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Abstract
An established view is that the revenue maximizing top tax rate for the US is approximately 73

percent. The revenue maximizing top tax rate is approximately 49 percent in a quantitative human

capital model. The key reason for the lower top tax rate is the presence of two new forces not captured

by the model underlying the established view. These new forces are strengthened by the endogenous

response of top earners’ human capital to a change in the top tax rate.
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1 Introduction

How should the tax rate on top earners be set? An established view is described by Diamond

and Saez (2011) and Piketty and Saez (2013), among others, and is incorporated into the

Mirrlees Review - an important document providing tax policy advice.1

The established view is based on first determining the revenue maximizing top tax rate via

a widely-used formula. The coefficient a in the formula is a simple statistic of the earnings

(or income) distribution for earnings beyond a threshold and ε is the elasticity of aggregate

earnings (or income) beyond a threshold with respect to a change in one minus the top tax

rate. Diamond and Saez (2011) suggest that (a, ε) = (1.5, 0.25) approximate US values and

therefore that the revenue maximizing rate τ ∗ in the US is approximately 73 percent. They

then argue that a revenue maximizing top tax rate will approximate a welfare maximizing top

tax rate under certain conditions.

τ ∗ =
1

1 + a ε
=

1

1 + 1.5× 0.25
.
= 0.73

We analyze the revenue maximizing top tax rate using a dynamic human capital model in

place of the static Mirrlees model that underlies the established view. In the human capital

model, agents with high learning ability are disproportionately top earners and become top

earners largely later in life. These high learning ability agents put more time into skill accumu-

lation than other agents over the lifetime and have strikingly large earnings growth rates over

the working lifetime.

We analyze a tax reform that increases the tax rate on the top 1 percent, holding all other

tax rates and government spending unchanged. Any extra revenue collected in the new steady

state is used to fund a lump-sum transfer to all agents. The human capital model is calibrated

to properties of the US age-earnings distribution and the structure of US marginal tax rates.

The steady state model Laffer curve peaks at a top tax rate equal to 49 percent.

Why does the human capital model have a revenue maximizing top tax rate of 49 percent

when the established view suggests that 73 percent is revenue maximizing? Badel and Huggett

(2017, Theorem 1) derive a generalization of the widely-used tax rate formula. The Badel-

Huggett formula has three elasticities and applies very widely to static models and to steady

states of dynamic models whereas the widely-used formula applies only to some static models.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

In general there are three forces a1ε1, a2ε2 and a3ε3 that determine the top of the Laffer curve.

1See chapter 2 of the Mirrlees Review by Brewer, Saez and Shephard (2010).
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One force is governed by the elasticity ε1 of earnings (income) for all earners that are above

the threshold for the top tax rate to a change in (1− τ) (i.e. one minus the top tax rate). One

new force is governed by ε2 which is the percentage change in all the taxes paid by agents who

are below the threshold to a percentage change in (1 − τ). The other new force is governed

by ε3 which is the percentage change in all the other taxes paid by agents who are above the

threshold to a percentage change in (1 − τ). In the US, consumption expenditures and some

sources of capital income with preferential rates are taxed separately from ordinary income and

constitute these other taxes paid by top earners.2 When the two new elasticities are positive,

then an increase in τ results in a decrease in tax revenue from agents below the threshold and

a decrease in other taxes paid by top earners. Thus, total revenue is maximized when the taxes

collected from top earners, based on the tax base that τ applies to, are still increasing.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1
=

1− 4.508× .040− .120× .739

1 + 1.7× .317
.
= 0.49

We apply the tax rate formula to the human capital model to determine the importance of

the three forces. As indicated above, the new forces are positive in the model and depress the

revenue maximizing top tax rate. The two new forces are quantitatively quite important as the

counterfactual case of ε2 = ε3 = 0 would imply a 65 percent (i.e. τ ∗ = 1−0−0
1+1.7×.317

= .65) revenue

maximizing top rate.

