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Uncertainty is one of the fundamental facts of life. It is as ineradicable from business
decisions as from those in any other field. —Frank H. Knight (1921), Part III, Ch. XII.

1 Introduction

Optimal investment and liquidity planning are central to the practice of corporate finance. Man-

agers exhibit precautionary concerns if in the future they may be deprived of the funds that will

enable them to take advantage of growth opportunities, execute optimal investment, or just stay

alive. Moreover, the difficulty in understanding the factors that affect future profits generate cash

flow uncertainty. Therefore, managers confront uncertainty in the sense of Knight (1921) and are

unable to assign unique probabilities to future outcomes.1 Indeed, according to Knight, profit is a

reward to an entrepreneur for bearing uncertainty.

As the Ellsberg paradox (1961) demonstrates, individuals are averse to uncertainty, preferring

gambles with known probabilities to those with unknown probabilities. Gilboa and Schmeidler

(1989) resolve the Ellsberg paradox by postulating a multiple-priors model. A decision-maker

does not have enough information to form a prior belief; instead, she maintains a set of prior

distributions and believes that any one of them may be the true prior. Furthermore, she is averse

to this ambiguity and evaluates a gamble according to the minimal expected utility over all priors

in the set. Chen and Epstein (2002) extend the multiple-priors model to a dynamic setting using

a recursive approach that is easily implemented via standard dynamic programming techniques.2

The purpose of this paper is to provide a first step towards understanding the impact of

ambiguity-aversion on liquidity management, investment decisions, and belief formation in a dy-

namic setting. To do so, we develop a model of dynamic investment and liquidity management of

firms following Bolton et al. (2013). Our model departs from theirs in two dimensions. First, we

model liquidity constrained firms subject to permanent (growth) shocks and temporary (cash flow)

shocks. As argued by Décamps et al. (2017), firms’ cash flows cannot be described adequately using

either temporary or permanent shocks alone. Production and demand shocks are of a temporary

nature and unlikely to affect long-term prospects. By contrast, long-term cash flows also change

1By contrast, outcomes with known probabilities are termed “risky” rather than “uncertain.”
2They show that an optimal recursive value function is dynamically consistent when the decision-maker’s set of

priors satisfies a rectangularity condition. For a more thorough analysis of the role played by the rectangularity
condition in the recursivity of utility and time-consistency see Epstein and Schneider (2003).
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over time due to industry or macroeconomic shocks of a permanent nature. Second, we incorporate

an ambiguity-averse manager who is unsure about the true distributions of these shocks.3 To model

managers’ ambiguity-aversion, we adopt the Chen and Epstein (2002) framework. This approach

embeds the Gilboa and Schmeidler (1989) max-min approach to ambiguity-aversion in a continuous

time recursive setting. An alternative would be to model the degree of ambiguity aversion using

the smooth ambiguity-aversion approach of Klibanoff et al. (2005) or the multiplier preferences

developed by Anderson, Hansen, and Sargent (2003).4 We find the Chen and Epstein approach

more tractable in our setting.5

Our two-shock environment allows us to draw richer implications in comparison to models using

temporary shocks alone. We model two stochastic processes: the firm’s size and its contempora-

neous profitability. The product of these two processes gives firm’s cash flows. Shocks to firm size

have a permanent effect on a firm’s cash flows, whereas shocks to firm profitability have only a

temporary effect on its cash flows.

A critical feature in our model is that the manager is ambiguity-averse to both shocks, even

though he is risk neutral. He is unsure about the true model (i.e., distribution) generating the

temporary and permanent shocks. Instead, he devises a reference model from his best guess, but

he considers a set of plausible models around the reference model and displays aversion toward this

model uncertainty (i.e., ambiguity).

The timing of the model is as follows: an all-equity firm starts with a given amount of cash and

capital. These state variables fluctuate with the trajectories of shocks and the optimal investment

and financing policies. Once it has sufficient cash reserves, a manager optimally distributes divi-

dends. When it runs out of cash, the firm either gets liquidated or issues new equity, depending on

the cost of external finance. Upon liquidation, the existing shareholders collect the recovery value

of assets net of the deadweight costs of liquidation.

Our main result states that managerial ambiguity-aversion generates endogenous worst-case

3We assume no agency frictions between a firm’s shareholders and its manager; therefore we assume that the
manager and the shareholders are ambiguity-averse and display the same degree of aversion. For models featuring
shareholder-manager conflicts in the presence of permanent and temporary shocks see Hackbarth et al. (2018) and
Gryglewicz et al. (2018).

4See Miao and Ju (2012) for an application of the smooth ambiguity model in asset pricing, Miao and Rivera
(2016) for an application of multiplier preferences in a dynamic principal-agent setting, and Strzalecki (2011) for
axiomatic foundations of multiplier preferences.

5See Epstein and Schneider (2010) for applications of the recursive max-min model in asset pricing and macroe-
conomics.
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time-varying beliefs that overweight recent realizations. In other words, the manager in our model

behaves “as if” he displays extrapolation bias. The intuition is simple: when the marginal value

of liquidity is high, the manager is effectively more pessimistic about cash flow (temporary) shocks

and less concerned about growth (permanent) shocks. The manager’s marginal value of liquidity

grows after the firm experiences a series of negative cash flow shocks. As a consequence, the

manager becomes relatively more averse to model uncertainty with respect to the firm’s future

cash flows than to the long-term growth prospects. By contrast, when the firm starts to generate

positive cash flows and accumulates enough cash reserves, the threat of liquidation becomes less

of a concern; therefore, the marginal value of liquidity decreases. Hence, the ambiguity-averse

manager becomes less concerned (i.e., more optimistic) about future cash flows. That is, the

ambiguity-averse manager behaves as if he overweights recent cash flow realizations when forming

his expectations about the future. To this extent, we argue that the interaction between a manager’s

optimal allocation of worst-case beliefs and financial frictions provides a microeconomic foundation

of managerial extrapolation bias.6

It is fair to compare our model with an alternative formulation with exogenous extrapolation

bias. One can ask how our model differs from one with directly hard-wired extrapolation bias. In

particular, one could consider a model in which the manager forms his expectation by imposing

relatively higher weights on more recent observations.7 However, to the best of our knowledge,

our model is simpler than models with exogenous extrapolation bias, which require modeling an

explicit learning process. More importantly, our model provides a microeconomic foundation of

such bias. In our model, extrapolation bias arises endogenously from the manager’s optimization

problem when he faces model uncertainty about the distribution of the firm’s shocks.

There are a number of additional results. First, managers’ ambiguity-aversion toward perma-

nent and temporary shocks have different implications for firms’ cash policies. When an ambiguity-

averse manager faces a higher level of uncertainty about permanent (temporary) shocks, he opti-

mally reduces (increases) the firm’s payout and refinancing thresholds. Intuitively, higher ambiguity

6Excessive extrapolation has been empirically documented in the portfolio choices of individual investors (e.g.,
Chevalier and Ellison, 1997; Sirri and Tufano, 1998), in the residential housing market (e.g., Shiller, 2005), in
laboratory experiments (e.g., De Bondt, 1993), in the formation of inflation expectations (e.g., Malmendier and
Nagel, 2015), in analysts forecast of future earnings (Hoberg and Phillips, 2010), in corporate investment decisions
(Paaso, 2018), and in investors demand for structured retail products (Shin 2018).

7We conjecture that we could apply “recency biased learning” as in Bansal and Shaliastovich (2010).
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about temporary shocks makes the manager pessimistic about the firm’s ability to generate enough

internal cash flows to avoid liquidation. Thus, it is optimal to delay payout. By contrast, higher

ambiguity about permanent shocks makes the manager pessimistic about the growth rate of the

firm. Hence, less cash is needed to protect a smaller expected future asset base. Importantly, this

asymmetry is unique to the ambiguity-aversion model when compared to the model with only risk.

Because higher volatility of either the temporary or permanent shocks necessarily imply higher

precautionary levels of cash, the firm’s dividend and refinancing thresholds also increase when

volatilities increase.

Second, ambiguity always reduces the firm’s investment rate in the absence of financial frictions.

However, in the presence of financial frictions, ambiguity can increase investment for low levels of

cash reserves and decrease investment for high levels of cash reserves. Optimal investment trades off

the benefit of investment versus the cost of liquidity. Ambiguity reduces the benefit of investment,

but it can reduce the cost of liquidity. For high levels of cash, the first effect dominates, reducing

investment. However, for low levels of cash the second effect dominates, increasing investment.

Critically, we show that the effect of ambiguity on investment depends on whether the outside

investors purchasing the firm after liquidation are ambiguity-averse or not.

Finally, we compute the ambiguity premia generated by the model. In particular, we compute

the excess return an ambiguity-neutral investor would expect from holding the firm’s stock. We

find that the ambiguity premia associated with temporary shocks is increasing in the firm’s level of

financial distress. Surprisingly, the ambiguity premia associated with permanent shocks is hump-

shaped in the level of financial distress. Thus, our model provides a resolution for the distress risk

puzzle documented by Campbell, Hilscher, and Szilagyi (2008), stating that financially distressed

firms have low expected returns. Moreover, according to the model, the distress risk puzzle should

be concentrated in firms with high ambiguity about permanent shocks and for whom liquidation

is particularly inefficient. We argue this is consistent with evidence that the distress risk puzzle is

stronger for firms with larger asset bases, low R&D spending, and high industry sales concentration

as documented by Garlappi and Yang (2011).

Our paper is related to a fast growing literature on dynamic corporate finance with liquidity

frictions.8 These recent advances in dynamic investment models enrich our understanding of how

8See Moreno-Bromberg and Rochet (2018) for a recent survey.
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external financial frictions influence firms’ optimal investment. Bolton et al. (2011) show that the

endogenous marginal value of liquidity plays a vital role in determining optimal investment and

liquidity. Décamps et al. (2017) show that a model with both permanent and temporary shocks

delivers a more realistic behavior in terms of payout, financing, and cash flow to cash sensitivity.

Our paper is the first to consider not only risk, but also ambiguity with respect to these shocks.

Our paper also adds to the recent literature on applications of ambiguity-aversion in corpo-

rate finance settings. In the model of Dicks and Fulghieri (2015), ambiguity-aversion leads to

endogenous disagreement between firm insiders and external shareholders, thus creating a motive

for governance. Furthermore, ambiguity-aversion generates strategic complementarities between

investments in innovative projects, rationalizing innovation and merger waves (Dicks and Fulghieri,

2016). Lee (2015) derives the optimal capital structure of a firm when its manager is ambiguity-

averse. His model predicts lower leverage than traditional trade-off models based on risk alone.

