations, i.e. the weights on the
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individual valuations sum up to a quantity less than one, this is similar to the price dampen-

ing described in Kyle, Obizheava, Wang (2017) though they described it with a continuous

trading model. In their continuous trading model they limit their problem to linear trading

solutions where the trading coefficients are presumed to be constant; interestingly in our

multiperiod generalization that assumption is not made and the trading trading coefficients

do vary, with the exception of δJ . In other words it turns out that δJ,1 = δJ,2 = .... = δJ,T .

Derivation of Trading Speed Invariance: We begin with the invariance result which

is obtained by evaluating the final round’s objective function with the optimal trades then

taking its expectation and plugging it into equation [47]. Doing the same at time T-1 we get

to the T-1 objective function, and solve for the coefficients by matching with the optimal

trades for time T-1, T-2, and so on. One finds that the trade coefficient for private signals

βJ,T−n is given by:

βJ,T−n =
qT−n
µJ,T−n

βJ,T (48)

And the trading speed can always be written as:

δJ,T−n =
µJ,T−nρ(NJ − 1)βJ,T−n

NJ(ρβJ,T−n + qT−nπ1/2τ
1/2
v ) + qT−nπ1/2τ

1/2
v

(49)

Substituting [48] into [49] the qT−n’s and µJ,T−n’s cancel out and δJ,T−n becomes constant:

δJ,T−n =
ρ(NJ + 1)βJ,T

NJ(ρβJ,T + π1/2τ
1/2
v ) + π1/2τ

1/2
v

=
NJ

(
τ 1/2 − 2π1/2

)
− τ 1/2

NJ (τ 1/2 − π1/2)
= δJ (50)

Where the variable µJ,T−n evolves according to the backward recursion formula:

µJ,T−n = 1 + (1− qT−n)(δJ − 2)δJ(µJ,T−n+1 + (1− qT−n)) (51)

And the price trade coefficient:

γJ,T−n =
τJ

qT−n(τ 1/2 +NJπ1/2)
βJ,T−n

n ∈ {0, 1, ..., T − 1}
(52)

Outline of δ Invariance Proof. Intuitively we solve the last objective function at time

T to get the time T coefficients, we then move from the time T objective to the time T-1
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objective according [47] and solve for the T-1 coefficients. If we presume that xj,T−n−1 =

βJ,T−n−1ij,T−n−1−γJ,T−n−1PJ,T−n−1−δJ,T sJ,T−n−1 =
βJ,T−n−1NJ(ij,T−n−1−i−j,T−n−1)

NJ+1
−sj,T−n−1δJ,T

where sj,T−n−1 = sJ,T−n + xj,T−n maximizes objj,T−n−1, ommitting the algebra, evaluating

objj,T−n = (qT−n)oj,T−n + (1− qT−n)〈objj,T−n−1〉 at xj,T−n−1 and simplifying yields:

objj,T−n =
xj,T−n

2NJγJ,T−nτJ

[
− 2(xj,T−n + δJ,T−nsj,T−n)τJ

+NJ((−1− 2(−1 + qT−n)δJ,T + (−1 + qT−n)δ2J,T )(2ρsj,T−nγJ,T−n + ρxj,T−nγJ,T−n)

−2i−j,T−nβJ,T−nτJ + 2qT−nτ
1/2τ 1/2v γJ,T−nij,T−n) + 2qT−nπ

1/2τ 1/2v N2
JγJ,T−ni−j,T−n

]
+g

(53)

Where g is not effected by xj,T−n and thus has no bearing on the choice of xj,T−n. Solving

by FOC will yield x∗j,T−n and by plugging in −∂PJ,T−n
[x∗j,T−n] for γJ,T−n (by matching with

the LTC) into the delta matching equation δJ,T−n = −∂sj,T−n
[x∗j,T−n] returns:

δJ,T−n =
ρ(NJ − 1)βJ,T−n(−1− 2(−1 + qT−n)δJ,T + (−1 + qT−n)δ2J,T )

NJ(ρβJ,T−n(−1− 2(−1 + qT−n)δJ,T + (−1 + qT−n)δ2J,T )− qT−nπ1/2τ
1/2
v )− qT−nπ1/2τ

1/2
v

(54)

Which corresponds to equation [49] which reduces to [50]. Since this result holds for n = 1

it holds for all values n ∈ {1, ..., T − 1} via induction.