Endogenous skill accumulation is important for the model’s revenue maximizing top tax rate.

To determine this, we consider an observationally-equivalent model where skills do not respond

to a change in the top tax rate but evolve in the same way as in the human capital model

under the benchmark tax system. The revenue maximizing top tax rate is 59 percent in the

exogenous-skill model and is larger because skills of top earners fall when the top tax rate

increases in the human capital model but are unaffected in the exogenous-skill model. This

implies that all three elasticities are smaller in the exogenous-skill model.

What is the mechanism by which the skills of top earners fall? An increase in the top tax

rate decreases the marginal benefits of skill investment that are received later in life without

changing the marginal cost of investment earlier in life. This leads to a fall in skill investment

and a fall in skills later in life. For this logic to hold, top earners must have upward sloping

earnings profiles. The model produces strikingly large earnings growth rates for top lifetime

earners that are below those documented for top US lifetime earners.

In theory, all three elasticities (ε1, ε2, ε3) can be measured in dynamic models by the size of

the shift in the log of the balanced-growth path of aggregate income and tax revenue measures

2The federal tax rate on long-term capital gains and qualified dividends was 15 percent in 2010 for those
with high incomes whereas the top federal tax rate on ordinary income was 35 percent.

3



as a ratio to a permanent change in log(1 − τ) applying to top earners. We construct these

three aggregate US time series and posit a reduced-form regression equation that relates these

measures to an empirical proxy for a permanent change in log(1 − τ). We present regression

evidence showing that the point estimates for (ε1, ε2, ε3) are all positive, consistent with the

implications of the human capital model, although the standard errors on these point estimates

are large.

The paper is organized as follows. Section 2 presents the model framework. Section 3

documents properties of the US age-earnings distribution and US marginal tax rates. Section

4 calibrates the model and analyzes model validity. Section 5 presents the model Laffer curve,

uses the formula to decompose the determinants of the revenue-maximizing rate and presents

regression evidence for the values of the two new elasticities. Section 6 concludes.

Related Literature

The widely-used revenue maximizing top tax rate formula is described in Saez (2001). It was

developed within a specific static model - the Mirrlees model. Brewer et al. (2010), Diamond

and Saez (2011), Piketty and Saez (2013) and others discuss and apply this formula and related

optimal tax formulae. Badel and Huggett (2017) derive a generalization of this formula that

applies very widely to static and dynamic models and to any component of income.

Badel and Huggett (2017), henceforth BH, “bench test” a deterministic version of the model

analyzed in this paper to determine whether their formula accurately predicts the top of the

Laffer curve.3 A model of top earners, to be used to provide quantitative insight into taxing top

earners, needs to (i) address the role of earnings risk in becoming a top earner, (ii) be consistent

with evidence on the low empirical value of the Frisch elasticity and (iii) be consistent with

evidence on the income elasticity with respect to the net-of-tax rate. The model in BH does

none of these, whereas the model in this paper does all of these.

The human capital model we employ adds valued leisure to the model developed by Huggett,

Ventura and Yaron (2011). Heckman, Lochner and Taber (1998a), Erosa and Koreshkova

(2007), Guvenen, Kuruscu and Ozkan (2014), Krueger and Ludwig (2016) and Heathcote,

Storesletten and Violante (2017) analyze income tax progression using human capital models

but do not focus on tax reforms directed at the extreme upper tail. Blandin (2016) analyzes

the elimination of the cap on social security earnings taxation in the US within a human capital

model and finds that this reduces skill accumulation. The economic mechanism underlying his

results is the same as the mechanism that we highlight.