Breuer et al. (2017) develop a static model in which investors are ambiguity-averse with respect

to the value of future investments. Consistent with our results, firms do not want to reserve cash

to finance future investments because the ambiguity-averse investors place excessive weight on the

pessimistic distribution over future investment values. Malenko and Tsoy (2018) study optimal

security design under ambiguity-aversion and find that standard outside equity and standard risky

debt arise as equilibrium securities. Finally, Garlappi et al. (2012) address the effect of ambigu-

ity on real investment with expansion and contraction options. In particular, they show that an

ambiguity-averse manager is reluctant to invest but also reluctant to abandon projects (escalating

commitment). Moreover, the anticipation of future reluctance to abandon may induce ambiguity-

averse agents to forego investment in the first place.9 Our model, enriches this literature by studying

the implications of ambiguity-aversion on dynamic liquidity management and investment.

The rest of the paper is organized as follows. Section 2 describes the basic setup of the model,

the belief distortions, and the optimization problem. Section 3 solves the model. Section 4 analyzes

the model and describes the paper’s results. Section 5 concludes. All proofs are in the Appendix.

9Their results, albeit intriguing, hinge particularly on the use of Consensus Expected Utility (CEU) pioneered by
Bewley (2002). This is an alternative preference framework based on multiple priors. The CEU choices are evaluated
via a unanimity criterion under which one gamble is preferred to another if its expected value is higher under all
priors within the set of priors.
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2 The Model

2.1 The baseline model without model uncertainty

The baseline model builds on Bolton et al. (2011). Distinct from their model, we assume that firms’

cash flows are exposed to both temporary and permanent shocks, as in Décamps et al. (2017) and

Gryglewicz et al. (2018).

Consider a firm that generates a continuous stream of cash flows subject to temporary and

permanent shocks. First, we assume that there is no agency frictions between the manager and

the existing shareholders of the firm. That is, the manager makes decisions (i.e., chooses dividend,

financing, and default policies) to maximize shareholder value. The absence of agency frictions

implies that when shareholders are ambiguity-averse, the manager will exhibit the same preferences.

We also assume that firms cannot access the bond market. Hence, shareholder value coincide with

firm value. Therefore, “value” functions refer to the firm value function when the manager takes

optimal actions to maximize expected discounted cash flows to the shareholders.

The manager is risk neutral and discounts future cash flows at the constant rate r > 0. The

permanent and temporary shocks determining the firm’s future cash flows are modeled via a two

dimensional P-Brownian processes Wt = (WP
t ,W

T
t ). The process (Wt) is defined on the standard

probability space (Ω, F,P) where P is the reference probability measure on the space. The standard

filtration {Ft} generated by σ(Ws : s ≤ t) satisfies the usual conditions.

Let firm size at time t be given by δt which evolves according to the controlled geometric

brownian process:

dδt = δt
[
(µ+ it) dt+ σδdW

P
t

]
, (1)

where µ is baseline growth rate net of depreciation, σδ > 0 is the volatility of firm growth, and it is

the firm’s investment rate per unit of capital. In other words, the expected instant growth rate of

firm’s size depends on a constant drift µ and its (optimal) choice of investment. The shock process

WP
t represents permanent shocks to the firm’s cash flows (justified later).

We assume that the firm’s cumulative cash flows Yt follows

dYt = δt · [(α− g(it)) dt+ σY dW
T
t ], (2)
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where α and σY ∈ R+. In particular, g(it) represents the sum of the symmetric purchase/resale

price of capital and the convex adjustment cost of capital. Henceforth, for tractability reasons we

assume that g(i) = i + θi2

2 , where θ captures the adjustment cost of capital. We also assume the

permanent shock WP
t in (1) is orthogonal to the shock W T

t that represents the temporary shock

to firms’ cash flows. Finally, we highlight the firm’s cash flow in period t is proportional to its size

at time t. Given this specification, the permanent shock WP
t to the firm’s size δt implies that an

increase (decrease) in firm size raises (reduces) the expected value of the entire stream of future

cash flows.

It is immediate that in the absence of short-term shocks (i.e., σY = 0) firms’ cash flows are

always positive because firm size follows a geometric Brownian motion. Firms may have negative

cash flows due to the short term shock W T , which have to be covered either using cash reserves

or raising external equity. Specifically, we allow firms to retain earnings and denote by Mt the

firms’ cash holding at time t. We assume cash reserves earn a constant interest rate r − λ. The

constant λ ∈ (0, r] denotes the carry cost of retained cash. The parameter λ captures agency costs

associated with the free cash flow problem (Jensen, 1986).

We also allow a firm to increase its cash reserves by issuing new equity in the capital markets.

Following Décamps et al. (2017), we assume that when firms issue an amount of new equity et at

time t, the existing shareholders get et/ρ1 − ρ0δt, where ρ1 > 1 represents a proportional cost and

ρ0δt a fixed cost associated with the new equity issuance. For tractability, we model the fixed cost

as being proportional to firm’s size δt. The insights of our main results, however, do not rely on

this assumption.

Finally, the firm’s cash reserve process Mt follows

dMt = (r − λ)Mtdt+ dYt +
dEt
ρ1
− dΦt − dLt, (3)

where Lt is the cumulative dividend paid out to shareholders, Et is the cumulative equity issuances,

and Φt is the cumulative fixed cost of external financing. In other words, equation (3) states that the

change in cash reserves is the sum of the net interest earned on a firm’s cash holdings, its earnings,

and the outside financing, less than the costs of the gross investment, and external financing,

and the dividends paid out to existing shareholders. The gross cumulative financing Et and the
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cumulative cost of financing Φt are given by

Φt =
∞∑
n=1

ρ0δτn1τn≤t and Et =
∞∑
n=1

en1τn≤t. (4)

Here (τn)∞n=1 represents an increasing sequence of the stopping times at which a firm issues new eq-

uity and (en)∞n=1 a sequence of nonnegative random variables that represents the financing amounts.

A firm is liquidated if it is too costly to raise outside funds to cover its cash-reserve deficit. Let

the (stopping) time of liquidation be τ0 = inf{t ≥ 0|Mt = 0}. Upon liquidation, the shareholders

receive ωV A(δτ0) where (1 − ω) is a proportional deadweight cost due to liquidation and V A(δτ0)

the firm value without financial frictions. As usual, τ0 =∞ entails that liquidation does not occur.

2.2 Manager’s belief distortions

In the baseline model, a manager is sure about the true model generating cash flows, in the sense

he is certain the model is uniquely determined by (1) and (2).

The critical departure from the baseline model is, however, that the manager is unsure about

the true model. Instead, he takes the baseline model ((1) and (2)) as the reference and considers

a set of plausible models near the reference model. Moreover, he displays aversion to this model

uncertainty (i.e., ambiguity-aversion).

To model managerial ambiguity-aversion, we use the recursive multiple prior model proposed

by Chen and Epstein (2002).10 Formally, the manager obtains the set of plausible models by

multiplying probabilities associated with (1) and (2) with a likelihood ratio. Following Chen and

Epstein (2002) and Hansen et al. (2006), we represent the likelihood ratio by a martingale zh (i.e.,

a density generator), which satisfies

dzht = −zht
(
hPt dW

P
t + hTt dW

T
t

)
and zh0 = 1, (5)

where the process (hPt , h
T
t ) is progressively measurable with respect to the standard filtration. We

adopt the common assumption that zht is null when
∫ t
0 |hs|

2ds is infinite. Assume the standard

10Roughly speaking, their model is the dynamic generalization of the max-min preference developed by Gilboa
and Schmeidler (1989) when one allows ambiguity about the drift of the diffusion processes. For a model featuring
ambiguity about the volatility of the diffusion processes see Epstein and Ji (2013, 2014).
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Novikov condition is satisfied:

E

[
exp

(
1

2

∫ T

0
|hs|2ds

)]
<∞; 0 ≤ T <∞.

Imposing the initial condition zh0 = 1, we express the solution of the stochastic differential equation

(5) as the stochastic exponential

zht = exp

{
1

2

∫ t

0
|hs|2ds−

∫ t

0

(
hPs dW

P
s + hTs dW

T
s

)}
, 0 ≤ t ≤ T.

As specified, the process (zht ) is a P-martingale.

The density h generates a probability measure Qh on (Ω, F ) that is equivalent to the reference

measure P such that

Qh(A) = E
[
1Az

h
t

]
≡
∫

1Az
hdP, for all A ∈ F (6)

In other words, any probability measure Qh and the reference P should agree on the set of zero-

probability events. Because EQ[zhT ] = zθ0 = 1 and zht > 0 for all t, the Radon-Nykodym theorem

ensures a choice of (ht) generates a (conditional) probability Qh on (Ω,F),

dQh

dP

∣∣∣∣
Ft

= zht . (7)

Note that h = 0 represents the case where the manager faces no model uncertainty about the

model, that is, he is absolutely sure about the reference P.

Finally, to construct the set of priors that the manager thinks plausible, it is necessary to specify

the set of density generators. Following Chen and Epstein (2001), we assume that the set of priors

satisfy IID-Ambiguity.11 Define the set H such that

H =

{
(ht) : sup

{∣∣∣∣hPtκP
∣∣∣∣γ +

∣∣∣∣hTtκT
∣∣∣∣γ : 0 ≤ t ≤ T

}
≤ 1

}
. (8)

For a given H, we construct the set of priors PH such that

PH =
{
Qh : h ∈ H and Qh is defined by (7)

}
. (9)

11See the details in Section 3.4 of Chen and Epstein (2001).
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By Girsanov’s theorem (Karatzas and Shreve, 1991), we generate a standard two dimensional Qh-

Brownian motion, Ŵ = (ŴP
t , Ŵ

T
t ):

ŴP
t

Ŵ T
t

 =

WP
t

W T
t

−
∫ t0 hPs ds∫ t

0 h
T
s ds

 . (10)

In light of (10), we can write models (1) and (2) as:

dδt = δt

[(
µ+ it + σδh

P
t

)
dt+ σδŴ

P
t

]
, (11)

and

dYt = δt · [
(
α− g(it) + σY h

T
t

)
dt+ σY dŴ

T
t ]. (12)

That is, a manager concerned about model uncertainty considers multiple models for the dynamics

of firm size and cumulative cash flows (11) and (12). A given density generator (hPt , h
T
t ) ∈ H

indexes a particular model among such candidates.

2.3 Discussions on the set H

!

−#$ #$

#%

−#%

Figure 2.1: `2-norm (γ = 2)

From the definition of the set H in (8), the parameters κP and κT capture the amount am-
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biguity born by the manager regarding the distribution of the permanent and temporary shocks,

respectively. As κP (κT ) increases, the manager considers a larger set of plausible models driving

the the permanent (temporary) shock process. In other words, increases in κTt and κPt make the

manager less confident about the reference model.