Since δT = δT−1 it would make sense that if δ turned out to be invariant to the set of

operations we executed to get from the time T objective to the time T-1 coefficients then it

should also be invariant when we apply the exact same set of operations to get from the T-1

objective to the T-2 coefficients and indeed when manually working out the algebra that’s

what is found. The attempt to give structure to the evolution of coefficients from one period

to the next results in the equations [48], [49], [50], [51], [52].

4 2-Period Example

So far the arbitrageurs optimal trades in every case thus examined are in the direction of

price correction, she would never willingly make trade in the direction of price divergence.

Even in the multiperiod model if uA,T−1 < uZ,T−1 she may trade to acquire a positive position

in A and a negative position in Z only to have uA,T > uZ,T in this case her inventory effects
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could serve to cause a price divergence though she would trade aggressively to reverse her

positions in A and Z, and the divergent prices serve to help subsidize her aggressive trading.

Depending on the sensitivities of each market (faster markets a less sensitive and hence allow

more aggressive trading) she can decide how much, if at all to shade her trades across time.

For illustrative purposes we consider a simple, specialized case of the multiperiod

model restricted to two periods a short term t = 1 and a long term t = 2 with a perfectly

competitive market in the initially overpriced asset Z: uZ,1 > uA,1, in other words NZ →∞

so δZ → 1 and the arbitrageur’s trades and inventory effects are nonexistent. Meanwhile the

market in the initially underpriced asset A is less than perfectly competitive NA < ∞, so

δA ∈ (0, 1). The case that NJ →∞ implies that δJ → 1 is the result of Kyle Obizhaeva, &

Wang’s (2017) second theorem.

The arbitrageur begins with no initial inventory in either asset ηZ,1 = ηA,1 = 0

and takes on a short position in asset Z, ψZ,1 = −ψ1, that is offset by a long position in A,

ψA,1 = ψ1. There’s a probability p ∈ (0, 1) that the prices will converge in the short term

which will happen when the liquidation value v1 is revealed. If the prices do not converge

in the short term then they’ll converge in the long term, if however the prices in market

Z rise further before the converge takes place then the arbitrageur will incur ”temporary”

losses, these temporary losses effect the arbitrageur subsequent trades through the simple

constraint requiring the arbitrageur to cover any temporary losses through trading in A.

(PZ,2 − PZ,1)(−ψ1)− ψA,2PA,2 ≥ 0 (55)

It should be noted that the no-information assumption is crucial here since the price in

the market with an infinite population is certain to converge to the true value and so the

arbitrageur would simply trade in that direction rather than deal with the offsetting positions

required in a convergence trade. So the prevailing market price in the Z market would seem

to completely random to the arbitrageur.

If the price in Z rises in the second period then the constraint would bind and

ψA,2 =
(PZ,2−PZ,1)

PA,2
(−ψ1), since the price in Z is symmetrically distributed centrally at zero

the probability of the constraint binding is 1/2. Were the constraints not bind the optimal
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trades would be:

ψA2 =
1

2
(nAγA2 (PZ2 − uA2)− ψ1δA2)

ψZ2 =
1

2
(nAγA2 (uA2 − PZ2) + ψ1δA2)

(56)

If the constraint binds the optimal trades would be:

ψA2 =
1

2

(
nAγA2

√
4ψ1 (PZ1 − PZ2)

nAγA2

+

(
ψ1δA2

nAγA2

+ uA2

)
2 − nAγA2uA2 − ψ1δA2

)
ψZ,2 = −ψA,2

(57)