3The formula holds exactly when the inputs are calculated at the top but not when they are calculated away
from the top.
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Guner, Lopez-Daneri and Ventura (2016), Kindermann and Krueger (2017) and Bruggemann

(2017) analyze tax reforms that are directed at the upper tail in models where an agent’s pro-

ductivity or skills are unaffected by a tax reform. The revenue maximizing top tax rate is

aproximately 35 percent on the top 1 percent in Guner et al. (2016) but 77 percent in Kin-

dermann and Krueger (2017).4 One key modeling difference is that Kindermann and Krueger

employ a transient superstar shock that increases productivity by more than a factor of 100 and

that makes the earnings of superstars somewhat unresponsive to the top tax rate. Our paper

differs in that skills are endogenous and top earners become top earners late in life partly by

their own efforts. The endogeneity of skills reduces the revenue maximizing top rate compared

to what would hold in an observationally equivalent exogenous-skill model similar to those used

by these authors. Bruggemann (2017) analyzes a model with entrepreneurial income while using

a superstar calibration strategy. Allowing for entrepreneurs reduces the top 1 percent tax rate

that is welfare maximizing compared to a similar model without self-financing enterpreneurs.

Self financing makes entreprenuerial income responsive to the top tax rate even though skills

are exogenous.

Many papers characterize the optimal wedges between marginal rates of substitution and

transformation in a solution to a planning problem. Optimal wedges are not analyzed in our

paper. Kapicka (2015) and Stantcheva (2017) present results on optimal wedges based on

different assumptions about the observability of human capital or human capital investments

and the type of human capital investment.

2 Framework

An agent maximizes expected utility which is determined by consumption c = (c1, ..., cJ), work

time l = (l1, .., lJ) and learning time decisions s = (s1, ..., sJ).

Problem P1: maxE[
∑J

j=1 β
j−1u(cj, lj + sj)] subject to

cj + kj+1 ≤ ej + kj(1 + r)− Tj(ej, cj, rkj) and kj+1 ≥ 0, ∀j ≥ 1

ej = whjlj for j < Retire and ej = 0 otherwise

hj+1 = H(hj, sj, zj+1, a), 0 ≤ lj + sj ≤ 1 and k1 = 0.

Consumption cj, work time lj and learning time sj decisions at age j are functions of initial

conditions x̂ = (h1, a) ∈ X̂, age j and shock histories zj = (z1, ..., zj). An agent enters the

4This comparison uses the same risk aversion coefficient (log utility) in both models.
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model with initial skill level h1 and an immutable learning ability level a. Shocks zj+1 impact an

agent’s skill level. Shocks are idiosyncratic in that the probabilities of shock histories coincide

with the fraction of agents that receive that history.

An agent faces a budget constraint where period resources equal labor earnings ej, the value

of financial assets kj(1+r) that pay a risk-free return of r less net taxes Tj. These resources are

divided between consumption cj and savings kj+1. Each period an agent divides up one unit of

available time into distinct uses: work time lj and learning time sj. Leisure time is 1− lj − sj.
Earnings ej equal the product of a rental rate w, skill hj and work time lj before an exogenous

retirement age, denoted Retire, and is zero afterwards. Learning time sj and learning ability

a affect future skill through the law of motion hj+1 = H(hj, sj, zj+1, a).

The economy has an overlapping generations structure. The fraction µj of age j agents in

the economy satisfies µj+1 = µj/(1 + n), where n is the population growth rate. There is an

aggregate production function F (K,L) with constant returns by which output is produced from

capital K and labor L. Physical capital depreciates at rate δ.

The variables (K,L,C, T ) are aggregate quantities of capital, labor, consumption and net

taxes per agent. Aggregates are straightforward functions of the decisions of agents, population

fractions (µ1, µ2, ..., µJ) and the distribution ψ of initial conditions. For example, aggregate

capital and labor are the weighted sum of the mean capital and labor within each age group.