For tractability, we restrict ourselves to the `2-norm by setting γ = 2. Thus, from (8), the

boundary of set H given by

∂H =

{
(hPt , h

T
t ) :

∣∣∣∣hPtκP
∣∣∣∣2 +

∣∣∣∣hTtκT
∣∣∣∣2 = 1

}
(13)

is an ellipsoid, as illustrated in Figure 2.1. Therefore, the set H consists of all points inside the

boundary ∂H (i.e., inside the ellipsoid). We choose the `2-norm to preserve a smooth worst-case

beliefs allocation between the temporary and permanent components. Moreover, all points on the

boundary ∂H can be uniquely identified by the angle φ using polar coordinates

∂H :=
{

(hP , hT ) = (−κP cosφ,−κT sinφ) : 0 ≤ φ < 2π
}
,

which simplify our analysis.

2.4 Ambiguity-averse manager’s optimization problem

The two state variables for the manager’s optimization problem are firm size δt and cash reserves

Mt. The ambiguity-averse manager solves

[P0] V (δ,M) = max
τn,en,L,i

min
Qh∈P (H)

EQ
h

[∫ τ0

0
e−rt(dLt − dEt) + e−rτ0ω

(
V A(δτ0) +Mτ0

)]
(14)

subject to (3), (4), (11), and (12).

The first term in (14) represents the net present value of payments to existing shareholders until

liquidation time τ0, net of the claims of new equity-holders on future cash flows. The second term

captures the firm’s discounted liquidation value.

The manager’s ambiguity-aversion is captured by the fact that the expectation

(
min

Qh∈P (H)
EQ

h
[·]
)

is taken with respect to their worst-case beliefs. Again, note that when a manager faces no model

uncertainty, the set P (H) becomes a singleton.
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3 Model Solution

In this section, we first solve the model without managerial ambiguity-aversion or financial frictions.

Next, we characterize the model with ambiguity aversion alone. Finally, we solve the full model

with financial frictions and ambiguity-aversion (i.e., the problem P0).

3.1 The baseline model without ambiguity-aversion and financial frictions

We first consider the model of a manager facing neither financial frictions nor model uncertainty.12

Precisely, the baseline model is obtained by setting ρ0 = ρ1 = 0 (no costs of raising external

financing) and κT = κP = 0 (no model uncertainty) in the complete problem P0. This benchmark

helps us develop a clear understanding of the role played by financial frictions and ambiguity-

aversion.

Proposition 1. The value function when the manager can costlessly raise equity and faces no

model uncertainty is given by V FB(δ) = qFBδ, where the marginal value of capital qFB and the

investment rate iFB solve

qFB =
α− g(iFB)

r − µ− iFB
, and iFB =

qFB − 1

θ
.

where g(i) = i+ θ i2/2.

All proofs are in the Appendix.

Proposition 1 recovers the results in Hayashi (1982). In the absence of financial frictions and

model uncertainty, firm value is linear in the firm’s size δ, rendering the average and marginal value

of capital equal to qFB. Therefore, the optimal investment is proportional to the marginal benefit

of increasing the firm size by one unit, scaled by the adjustment costs.

3.2 The model with ambiguity-aversion but without financial frictions

In this section we characterize the solution to the model when a manager is not constrained by

financing frictions but is ambiguity-averse. To do so, we first assume ρ0 = ρ1 = 0 (i.e., no costs of

raising external), and in order to capture model uncertainty, we set κT > 0 and/or κP > 0 in (8).

12Alternatively, we can think of this baseline as the manager being ambiguity-neutral to any given model uncer-
tainty.
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Recall that equation (8) characterizes the set of density generators that the manager minimizes

over. In particular, since we focus on the case γ = 2, we can parametrize the perimeter of set Ht

using polar coordinates instead of Cartesian ones:

∂Ht :=
{

(hPt , h
T
t ) = (−κP cosφt,−κT sinφt) : 0 ≤ φt ≤ 2π

}
,

Figure 2.1-(a) illustrates how the angle φt indexes an element in the set ∂Ht. Effectively, we can

think of φt as the optimal allocation of “pessimism” between temporary and permanent shocks:

the higher φt, the manager is relatively more pessimistic about the temporary than the permanent

shocks.13

In the Appendix, we show that without loss of generality, minimizing on the boundary ∂Ht is

equivalent to minimizing over the closure of the set Ht. We enhance the tractability of the problem

thanks to this simplification. Denoting the value function for this model by V A(δ), the HJB reduces

to

rV A(δ) = max
i

min
φ∈[0,2π]

{
δ(α− g(i)− σY κT sinφ) + V A

δ (δ)δ(µ+ i− κPσδ cosφ) +
1

2
V A
δδ (δ)σ2δδ

2

}
,

(15)

where the min(·) operator characterizes the manager’s ambiguity-aversion toward model uncertainty

as measured by φt (for fixed κT and κP ).

Proposition 2. When managers raise equity costlessly but face ambiguity-aversion, the value func-

tion is given by V A(δ) = qAδ. The marginal value of capital qA, the investment rate iA, and the

optimal allocation of worst-case beliefs φA jointly solve

rqA = (α− g(iA))− δ · σY · κT · sinφA + qA · (µ+ iA − κP · σδ · cosφA), (16)

iA =
qA − 1

θ
, and φA = arctan

(
1

qA
· σY κT
σδκP

)
. (17)

where arctan ≡ tan−1. The worst-case beliefs are given by (hPA, h
T
A) = (−κP cosφA,−κT sinφA).

Moreover, the investment rate and firm value under ambiguity are lower than the first best bench-

13Recall that φt measures the counter-clockwise angle from the (−κP , 0)-axis.
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mark. That is,

qA < qFB and iA < iFB.

Relative to the baseline model, the ambiguity-averse manager is pessimistic about the firm’s

future cash flows. Naturally, this leads to lower values of capital and optimal investment rates

than in the baseline model. In other words, even in the absence of financial frictions, the model

augmented with ambiguity-aversion induces under-investment.

Remark 1. Proposition 2 is a special case of the full model characterized in Proposition 3. That is,

1/qA is interpretable as the marginal rate of substitution between cash and capital. In the absence

of costly external finance, there is no distinction between internal and external cash. Therefore, the

marginal value of cash should be equal to one, whereas that of capital is the shadow value of capital

qA.

Roughly speaking, equation (17) shows the relative importance of model uncertainty imposed

on permanent versus temporary shocks: higher model uncertainty with respect to the temporary

component κT implies a higher φA, and managers become more pessimistic with respect to the

temporary shocks.14 Moreover, the higher the marginal value of capital qA, the more the investor

becomes concerned about permanent shocks.

Asset Pricing and Ambiguity Premia

Finally, we compute the equity premium implied in the ambiguity benchmark. By a similar analysis

as in Anderson, Hansen and Sargent (2003), we can show that the shareholders ambiguity-aversion

generates a market price of model uncertainty. This market price of model uncertainty can be de-

composed into the permanent component |hPt | and the temporary component |hTt | of the worst-case

density generator given in (17). Both of the these components contribute to the equity premium.

We calculate the excess return an ambiguity neutral agent would expect to get from holding

14Formally, we can compute the derivative of φA with respect to κT and κP . It is straightforward to show that
φA is increasing in κT . In contrast, the derivative of φA with respect to κP is analytically ambiguous. However, our
numerical results show that its sign is negative for a wide range of parameter values.
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the firm’s equity denoted by epA:

EPt

[
dYt + dV A(δt)

V A(δt)
− r
]

︸ ︷︷ ︸
epA

= EPt

[
δt
((
α− g(iA)

)
dt+ σY dW

T
t

)
+ qA

(
δt(µ+ iA)dt+ σδdW

P
t

)
qAδt

− r

]

= σδκP cosφA︸ ︷︷ ︸
epAP

+
σY κT sinφA

qA︸ ︷︷ ︸
epAT

where epAP is the premium due to ambiguity with respect to the permanent shocks and epAT is the

premium due to ambiguity with respect to the temporary shocks. The equity premia in this case

is constant, and is proportional to the degree of ambiguity perceived with respect to each of the

shocks. In the next section we show that financial frictions induce endogenous time variation in

the ambiguity premia, thereby linking equity premia and financial distress.

3.3 The full model with ambiguity-aversion and financial frictions

In this section we use heuristic arguments to solve the full model with managerial ambiguity-aversion

and financial frictions (14).15

Due to fixed costs, managers access equity markets only if they have depleted their cash reserves.

Depending on financing costs, the manager either issues new equity or liquidates the firm. When it

comes to payout decisions, the marginal benefit of an additional dollar of cash reserves is decreasing.

By contrast, the marginal cost of retaining cash is increasing due to the carry cost. Thus, we

conjecture that there exists a size-dependent cash-holding threshold M∗(δ) at which dividends are

optimally paid out.

First, consider the region (0,M∗(δ)) over which it is optimal to retain earnings (dEt = dLt = 0).

Hence the existing shareholders value function satisfies:

rV (δ,M) = max
i

min
φ∈[0,2π]


Vδ(δ,M)δ(µ+ i− σδκP cosφ)

+VM (δ,M)(δ(α− g(i)− σY κT sinφ) + (r − λ)M)

+1
2Vδδ(δ,M)σ2δδ

2 + 1
2VMM (δ,M)σ2Y δ

2

 . (18)

The left hand side corresponds to the required return on investment for the shareholders. The

15We formalize these arguments in Appendix A.
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right hand side corresponds to the shareholders’ expected gain under the worst-case belief in the

no-payout region. The first two terms capture the changes in equity value induced by the change

in firm size and cash reserves. The last two terms capture the effect of volatilities on firm size and

cash reserves on the value function.

Proposition 3. The optimal investment i and allocation of worst-case beliefs φ satisfy

δ · VM (δ,M) · (1 + θ · i(δ,M))︸ ︷︷ ︸
≡g′(i(δ,M))

= Vδ(δ,M) and φ(δ,M) = arctan

(
VM (δ,M)

Vδ(δ,M)
· σY κT
σδκP

)
. (19)

The first equation shows the marginal cost of investment depends on the marginal value of cash

VM (δ,M) due to financial frictions. Because external finance is expensive, financial frictions make

investment costlier than in the frictionless baseline.

The implication of the second condition is critical: when the manager’s marginal rate of sub-

stitution of cash for capital (MRSδ,M = VM/Vδ = dδ/dM) is high, he is more pessimistic toward

temporary cash flows shock. That is, when the marginal value of liquidity is high, the manager is

more concerned about the possibility of inefficient liquidation due to operating losses (i.e., negative

temporary shock realizations). Conversely, when he holds sufficient cash, such that MRSδ,M is rel-

atively low, the manager is more concerned about the long-term prospects of the firm (i.e., about

permanent shocks).

The value function (18) has to be solved subject to the following boundary conditions. At the

payout boundary M∗(δ), the marginal value of cash is equal to 1:

VM (δ,M∗(δ)) = 1. (20)

In addition, the function V requires “smoothness”: twice differentiability. This implies the super

contact condition:

VMM (δ,M∗(δ)) = 0. (21)

Together, these two conditions determine the location of the payout boundary.