The object of interest is the price gap, so we look at hoe it is effected by changes in the

market speed in A, δA. Taking derivatives of (PZ,2−PA,2) evaluated in the constrained case:

∂δA (PZ2 − PA2) = −1

2
nAψ1γA2

(
uA2√

4nAψ1γA2 (PZ1 − uZ2) + u2A2

+ 1

)
(58)

and in the unconstrained case:

∂δA (PZ2 − PA2) = −nAψ1γA2 (59)

Note that the two derivatives are negative, since δZ = 1 and δA ∈ (0, 1), a rise in the trading

speed in A corresponds to a drop in the difference in trading speeds, in this context δA ↑ ⇔

δZ − δA ↓. When δZ − δA ↑ the price difference PZ,2 − PA,2 ↑ and since
4(PZ,1−PZ,2)

NAγA,2
ψA,1 < 0

∂δA(PZ,2 − PA,2)|constrained < ∂δA(PZ,2 − PA,2)|unconstrained

5 Possible Empirical Tests

Going forward one hopes to empirically test the comparative statics implied by the model

namely that the wider the gap in trading speed between two markets, the lower will be

any arbitrage activity between the two. There are two major issues in taking the model to

the empirical side, the first and most obvious is the question of how one measures trading

speed. If I want to hold 100 shares of xyz and go out and by 20 shares a day for the

next 5 days my δ is equal to 0.2, but note that those trades would be indistinguishable

from the case of someone wanting to hold 200 shares of xyz and by 20 shares a day for

the next 10 days, i.e. δ = 0.1. Since as a researcher all thats available is the trade data
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and not the target inventories it does not seem clear how one would estimate trading speed

from the data. In order to deal with this I would propose using the methodology proposed

Kyle & Obizhaeva’s (2015,2016,2017) recent work concerning their empirical hypothesis of

market microstructure invariance and the application of dimensional analysis. If their market

microstructure invariance hypothesis are assumed then deep lying model characteristics like

the trade of speed are to be proportional to certain transformations of readily accessible

trade data such as volatility, volume, and price. When viewed with one eye on this kind

of analysis the time invariance of trading speed in our model is a great result as it satisfies

their invariance hypothesis.

Having a presumably acceptable empirical methodology for estimating trading

speed from trading data we now need instances where we can test the model’s implication

that mispricings will be higher the greater the difference in trading speeds. This presents a

whole new mess of issues, because one would need to find instances which could be considered

mispricings. For a clean test one would find a set of clear mispricings like those surveyed

in Lamont & Thaler (2003). Using their methodology on equity carve-outs one could first

presumably expand their sample by using more current instances as well and obtain trading

data on the carve-out stock and the stock of the parent company in the time surrounding

the carve-out and measure to what extent the differences in the trading speeds in the two

markets explain the variation in the mispricings.

6 Conclusion

Considering the textbook case of a mispricing where the same asset is being traded at

different prices in different markets. The no arbitrage argument follows that arbitrageurs

will buy in the lower priced market, causing the price to rise, and sell in the higher priced

market, causing the price to fall, the two effects together serve to diminish the mispricing.

In reality we still observe instances of mispricings and are fascinated by them. There are

broadly two ways we try to explain these anomalies, the first is to show that wasn’t an

anomaly at all, though they may look similar if A is exposed to some risk factor that Z is
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not exposed to then the difference in price could just be reflective of that fact, so there’s no

need for the arbitrageur, and so when a mispricing arises it may continue to persist if the

constraints on the arbitrageur are limiting enough. The spirit of this paper runs somewhere

in between the two approaches instead of saying asset A isn’t really the dame as asset Z

we say that differences between the markets discourages arbitrage and in cases where the

arbitrageur is constrained these differences add more bite to the constraints.
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