Second, let the optimal equity issuance boundary be M̂(δ). At this boundary, the marginal

benefit of an additional unit of cash is equal to the marginal cost of raising external finance. Hence,
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the optimal boundary M̂(δ) must satisfy the first order condition:

VM (δ, M̂(δ)) = ρ1 (22)

Finally, when the cost of raising outside equity is too high, a manager may find it optimal to

liquidate the firm instead. We assume that upon default, the new shareholders are also ambiguity-

averse, but do not face financial frictions:

V (δ, 0) = ωδ

(
α− g(iA)

)
r − µ− iA

≡ ω δ qA, (23)

where the proportional deadweight loss 1− ω captures inefficient liquidation.

Even though there are two state variables in problem (18), we have made assumptions to ensure

the problem is homogeneous of degree one in δ and M . Consequently, the value function can be

re-expressed using the single state variable m = M
δ that represents the scaled cash holdings per

unit of δ:

V (δ,M) = δV

(
1,
M

δ

)
= δF (m), (24)

where F (m) represents the equivalent scaled value function. Using this scaled value function,

we re-write the aforementioned boundary conditions as a standard one-dimensional free boundary

problem, where the scaled cash holdings evolve between the liquidation/refinancing boundary at

m = 0 and the payout boundary m∗.

We now substitute (24) into equations (18) to obtain the scaled value function:

rF (m) = max
i

min
φ∈[0,2π]


(F (m)− F ′(m)m) (µ+ i− σδκP cosφ)

+F ′(m)(α− g(i)− σY κT sinφ+ (r − λ)m)

+1
2F
′′(m)(σ2Y +m2σ2δ )

 . (25)

The FOCs (19) become

i(m) =
F (m)− F ′(m)(m+ 1)

θF ′(m)
, and φ(m) = arctan

(
F ′(m)

F (m)− F ′(m)m
· σY κT
σδκP

)
(26)
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and the worst-case beliefs are given by

hP (m) = −κP cosφ(m), and hT (m) =,−κT sinφ(m). (27)

Corresponding to (20) and (21), the payout boundary m∗ satisfies:

F ′(m∗) = 1, and F ′′(m∗) = 0. (28)

When the firm runs out of cash, the manager chooses between liquidation and equity issuance,

therefore the scaled value function satisfies:

F (0) = max
{

max
m
{F (m)− ρ1(m+ ρ0)} , ωqA

}
. (29)

When issuing new equity is optimal, the optimal amount of (scaled) cash satisfies the first order

condition:

F ′(m̂) = ρ1. (30)

Finally, in the payout region m > m∗, the firm pays out excess cash above the optimal payout

boundary m∗:

F (m) = F (m∗) + (m−m∗) ∀m > m∗. (31)

Asset Pricing and Ambiguity Premia

We proceed in a similar way as in the previous section to calculate the ambiguity premia implied

by the model. The excess return an ambiguity neutral agent would expect to get from holding the

firm’s equity denoted by ep(mt) is given by

EPt

[
dV (δt,Mt)

V (δt,Mt)
− r
]

︸ ︷︷ ︸
ep(mt)

= EPt

[
dF (mt)

F (mt)
− r
]

(32)

=
σδκP cosφ(mt) (F (mt)− F ′(mt)mt)

F (mt)︸ ︷︷ ︸
epP (mt)

+
σY κT sinφ(mt)F

′(mt)

F (mt)
,︸ ︷︷ ︸

epT (mt)
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where epP (mt) is the premium due to ambiguity with respect to the permanent shocks and epT (mt)

is the premium due to ambiguity with respect to the temporary shocks. The equity premium

associated with each source of uncertainty is time varying, and depends on the state variable m.

4 Model Analysis

Following Décamps et al. (2017), we set µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ = 0.25,

σY = 0.12, ω = 0.55, ρ0 = 0.002, and ρ1 = 1.06. We calibrate the adjustment cost parameter

θ = 150, to obtain 2% net investment rate in the first best benchmark (i.e., iFB = 0.02). We vary

the ambiguity-aversion parameters κT ∈ [0, 0.5] and κP ∈ [0, 0.2]. For simplicity, in the following

sections, we assume that firms are not allowed to issue new equity. The firm’s equity issuance will

be extensively discussed in section 4.3.

4.1 Time varying optimal worst-case beliefs and extrapolation bias

We characterize the endogenous time variation in the manager’s optimal worst-case beliefs of per-

manent and temporary shocks. We show that time-varying ambiguity aversion induces the manager

to behave as if he displayed extrapolation bias. When the manager experiences a series of positive

(negative) cash flows, he becomes more optimistic (pessimistic) about the firm’s future cash flows.

That is, the manager forms beliefs about the future by extrapolating from the recent past.

Proposition 3 previews this intuition. Depending on the magnitude of the marginal value of

liquidity, the manager is more concerned by either the temporary or the permanent cash flow model

uncertainty. For example, suppose that a series of negative temporary cash flow shocks depletes the

firm’s cash reserves. As a result, the manager’s marginal value of liquidity increases, and his worst-

case beliefs feature more pessimism toward the distribution of temporary shocks than towards the

permanent shocks.

In order to feature ambiguity with respect to both shocks, we set κP = 0.05 and κT = 0.5. Panel

A and D of Figure (4.1) depict the manager’s optimal worst-case beliefs about the permanent

(hP (m)) and the temporary shocks (hP (m)). We make two important observations from these

figures:

1. Adding costly external equity issuance to the model with managerial ambiguity-aversion
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makes the manager unconditionally more concerned about model uncertainty with respect

to temporary shocks.

2. Throughout the life-time of the firm, the manager’s optimal ambiguity-aversion toward both

shocks is time varying. In particular, as the firm gets close to liquidation (i.e., when the

marginal value of liquidity is high), the manager is particularly concerned about the distri-

bution of the short-term temporary shocks, and exhibits relatively little concern about the

distribution of long-term permanent shocks.

The economic intuition is the following. First, it is costly for the firm to run out of cash, since

raising equity is costly and liquidation is inefficient. Facing low cash reserves, the ambiguity-averse

manager becomes more concerned about model uncertainty with respect to temporary shocks,

because they may trigger liquidation. Importantly, in the baseline model with ambiguity-aversion

but without financial frictions, the manager’s beliefs are time invariant, given that the marginal

value of liquidity is always equal to 1. As a result, our model implies that hP (m) > hPA and

hT (m) < hTA.

Second, as the firm’s financial situation improves (i.e., the cash to capital ratio increases), the

manager is less worried about the threat of liquidation. Hence, his worst-case scenario features

more pessimism about the long-term prospects of the firm (i.e., about permanent shocks). Because

negative temporary cash flow shocks can not trigger immediate liquidation when the firm has

sufficiently large cash reserves, he displays less concern about these shocks. Therefore, hP (m) is

increasing in m, while hT (m) is decreasing in m.

Finally, we explore the sensitivity of the manager’s optimal worst-case allocation to the perma-

nent and temporary shocks. Define the sensitivity of hP (m) to permanent shocks as the change in

dhP (m) induced by a unit change in the permanent shocks dWP . In other words, the sensitivity

measures how much the manager adjusts his optimal worst-case beliefs allocation toward model

uncertainty of the permanent shocks when the firm experiences an impulse to its permanent shocks.

We define the sensitivity of hT (m) in a similar manner.

We turn to investigate the responses of the manager’s optimal allocation of worst-case beliefs

with respect to a unit impulse of temporary and permanent shocks. Using Ito’s formula, we can
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compute the dynamics of hP (m) and hT (m) to obtain:

< d(hP (mt)), dW
P
t >= −dh

P (mt)

dm
mσδdt and < d(hP (mt)), dB

T
t >=

dhP (mt)

dm
σY dt,

< d(hT (mt)), dW
P
t >= −dh

T (mt)

dm
mσδdt and < d(hT (mt)), dB

T
t >=

dhT (mt)

dm
σY dt.

Panels B, C, E, and F in Figure (4.1) depict these quantities. The critical insight from this

analysis is that the sensitivity of hP to permanent (temporary) shocks is positive (negative), while

the sensitivity of hT to permanent (temporary) shocks is negative (positive). Therefore, we claim

that our model generates endogenous extrapolation bias, that overweights recent realizations when

forming beliefs about future shocks. For example, if the manager observes a stream of high cash

flows, he becomes more optimistic about the firm’s future cash flows (but less optimistic about

its long-term growth). On the other hand, if he experiences high growth rates, then the manager

becomes more optimistic about the firm’s growth prospects (but less optimistic about future short-

term cash flows). This result is interpretable as an endogenous link between ambiguity-aversion

and extrapolation bias. Hence, our model provides a microeconomic foundation for managerial

extrapolation bias. We believe that this insight is novel and unexpected, since ambiguity-aversion

and extrapolation bias are typically used to rationalize very different types of behavior.16 We

clarify, however, that we do not claim a general link between ambiguity aversion and extrapolation

bias. The connection is specific to our modeling assumptions.17

4.2 Implications for Cash Policy

In this section we explore the implications of ambiguity-aversion for the cash and dividend policy

of the firm. We show that ambiguity with respect to permanent shocks has the opposite effect on

the firm’s dividend policy than ambiguity with respect to temporary shocks. By contrast, volatility

(or riskiness) of permanent shocks has the same effect on the firm’s dividend policy as volatility of

temporary shocks. Thus our model provides implications that are unique to the ambiguity aversion

16Ambiguity-aversion is concerned with the agent’s desire to protect himself against model mis-specification, while
extrapolation bias captures the agent’s bias of over-emphasizing recent events. Hence, there is no a priori reason to
expect a relation between them.

17We conjecture, however, that this link is present in contexts featuring: i) dynamic ambiguity-aversion with time
varying worst-case beliefs, and ii) higher marginal losses from a negative shock conditional on a previous sequence of
bad shocks.
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Figure 4.1: Belief Distortions hP (m) and hT (m), and sensitivities to permanent and
temporary shocks. Parameter values are µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ = 0.25, σY =
0.12, ω = 0.55, θ = 150, κP = 0.05, κT = 0.5.

model, that a model exclusively featuring risk cannot capture.

Figure (4.2) depicts comparative statics of the firm value F (m) and the payout boundary m̄ with

respect to an increase in the ambiguity of permanent shocks κP , and the volatility of permanent

shocks σδ. Panel A (C) confirms our intuition that higher ambiguity (volatility) reduces firm value.

Higher κP distorts downwards the firm’s growth rate, thus making it less valuable. Similarly, higher

σδ makes it more likely for the firm to run out of cash, thereby triggering inefficient liquidation, and

reducing firm value. However, Panel B (D) shows that higher ambiguity (volatility) with respect

to permanent shocks reduces (increases) the firm’s payout boundary m̄. Increasing κP makes the

manager pessimistic with respect to the growth rate of δ, and thus he thinks it is less likely to run

out of cash per unit of δ. Intuitively, the manager doesn’t see the point of hoarding cash to protect

an asset base that is unlikely to grow large. Therefore, higher κP reduces the precautionary motive

for accumulating cash.18 In contrast, increasing σδ makes the dynamics of m more volatile, making

it more likely for the firm to face inefficient liquidation. In anticipation of this event, the manager

optimally increases his precautionary cash reserves.

18Breuer et al. (2016) obtain a similar result in a static framework. Our constrasting results between temporary
and permanent ambiguity underscore the importance of a dynamic model that allows for a distinction between shocks
that are permanent in nature and those that are only temporary.
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Figure 4.2: Comparative Statics for κP and σδ. Panel A depicts comparative statics of firm
value with respect to κP . Panel B computes comparative statics for the payout boundary with
respect to κP . Panel C depicts comparative statics of firm value with respect to σδ. Panel D
computes comparative statics for the payout boundary with respect to σδ. Parameter values are
µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ = 0.25, σY = 0.12, ω = 0.55, θ = 150, κT = 0.

Figure (4.3) depicts comparative statics of the firm value F (m) and the payout boundary m̄

with respect to an increase in the ambiguity of temporary shocks κT and the volatility of temporary

shocks σY . Panel A (C) confirms the intuition that higher ambiguity (volatility) reduces firm value.

Higher κT distorts downward the firm’s expected cash flows, thus making it less valuable. Similarly,

higher σY makes it more likely for the firm to run out of cash, triggering inefficient liquidation.

Moreover, panels B and D show that m̄ is increasing in both κT and σY . Higher κT makes the

manager pessimistic about future cash flows and the possibility his assets will not generate enough

internal liquidity to withstand adverse cash flow realizations. Thus, he prefers to delay his dividend

payout in order to protect his existing assets and reduce the probability of inefficient liquidation.

Similarly, higher σY increases the volatility of m, thereby rendering optimal for the manager to

increase his precautionary cash reserves.

4.3 Implications for Equity Issuance

In this section we assume shareholders can raise equity in the capital markets in order to replenish

their cash reserves. We study the implications of ambiguity-aversion on the equity issuance decision.

Recall the firm faces both a fixed cost ρ0 and a proportional cost ρ1 when raising fresh equity. Once

the firm runs out of cash, shareholders will increase their cash reserves by a lump-sum m̂, which
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Figure 4.3: Comparative Statics for κT and σY . Panel A depicts comparative statics of firm
value with respect to κT . Panel B computes comparative statics for the payout boundary with
respect to κT . Panel C depicts comparative statics of firm value with respect to σY . Panel D
computes comparative statics for the payout boundary with respect to σY . Parameter values are
µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ = 0.25, σY = 0.12, ω = 0.55, θ = 150, κP = 0.

we refer to as the refinancing target.

Panel A of Figure 4.4 depicts comparative statics of the firm’s value function and their respective

payout boundaries and refinancing targets with respect to the degree of ambiguity towards per-

manent shocks κP . Consistent with the results in the previous section, increasing κP reduces firm

value and encourages the firm to pay dividends earlier. Moreover, the firm raises smaller amounts

of cash, since pessimism about future growth reduces the precautionary incentive to hoard cash

to protect future assets. Panel B confirms that the relationship between κP and m∗ and m̂ is

monotonically decreasing.

Similarly, Panel C depicts comparative statics with respect to the degree of ambiguity towards

temporary shocks κT . Increasing κT reduces firm value and encourages the firm to delay dividend

payments. These results are consistent with our findings when refinancing is not allowed. Further-

more, equity issues are larger, compared to the ambiguity neutral case. Pessimism about cash flow

shocks, means shareholders are concerned about the possibility of negative cash flow realizations

that force the firm to pay for costly equity issues. In anticipation of that shareholders prefer to

raise larger amounts of cash.

In conclusion, this section confirms our findings that ambiguity-aversion with respect to per-

manent and temporary shocks have opposite implications for firm’s cash policy. In particular,
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Figure 4.4: Comparative Statics for κP and κT . Panel A depicts comparative statics of firm
value with respect to κP . Panel B computes comparative statics for the payout boundary m∗ and
the refinancing target m̂ with respect to κP . Panel C depicts comparative statics of firm value
with respect to κT . Panel D computes comparative statics for the payout boundary m∗ and the
refinancing target m̂ with respect to κT . Parameter values are µ = 0.01, r = 0.06, α = 0.17, λ =
0.01, σδ = 0.25, σY = 0.12, ω = 0.55, θ = 150, κT = 0, ρ0 = 0.002, ρ1 = 1.06.

increasing ambiguity with respect to permanent (temporary) shocks reduces (increase) the firm’s

payout boundary m∗ and the firm’s refinancing target m̂. In contrast, increasing the volatility of

either the permanent or temporary shocks increases m∗ and m̂. Thus, empirical studies focusing on

the effect of uncertainty on the firm’s cash policy, need to distinguish changes in volatility versus

changes in uncertainty (ambiguity).

4.4 Implications for Investment

In this section we study the joint effect of ambiguity-aversion and financial frictions in the invest-

ment policy of the firm. Figure (4.5) depicts the firm’s investment policy for our three benchmark

models:

1. The first best investment policy iFB when managers are ambiguity neutral and do not face

financial frictions.

2. The ambiguity benchmark investment policy iA when managers are ambiguity-averse, but do

not face financial frictions.

3. The investment policy i(m) when managers are ambiguity-averse and face financial frictions.
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Figure 4.5: Investment with Ambiguity and Financial Frictions. This figure computes
investment for three benchmarks: first best investment iFB, ambiguity benchmark investment
iA, and investment for the baseline case i(m). Panel A considers parameter configuration κP =
0.05, κT = 0. Panel B considers the parameter configuration κP = 0, κT = 0.5. Remaining
parameter values are µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ = 0.25, σY = 0.12, ω = 0.55, θ = 150.

Panel A of figure (4.5) considers the case in which there is ambiguity only with respect to per-

manent shocks. Investment under ambiguity-aversion is lower than in the first best benchmark, i.e.,

iFB > iA, consistent with Proposition 2. Ambiguity with respect to permanent shocks reduces the

expected growth rate of the firm, thereby reducing the expected benefit of investment. Moreover, if

in addition to ambiguity-aversion, managers also face financial frictions, they will reduce investment

further, i.e., iA > i(m). To gain intuition notice the firm’s investment policy implied by equation

(26) is characterized by two effects: i) investment is increasing in the marginal benefit of a unit of

capital F (m) (benefit of investment effect) and ii) investment is decreasing in the marginal cost of

a unit of cash F ′(m) (cost of liquidity effect). Financial frictions increase the marginal cost of cash

compared to the frictionless benchmark (F ′(m) ≥ 1), thereby reducing investment via the cost of

liquidity effect. Panel B of figure (4.5) consider the complementary case when there is ambiguity

only with respect to temporary shocks. In this case, investment under ambiguity aversion is lower

than the benchmark case due to the reduction in the expected cash flow rate per unit of capital.

The intuition for iA > i(m) carries over from the previous case.

26



scaled cash: m
0 0.2 0.4 0.6 0.8 1

-0.01

-0.005

0

0.005

0.01

0.015

0.02

A. Investment i(m)

scaled cash: m
0 0.2 0.4 0.6 0.8 1

×10
-3

-6

-5

-4

-3

-2

-1

0

1

B. i(m) sensitivity to dB
P

scaled cash: m
0 0.2 0.4 0.6 0.8 1

×10
-3

0

5

10

15

20

C. i(m) sensitivity to dB
P

κ
P = 0

κ
P = 0.025

κ
P = 0.05

scaled cash: m
0 0.2 0.4 0.6 0.8 1

-0.01

-0.005

0

0.005

0.01

0.015

0.02

D. Investment i(m)

scaled cash: m
0 0.2 0.4 0.6 0.8 1

×10
-3

-6

-5

-4

-3

-2

-1

0

1

E. i(m) sensitivity to dB
T

scaled cash: m
0 0.2 0.4 0.6 0.8 1

×10
-3

0

5

10

15

20

F. i(m) sensitivity to dB
T

κ
T = 0

κ
T = 0.25

κ
T = 0.5

Figure 4.6: Comparative Statics for Investment and Sensitivity of Investment to Per-
manent and Temporary Shocks. Panels A, B, and C compute comparative statics with respect
to κP for investment, sensitivity of investment to permanent shocks, and sensitivity of investment
to temporary shocks, respectively. Panels C, D, and E compute comparative statics with respect to
κT for investment, sensitivity of investment to permanent shocks, and sensitivity of investment to
temporary shocks, respectively. Parameter values are µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ =
0.25, σY = 0.12, ω = 0.55, θ = 150.

We now study the effect of increasing the ambiguity-aversion parameters κT and κP on the firm’s

investment policy. Panels A and D of Figure (4.6) depict comparative statics of i(m) with respect

to κP and κT , respectively. Higher κP (κT ) reduces the firm’s expected growth (cash flows), thus

reducing investment via the benefit of investment effect. Importantly, the cost of liquidity effect

is minimal under the current assumption that at bankruptcy F (0) = ωqA. As will see in the next

section, assuming there is no ambiguity after liquidation (i.e, F (0) = ωqFB), will activate the cost

of liquidity effect. Thus, making the comparative statics with respect to κT and κP ambiguous.

Ambiguity also has implications for the sensitivity of investment to temporary and permanent

shocks. We define the sensitivity of investment to permanent (temporary) shocks as the changed in-

duced in investment by increasing the permanent (temporary) shock by one unit. We first compute

the dynamics of the investment rate using Ito’s formula, to obtain

di(mt) =

[
i′(mt)

(
(r − λ− µ− i(mt) + σ2δ )m− g(i(mt)) + α

)
+

1

2
i′′(mt)

(
σ2Y +mtσ

2
δ

)]
dt

+ i′(mt)σY dB
T
t − i′(mt)mσδdB

P
t .
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Now, we formally define the sensitivity of investment to permanent and temporary cash flows as

< di(mt), dB
P
t >= −i′(mt)mσδdt , < di(mt), dB

T
t >= i′(mt)σY dt,

respectively.

Panels B and C of Figure (4.6) depict comparative statics of the sensitivity of investment

to permanent and temporary shocks with respect to κP . First, we note that the sensitivity of

investment to permanent shocks is negative: a permanent shock increases the firm’s size δ, thereby

reducing the cash to asset ratio m. Lower m implies a higher cost of liquidity, implying a lower

investment rate. In contrast, the sensitivity of investment to temporary shocks is positive: a

temporary shock increases the firm’s scaled cash reserves m. Higher m implies a lower cost of

liquidity and a higher investment rate. Second, increasing κT or κP reduces the sensitivity of

investment with respect to both of the shocks. Intuitively, for low values of m the main determinant

of investment is the cost of liquidity effect, while for high values of m the main determinant is the

benefit of investment effect. Ambiguity reduces the benefit of investment, and thus investment

increases less after an improvement in liquidity conditions.

Panels E and F of Figure (4.6) depict comparative statics of the sensitivity of investment to

permanent and temporary shocks with respect to κT . The results and intuition for these results

are similar to the previous case. Finally, we note that in contrast to the cash and dividend policy

of the firm discussed in section 4.2, in which increasing κT and κP had opposing effects on the

firm’s policies, their effects are qualitatively similar with regards to the investment policy. Hence,

our model suggests that empirical work studying the effects of ambiguity on firm behavior should

focus on cash and dividend policy when separating the ambiguity with respect to permanent and

temporary components.

Over-investment due to ambiguity-aversion

We conclude this section highlighting the importance of our boundary condition at liquidation:

F (0) = ωqA. Instead, assume that the scrap value of the firm is not affected by ambiguity. That

is, ambiguity affects the growth and cash flow rates of the firm prior to liquidation, but not after

that: F (0) = ωqFB. Figure (4.7) depicts comparative statics of the investment rate, the scaled firm
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Figure 4.7: Comparative statics for investment with alternative boundary condition.
Panels A, B, and C, compute comparative statics for investment, firm value, and marginal value
of liquidity, with respect to κP . Parameter values are µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ =
0.25, σY = 0.12, ω = 0.55, θ = 150, κT = 0.

value, and the marginal cost of liquidity, with respect to κP . We notice that the effect of increasing

κP on i(m) is no longer monotonic the way it was in Figure (4.6). For low values of cash reserves an

increase in ambiguity can actually increase investment. Recall that the optimal investment policy

trades off the benefit of investment against the cost of liquidity. Panel B confirms our intuition that

the benefit of investment (namely, the scaled firm value) is decreasing in the level of ambiguity.

However, Panel C shows that the cost of liquidity is also decreasing in the level of ambiguity. That

is, when ambiguity is higher, each additional unit of cash is less valuable, since the prospect of

avoiding liquidation is less dire under the assumption that there is no ambiguity after liquidation.

Thus, the benefit of investment effect and the cost of liquidity effect point in opposite directions.

For high values of cash reserves m, the benefit of investment effect dominates, yielding the familiar

negative relationship between ambiguity and investment. However, for low values of m, the cost of

liquidity dominates, and higher ambiguity can lead to over-investment.19

This analysis underscores the importance of the assumptions made at default. In our model,

ambiguity can lead to over-investment only when the future owners of the firm (those purchasing

the firm at default) are less ambiguity-averse then the current owners of the firm. This assumption

is potentially reasonable for small firms whose capital is sold to bigger and more diversified firms.

19Wu, Yang, and Zou (2017) obtained a similar result in a model using multiplier preferences, but did not discuss
the critical role played by the boundary condition at liquidation.
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But it may not be suitable in instances in which the firm is restructured and run by owners with

similar characteristics as the original ones.20

4.5 Asset Pricing Implications

In this section we explore the pricing implications of our model. In particular, we separate the am-

biguity premia generated by the permanent and the temporary components. Recall the expressions

for the equity premium with respect to permanent shocks epP (m) and temporary shocks epT (m)

are given by

epP (mt) =
σδκP cosφ(m) (F (mt)− F ′(mt)mt)

F (mt)
, epT (mt) =

σY κT sinφ(m)F ′(mt)

F (mt)
,

and the total equity premium ep(m) is the sum of these two components:

ep(mt) = epP (mt) + epT (mt).

We recall that our model generates endogenously time-varying equity premium as a function

of the history of cash flows and growth rates of the firm. This history is summarized by our state

variable m. We specify four effects that determine the level of equity premium for a given firm:

1. The cash-flow effect due to the lower expected cash-flow rate induced by ambiguity-aversion

with respect to temporary shocks. That is, the shareholder’s expected cash flow rate per

unit of capital is given by α − σY κT sinφt. Hence, ambiguity-averse investors need to be

compensated for this downward distortion in their expected cash flows.

2. The growth effect due to the lower expected growth rate induced by ambiguity-aversion with

respect to permanent shocks. Shareholder’s expected growth rate is given by µ+i−σδκP cosφ.

Hence, ambiguity-averse investors require compensation for this downward distortion in the

20We note that our results are related to the findings in Miao and Wang (2011); where they show that the optimal
exercise of a real option depends on whether the payoff upon exercise is ambiguous or not. When ambiguity is only
present prior to the option’s exercise, ambiguity accelerates investment. However, when there is ambiguity before and
after the exercise of the option ambiguity can delay investment. Our over-investment result is complementary to their
since our investment technology corresponds to the neoclassical framework of incremental investment in contrast to
the real options framework used in Miao and Wang (2011).
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Figure 4.8: Ambiguity Premia. Panel A depicts ambiguity premia for permanent shocks.
Panel B depicts ambiguity premia for temporary shocks. Panel C depicts total ambiguity premia
for the firm (i.e., the sum of the permanent and temporary components). Parameter values are
µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ = 0.25, σY = 0.12, ω = 0.55, θ = 150, κT = 0.5, κP = 0.05.

growth rate.

3. The inefficient liquidation effect induced by the distortion in the likelihood that the firm will

be liquidated after running out of cash m = 0. Ambiguity-aversion distorts the dynamics

of m, and thus the expected probability of liquidation. Since liquidation is assumed to be

inefficient, ambiguity-averse investors require compensation for this potential loss.

4. The composition effect induced by the fact that financial frictions force companies to hold

cash. Thus, the cash flows accruing to shareholders correspond to the sum of the cash flows

from the firm’s asset plus the interest from the cash reserves. Because the interest in cash is

assumed to be risk-less (and unambiguous), a higher proportion of cash will reduce the firm’s

total equity premium.

Figure (4.8) depicts epP (m) , epT (m), and ep(m) for the case in which the firm faces ambiguity-

aversion with respect to both permanent and temporary shocks, and compares them to their coun-

terpart in the absence of financial frictions (i.e., the ambiguity-aversion baseline model epAP , , epAT ,

and , epA). Panel A shows that epP (m) < epAP . Two forces explain this: First, as discussed in

section 4.1, financial frictions induce more ambiguity with respect to short-term shocks than to

long-term shocks. Therefore, the growth effect induces a lower expected growth rate when the firm

does not have financial frictions. Second, financial frictions induce precautionary cash holdings, thus
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the composition effect reduces the associated equity premia. Moreover, epP (m) is non-monotonic

in the level of cash holdings. Importantly, financially distressed firms with low m and close to liqui-

dation have a low equity premium. To gain intuition, consider an investor who is ambiguity-averse

with respect to the permanent (growth) shocks. Her expected growth rate is distorted downwards,

which implies the ratio of cash to assets is expected to increase. Thus, she perceives liquidation

as a less likely outcome, thereby requiring a smaller compensation for holding this asset. This

inefficient liquidation effect is only significant when the firm is financially distressed (when m is

low). For intermediate levels of m, the growth rate effect makes the investor pessimistic about the

firm’s growth prospects, and she needs to be compensated for it. Finally, for high levels of m the

composition effect kicks in and lowers the equity premia.

Panel B shows that epT (m) is decreasing in m and that the ambiguity premia associated with

temporary shocks at the payout boundary m̄ is lower in the baseline model than in the ambiguity

benchmark (i.e., epT (m̄) < epAT ). Ambiguity aversion distorts downwards the expected cash flows of

the firm. For a firm with low cash reserves this distortion activates the inefficient liquidation effect,

by increasing the perceived probability of liquidation. Thus, the ambiguity premium shoots up as

m gets close to 0. As m grows, inefficient liquidation becomes less of a concern, and instead the

composition effects renders the firm’s expected returns less ambiguous. Because the composition

effect is not present in the ambiguity benchmark epAT (no need to hold cash in the absence of financial

frictions), it is not surprising that epAT > epT (m̄). Panel C depicts the total equity premium, and

it shows that for our particular calibration of the ambiguity-aversion parameters (κT = 0.5 and

κP = 0.05), the temporary effect component dominates, implying a decreasing relationship between

ep(m) and m.

In conclusion, our model implies a different relationship between the cost of financial distress

and the implied ambiguity premia when the investor faces ambiguity with respect to permanent

versus temporary shocks.

Comparative Statics

In Figure (4.9) we compute comparative statics of the firm’s equity premium with respect to the

recovery parameter ω. Lower ω implies the fraction lost at liquidation is greater, implying a higher

cost of financial distress. Panel A considers the case in which investors only face ambiguity with
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Figure 4.9: Ambiguity Premia. Panel A computes comparative statics for ambiguity premia
with respect to κP . Panel B computes comparative statics for ambiguity premia with respect to κT .
Parameter values are µ = 0.01, r = 0.06, α = 0.17, λ = 0.01, σδ = 0.25, σY = 0.12, ω = 0.55, θ = 150.

respect to the permanent shocks (in particular we set κP = 0.2 and κT = 0). Surprisingly, higher

cost of financial distress imply a lower equity premium. Higher cost of financial distress implies

that liquidation is more inefficient, which amplifies the role of the inefficient liquidation effect. This

effect reduces equity premium when the investor is ambiguity-averse with respect to permanent

shocks, because the investor expects δ to grow slowly, and m = M/δ to grow faster; rendering

liquidation less likely.

Panel B considers the case in which investors only face ambiguity with respect to the temporary

shocks (in particular we set κT = 0.5 and κP = 0 ). In contrast to the previous case, higher cost of

financial distress implies a higher equity premium. As the firm gets close to liquidation, investors

become pessimistic about the firm’s future cash flows and expect inefficient liquidation to occur

with a higher probability. Thus, investors require a higher compensation for holding the asset when

the cost of inefficient liquidation is higher (i.e., when the recovery value ω is lower).

Importantly, our model can reconcile the empirical regularity that financially distressed firms

(i.e., firms close to liquidation) command a low equity premium, as documented by Dichev (1998);

Campbell, Hilscher, and Szilagyi (2008); and Hackbarth, Haselmann, and Schoenherr (2015). More-

over, according to our model, such empirical regularity should be concentrated among firms that

face most ambiguity about growth prospects (i.e., high κP and low κT ), and for which liquidation

is very inefficient (i.e., low ω). Garlappi and Yang (2011) show that the distress risk puzzle is

stronger for firms with larger asset bases, low R&D spending, and high industry sales concentra-
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tion. We conjecture that because firms with large asset bases are typically older, have longer track

records of their history of cash flows, and face less ambiguity about short-term shocks (i.e., have

low κT ). Also, firms with high κP are less likely to invest in R&D and more in capital expenditures.

Finally, as argued by Shleifer and Vishny (1992) when a firm’s assets are specific to a particular

industry (proxied by high industry concentration in Garlappi and Yang, 2011), they are subject to

a substantial fire-sale discount in liquidation auctions (i.e., low ω).

In conclusion our model seems broadly consistent with the evidence documented in the empirical

asset pricing literature. However, we have made use of our economic intuition to link ambiguity

with various firm characteristics when relating the implications of our model with existing empirical

findings. Ideally, we would like to directly test the model’s predictions on the data, but the lack

of a universally acceptable way of measuring ambiguity in the data makes this a very challenging

task.21

5 Conclusions

We analyze a situation in which the ambiguity-averse manager of an all-equity financed firm is

unsure about the distribution of the growth and cash flow shocks affecting its firm. In order to

protect himself against this uncertainty, he decides to maximize the firm’s net present value in

the worst-case scenario plausible. We characterize the manager’s beliefs, and the optimal dividend,

equity issuance, and investment policies subject to the constraint of keeping the firm’s cash reserves

positive at all times.

In our setting the manager’s worst-case beliefs are time varying, and depend on the history

of shocks. Importantly, we show that the manager forms beliefs (and therefore acts) “as if” he

displayed extrapolation bias. That is, extrapolation bias and ambiguity aversion are observationally

equivalent from the perspective of an outside observer having access to the firm’s policies and the

manager’s expectations about future performance. Moreover, this extrapolation bias is exhibited

with respect to the two types of shocks the firm is exposed to: permanent (growth) and temporary

(cash flow) shocks.

Furthermore, our continuous time model allows us to draw sharp characterizations of the rel-

21For a recent proposed empirical measure of ambiguity see Izhakian (2015), and for an empirical exploration of
ambiguity on R&D expenditure see Coiculescu, Izhakian, and Ravid (2018).
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evant comparative statics. In particular, we show increasing ambiguity of permanent shocks has

the opposite effect of increasing volatility of permanent shocks on the firm’s dividend and equity

issuance policies. Thus, underscoring the potential of ambiguity-aversion to expand the range of

behavior plausible with purely risky shocks.

Finally, our paper has very different asset pricing implications for the equity premia associated

with permanent and temporary shocks. While equity premia of temporary shocks is increasing in

the degree of financial distress, the equity premia of permanent shocks is hump-shaped in financial

distress. As a result, our paper can rationalize the empirical regularity that financially distressed

firms command low equity premia (i.e., the distress puzzle).

Our results raise several interesting questions for future research. For example, under which

general conditions is there a link between extrapolation bias and ambiguity-aversion? Is there a way

of empirically distinguishing whether agents exhibit an “irrational” extrapolation bias or are they

rationally protecting themselves against unknown unknowns? If shareholders, bondholders, and

managers have varying degrees of ambiguity-aversion, which kind of capital structure and optimal

policies would be optimal? These and other questions are the subject of ongoing research.
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Appendix A

Proof of Proposition 1:

Proof. The HJB equation for the First Best Benchmark is given by

rV FB(δ) = max
i

{
δ(α− g(i)) + V FBδ (δ)δ(µ+ i) +

1

2
V FBδδ (δ,M)σ2

δδ
2

}
.

We conjecture the solution for this problem has the form V FB(δ) = qFBδ, thus

rqFB = max
i

{
(α− g(i)) + qFB(µ+ i)

}
(33)

and the FOC and SOC for i are given by:

qFB − (1 + θiFB) = 0, (34)

−θ ≤ 0.

Equations (33) and (34), plus the transversality condition limt→∞E
[
e−rtδt

]
= 0, yield a unique solution for iFB and

qFB

iFB =
(θ(−θµ2 + 2θµr + 2µ− θr2 − 2r + 2α))1/2 − µθ + rθ

θ
,

qFB = 1− (−θ(−θµ2 + 2θµr + 2µ− θr2 − 2r + 2α))1/2 − µθ + rθ.

A standard verification argument shows the solution to the HJB coincides with the value function for this problem.

Proof of Proposition 2:

The HJB equation for the Ambiguity Benchmark is given by

rV A(δ) = max
i

min
φ∈[0,2π]

{
δ(α− g(i))− δσY κT sinφ+ V Aδ (δ)δ(µ+ i− κPσδ cosφ) +

1

2
V Aδδ (δ,M)σ2

δδ
2

}
.

Substitute into this equation our guess for the form of the solution V A(δ) = qAδ to obtain:

rqA = max
i

min
φ∈[0,2π]

{
(α− g(i))− σY κT sinφ+ qA(µ+ i− κPσδ cosφ)

}
, (35)

where the FOC for i and φ are given by

qA − (1 + θiA) = 0, (36)

σY κT cosφA − qAσδκP sinφA = 0, (37)

respectively, and the SOC are given by

−θ ≤ 0,

−σY κT sinφA − qAσδκP cosφA ≥ 0 if φA ∈ [π,
3

2
π].
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Substituting back the optimizers iA and φA into (35) yields

rqA = (α− g(iA))− σY κT sinφA + qA(µ+ iA − κPσδ cosφA), (38)

which together with (36), (37), and the transversality condition limt→∞E
[
e−rtδt

]
= 0 determine the firm value and

the optimal controls. A standard verification theorem shows the solution to the HJB coincides with the value function

for this problem.

Auxiliary Lemmas for Verification

The following two auxiliary lemmas will be useful in the verification result. First, we show that it is without loss

of generality that the minimization over the density generator h = (hP , hT ) takes place at the boundary of the set

H(.) =
{
y ∈ R2 : | y1

κP
|γ + | y2

κT
|γ ≤ 1

}
Lemma 4. F (m) is a solution to (25) if and only if it is a solution to:

rF (m) = max
i

min
h∈H(.)

 (F (m)− F ′(m)m) (µ+ i+ hP )

+F ′(m)(α− g(i) + hT + (r − λ)m) + 1
2
F ′′(m)(σ2

Y +m2σ2
δ )


Proof. Suppose for a contradiction that a minimizer is achieved at the interior of the set H(.), i.e.,

(hP∗, hT∗) ∈ arg min
h∈H(.)

{(
F (m)− F ′(m)m

)
hP + F ′(m)hT

}
(hP∗, hT∗) ∈ int(H(.)).

A necessary condition for an interior minimizer is that the gradient of the objective function be equal to zero:

(
F (m)− F ′(m)m

)
= 0 and F ′(m) = 0

which contradicts the fact that F ′(m) ≥ 1 for every m.

Second, the following lemma will help us show it is optimal to issue equity only at m = 0.

Lemma 5. If F (m) is a concave increasing function that satisfies

F (0) = max
{

max
m

(F (m)− ρ1(m+ ρ0);ωqA
}
. (39)

then

F (m) ≥ F (m+
i

ρ1
− ρ0)− i (40)

for all m ≥ 0, i ≥ 0.

Proof. Suppose for a contradiction that (40) does not hold. That is, there exist m̃ and ĩ such that

F (m̃) < F (m̃+
ĩ

ρ1
− ρ0)− ĩ. (41)
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However, from (39) it follows that

F (0) ≥ F (m)− ρ1(m+ ρ0) (42)

for every m ≥ 0. Substituting m = m̃+ ĩ
ρ1
− ρ0 into (42) yields

F (0) ≥ F (m̃+
ĩ

ρ1
− ρ0)− ρ1m̃− ĩ (43)

Combining (43) and (41) it obtains that

F (m̃) ≤ F (m̃+
ĩ

ρ1
− ρ0)− ĩ ≤ F (0) + ρ1m̃ (44)

which implies that

F (m̃)− F (0)

m̃
≤ ρ1,

and since F is concave then F ′(m) < ρ1 for m̃ < m. Using a Taylor expansion of F around m̃ implies that there

exist x ≥ m̃ such that

F (m̃+
ĩ

ρ1
− ρ0) = F (m̃) + F (x)︸ ︷︷ ︸

≤ρ1

(
ĩ

ρ1
− ρ0) ≤ F (m̃) + ĩ− ρ1ρ0

which combined with (44) implies that

F (m̃) ≤ F (m̃)− ρ1ρ0

which is a contradiction.

Verification Theorem

We proceed in two steps. Step 1, shows that problem (14) can be re-written as a one-dimensional control

problem. Step 2 shows that the solution to the the variational system (25)-(31) coincides with the solution of the one

dimensional control problem and derives the optimal dividend, issuance, investment policy, and belief distortion. To

avoid confusion, we denote V ∗ and F ∗ the value functions of the stochastic control problems and V and F denote

the solution to variational systems.

Step 1: Fix an admissible density generator h and associated probability measure Qh ∈ PH , and define the

probability measure Q̃h by (
dQh

dQ̃h

)
= Zt = exp

{
−1

2
σ2
At+ σAW

P
t

}
, ∀t ≥ 0, (45)

on (Ω, F ). By Girsanov’s Theorem, (W̃P
t ,W

T
t ) with W̃P

t = −σAt + WP
t is a two dimensional Brownian motion

process under the probability measure Q̃h. We have

Proposition 6. The value function V ∗ of problem (14) satisfies:

V ∗(δ,M) = δF ∗(
M

δ
),
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the function F ∗ is defined on [0,∞) by

F ∗(m) = max
τn,en,L,i

min
h
f(m; τn, en, L, i, h) (46)

with

f(m; τn, en, L, i, h) = EQ̃h
c

[∫ τ0

0

e−rt+
∫ t
0 (µ+is+σδh

P
s )ds( ˜dLt − ˜dEt) + e−rτ0+

∫ τ0
0 (µ+is+σδh

P
s )dsωqFB

]
(47)

and

m0 = m, dmt = (α− g(it) + σY h
T
t +mt(r − λ− µ− it − σδhPt )dt (48)

+
√
σ2
Y + σ2

δm
2
tdW

C
t +

dÊt
ρ1
− dΦ̂t − dL̂t,

where Wm is Brownian motion under Q̃h and

τ0 = inf{t ≥ 0 : mt = 0}, (49)

Φ̂t =
∑
n≥1

ρ01{τn≤t}, (50)

Êt =
∑
n≥1

ên1{τn<t} with ên = enδτn , (51)

L̂t =

∫ t

0

1

δs
dLs. (52)

Proof. Fix an arbitrary policy (τn, en, L, i). Applying Ito’s formula to
(
e−r(t∧τ0)Mt∧τ0

)
and letting t go to ∞ yields

EQh
[∫ τ0

0

e−rt (dLt − dEt)
]

=M0 + EQh
[∫ τ0

0

e−rt
(
−λMt + δt(α− g(it) + σY h

T
t )
)
dt

]
(53)

− EQh
[∫ τ0

0

e−rt
(
ρ1 − 1

ρ1
dEt + dΦt

)]
,

which can be rewritten as

1

δ0
EQh

[∫ τ0

0

e−rt (dLt − dEt)
]

=
M0

δ0
+ EQh

[∫ τ0

0

e−rt
Zt
δt
e
∫ t
0 (µ+is+σδh

P
s )ds

(
−λMt + δt(α− g(it) + σY h

T
t )
)
dt

]
(54)

− EQh
[∫ τ0

0

e−rt
Zt
δt
e
∫ t
0 (µ+is+σδh

P
s )ds

(
ρ1 − 1

ρ1
dEt + dΦt

)]
,

noting that Zt
δt

= 1
δ0
e−

∫ t
0 (µ+is+σδh

P
s )ds. The change in probability (45) yields

1

δ0
EQh

[∫ τ0

0

e−rt (dLt − dEt)
]

=
M0

δ0
+ EQ̃h

[∫ τ0

0

e−rt+
∫ t
0 (µ+is+σδh

P
s )ds

(
−λMt

δt
+ (α− g(it) + σY h

T
t )

)
dt

]
(55)

− EQh
[∫ τ0

0

e−rt+
∫ t
0 (µ+is+σδh

P
s )ds

(
ρ1 − 1

ρ1
dÊt + dΦ̂t

)]
.
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Now apply Ito’s formula to Mt
δt

, to obtain

d

(
Mt

δt

)
=

(
α− g(it) + σY h

T
t +

Mt

δt
(r − λ− µ− it − σδhPt )

)
dt (56)

+ σY dW
T
t −

Mt

δt
σδdW̃P

t +
1

δ

(
dEt
ρ1
− dLt − dΦt

)

or equivalently,

d

(
Mt

δt

)
=

(
α− g(it) + σY h

T
t +

Mt

δt
(r − λ− µ− it − σδhPt )

)
dt (57)

+

√
σ2
Y + σ2

δ

M2
t

δ2
t

dWm
t +

1

δ

(
dEt
ρ1
− dLt − dΦt

)
,

where Wm is a Brownian motion under Q̃h. Finally, we apply Ito’s formula to e−rt+
∫ t
0 (µ+is+σδh

P
s )ds Mt∧τ0

δt∧τ0
and letting

t go to ∞, we obtain:

EQ̃h
[∫ τ0

0

e−rt+
∫ t
0 (µ+is+σδh

P
s )ds

(
dL̂t − dÊt

)]
=

M0

δ0
+ EQ̃h

[∫ τ0

0

e−rt+
∫ t
0 (µ+is+σδh

P
s )ds

[(
−λMt

δt
+ (α− g(it) + σY h

T
t )

)
dt

]]
+EQ̃h

[∫ τ0

0

e−rt+
∫ t
0 (µ+is+σδh

P
s )ds

[
−dΦ̂t −

ρ1 − 1

ρ1
dÊt

]]
. (58)

Combining (58) and (55) and noting that EQ
h [
e−rτ0ωqFBδτ0

]
= δ0E

Q̃h
[
e−rτ0+

∫ τ0
0 (µ+is+σδh

P
s )dsωqFB

]
we obtain

that

EQh
[∫ τ0

0

e−rt (dLt − dEt) + e−rτ0ωqFBδτ0

]
= δ0E

Q̃h
[∫ τ0

0

e−rt+
∫ t
0 (µ+is+σδh

P
s )ds

(
dL̂t − dÊt

)
+ e−rτ0+

∫ τ0
0 (µ+is+σδh

P
s )dsωqFB

]
.

To conclude we maximize over the admissible policies, and minimize over the probability measures and obtain

that the problem

max
τn,en,L,i

min
h
δ0E

Q̃h
[∫ τ0

0

e−rt+
∫ t
0 (µ+is+σδh

P
s )ds

(
dL̂t − dÊt

)
+ e−rτ0+

∫ τ0
0 (µ+is+σδh

P
s )dsωqFB

]

is equivalent to (46)-(52).

Step 2: We show that the value function for the one dimensional control problem F ∗ and the solution to the

variational system F coincide. We prove this verification theorem in two steps. First, we show F is an upper bound

for F ∗. Second, we show that they are equal. The following two lemmas will be useful to accomplish these two steps.

Lemma 7. Suppose there exists a increasing concave twice continuously differentiable solution F (m) to the variational

system (25)-(31). For any admissible policy Γ = (τn, en, L, i), and a belief distortion h∗ = (h
P

t , h
T
t ) given by (27),

then

F (m) ≥ f(m; τn, en, L, i, h
∗) (59)
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Proof. Consider the gain process GΓ,h∗

t∧τ0 defined by

GΓ,h∗

t∧τ0 =

∫ t∧τ0

0

e−rs+
∫ s
0 (µ+iu+σδh

P
u )du

(
dL̂s − dÊs

)
+ 1{t<τ0}e

−rt+
∫ t
0 (µ+iu+σδh

P
u )duF (mt)

+ 1{t≥τ0}e
−rτ0+

∫ τ0
0 (µ+iu+σδh

P
u )duωqFB .

We will show that GΓ,h∗

t∧τ0 is a Q̃h∗ super-martingale. Using Ito’s formula yields

ert−
∫ t
0 (µ+iu+σδh

P
u )dudGΓ,h∗

t∧τ0 =
(
dL̂t − dÊt

)
+ F ′(mt) (α− g(i)− σY κT sinφ+ (r − λ)m) dt

+
1

2
F ′′(mt)

(
σ2
Y +m2

tσ
2
δ

)
dt+ F (mt) (−r + µ+ it − σδκP cosφ) dt+ F (mt)

√
σ2
Y +m2

tσ
2
δdW

m
t

+F ′(mt)(−dL̂t) + 1{t=τk}

(
F

(
mt +

eτk
ρ1
− ρ0

)
− F (mt)

)
taking expectations we obtain that

E
˜Qh∗

t

[
ert−

∫ t
0 (µ+iu+σδh

P
u )dudGΓ,h∗

t∧τ0

]
= E

˜Qh∗
t

[
(1− F ′(mt)dL̂t

]
︸ ︷︷ ︸

≤0

+E
˜Qh∗

t

[
1{t=τk}

(
F

(
mt +

eτk
ρ1
− ρ0

)
− F (mt)− eτk

)]
︸ ︷︷ ︸

≤0

+E
˜Qh∗

t

[
F ′(mt) (α− g(i)− σY κT sinφ+ (r − λ)m) +

1

2
F ′′(mt)

(
σ2
Y +m2

tσ
2
δ

)
dt+ F (mt) (−r + µ+ it − σδκP cosφ)

]
︸ ︷︷ ︸

≤0

dt ≤ 0,

where the first inequality holds from the concavity of F and the fact that F ′(m∗) = 1, the second from Lemma

4, and the third from the IHJB (25) and the choice of h∗. Taking expectations and letting t to ∞ yields:

E
˜Qh∗

0

[
GΓ,h∗
τ0

]
=E

˜Qh∗
0

[∫ τ0

0

e−rs+
∫ s
0 (µ+iu+σδh

P
u )du

(
dL̂s − dÊs

)
+ e−rτ0+

∫ τ0
0 (µ+iu+σδh

P
u )duωqFB

]
=f(m; τn, en, L, i, h

∗) ≤ GΓ,h∗

t∧τ0 = F (mt)

which completes the proof of the lemma.

Lemma 8. For any belief distortion h = (hPt , h
T
t ) and the admissible policy Γ∗ = (τ∗n, e

∗
n, L

∗, i∗) such that the

dynamics of mt are implied by (19), (28), and (30), then

F (m) ≤ f(m; τ∗n, e
∗
n, L

∗, i∗, h) (60)

Proof. Consider the gain process GΓ∗,h
t∧τ0 defined by

44



GΓ∗,h
t∧τ0 =

∫ t∧τ0

0

e−rs+
∫ s
0 (µ+iu+σδh

P
u )du (dLs − dEs) + 1{t<τ0}e

−rt+
∫ t
0 (µ+iu+σδh

P
u )duF (mt)

+ 1{t≥τ0}e
−rτ0+

∫ τ0
0 (µ+iu+σδh

P
u )duωqFB

We will show that GΓ∗,h
t∧τ0 is a Q̃h sub-martingale. Using Ito’s formula yields

ert−
∫ t
0 (µ+iu+σδh

P
u )dudGΓ∗,h

t∧τ0 = (dLt − dEt) + F ′(mt)
(
α− g(it) + hTt + (r − λ)m

)
dt

1

2
F ′′(mt)

(
σ2
Y +m2

tσ
2
δ

)
dt+ F (mt)

(
−r + µ+ it + hPt

)
dt+ F (mt)

√
σ2
Y +m2

tσ
2
δdW

m
t

+F ′(mt)(−dLt) + 1{t=τk}

(
F

(
mt +

eτk
ρ1
− ρ0

)
− F (mt)

)
taking expectations we obtain that

EQ̃h
t

[
ert−

∫ t
0 (µ+iu+σδh

P
u )dudGΓ∗,h

t∧τ0

]
= EQ̃h

t

[
(1− F ′(mt)dL̂t

]
︸ ︷︷ ︸

≥0

+EQ̃h
t

[
1{t=τk}

(
F

(
mt +

eτk
ρ1
− ρ0

)
− F (mt)− eτk

)]
︸ ︷︷ ︸

≥0

+EQ̃h
t

[
F ′(mt)

(
α− g(i) + hTt + (r − λ)m

)
+

1

2
F ′′(mt)

(
σ2
Y +m2

tσ
2
δ

)
dt+ F (mt)

(
−r + µ+ it + hPt

)]
︸ ︷︷ ︸

≥0

dt ≥ 0,

where the first inequality holds from the fact that m is reflected at m∗ and F ′(m∗) = 1, the second from (29),

and the third from the IHJB (25) and the choice of Γ∗. Taking expectations and letting t to ∞ yields:

EQ̃h
0

[
GΓ∗,h
t∧τ0

]
=EQ̃h

0

[∫ τ0

0

e−rs+
∫ s
0 (µ+iu+σδh

P
u )du (dLs − dEs) + e−rτ0+

∫ τ0
0 (µ+iu+σδh

P
u )duωqFB

]
=f(m; τ∗n, e

∗
n, L

∗, i∗, h) ≥ GΓ∗,h
t∧τ0 = F (mt)

which completes the proof of the lemma.

From (59) it follows that for any admissible policy Γ = (τn, en, L, i)

min
h
f(m; τn, en, L, i, h) ≤ f(m; τn, en, L, i, h

∗) ≤ F (m)

Maximizing over Γ = (τn, en, L, i) we get that

max
Γ

min
h
f(m; τn, en, L, i, h) ≤ max

Γ
f(m; τn, en, L, i, h

∗) ≤ F (m)

F ∗(m) ≤ F (m). (61)

From (60) we can minimize over h

F (m) ≤ min
h
f(m; τ∗n, e

∗
n, L

∗, i∗, h) ≤ max
Γ

min
h
f(m; τn, en, L, i, h) (62)
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F (m) ≤ F ∗(m). (63)

Combining (63) and (61) it follows that F (m) coincides with the value function for the one dimensional control

problem F ∗(m).
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