K =
J∑
j=1

µj

∫
X̂

E[kj(x̂, z
j)|x̂]dψ and L =

J∑
j=1

µj

∫
X̂

E[hj(x̂, z
j)lj(x̂, z

j)|x̂]dψ

T =
J∑
j=1

µj

∫
X̂

E[Tj(whj(x̂, z
j)lj(x̂, z

j), cj(x̂, z
j), rkj(x̂, z

j)|x̂]dψ

Definition: A steady-state equilibrium consists of decisions (c, l, s, k, h), factor prices (w, r)

and government spending G such that (1) Decisions: (c, l, s, k, h) solve Problem P1, (2) Prices:

w = F2(K,L) and r = F1(K,L) − δ, (3) Government Budget: G = T and (4) Feasibility:

C +K(n+ δ) +G = F (K,L).

This paper analyzes the steady state implications of changing the top tax rate in this model,

while keeping government spending per personG unchanged. Transitional paths between steady

states, that are due to changing the top tax rate, are also computed.
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3 Empirics

Three issues are addressed. How does the US age-earnings distribution move with age? How do

US marginal tax rates vary with a measure of income? What are US values for the coefficients

(a1, a2, a3) that enter the tax rate formula? The answers are used to calibrate the model.

3.1 Age Profiles

Tabulated Social Security Administration (SSA) male earnings data from Guvenen, Ozkan

and Song (2014) and Panel Study of Income Dynamics (PSID) male hours data are used to

describe how earnings and hours move with age. The statistics that we analyze at each age

and year of the data sets are (i) real median earnings, (ii) the 10-50, 90-50 and 99-50 earnings

percentile ratios, (iii) the Pareto statistic at the 99th percentile of earnings and (iv) the mean

fraction of time spent working.5 Time spent working is measured as work hours divided by

total discretionary time (i.e. 14 hours per day times 365 days per year). These data sets are

described in Appendix A.

Figure 1 highlights age profiles. These profiles are determined by regressing each statistic,

measured for each age and year in the data set, on a third-order polynomial in age and a

time dummy variable. The estimated age polynomials are plotted in Figure 1 after adding a

constant term so that the adjusted polynomial passes through US data values at age 45 in

2010.6 Earnings profiles are plotted up to age 55 as SSA earnings data goes up to age 55.

Figure 1 shows that median earnings more than double over the working lifetime and that the

90-50 and the 99-50 earnings percentile ratio both increase over most of the working lifetime.

The 99-50 earnings percentile ratio roughly doubles from more than 4 at age 25 to 9 at age

55, whereas the Pareto statistic decreases with age. These facts imply that earnings dispersion

increases with age above the median and increases quite strongly at the very top.7

5The Pareto statistic is ȳ
ȳ−y , where y is a threshold and ȳ is mean earnings for all observations above this

threshold. The Pareto statistic is analyzed because it enters the tax rate formula and, thus, disciplines the
model in a theoretically relevant way.

6This holds for all the statistics except median earnings, which is scaled to equal 1 at age 25. The profile for
the average fraction of time spent working is based on estimating age and time dummy variables rather than
time dummies and an age polynomial.

7Appendix B examines the robustness of the profiles in Figure 1 to controlling for cohort effects.
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3.2 Tax Function

TAXSIM is used to characterize marginal tax rates in 2010.8 Based on earnings for one earner

in thousand dollar increments, TAXSIM calculates total taxes, which include federal and state

income taxes and the employee and employer parts of all social security and medicare taxes,

for a couple filing jointly living in a specific state. A marginal tax rate is computed as the

change in total taxes divided by the change in total earnings, where total earnings also include

the employer component of social security and medicare taxes.

Figure 2 displays the relationship between this income measure and marginal tax rates when

averaged across states.9 The marginal tax rate schedule tends to increase with income. It jumps

at thresholds where federal income tax brackets increase and it falls where some tax rates no

longer apply (e.g. the cap on social security taxes). The schedule is somewhat flat for a range

of income beyond 300 thousand dollars.

The model marginal tax rate function is constructed by passing a piecewise-linear function

through the empirical schedule. The last point in this approximation is set to τ = 0.422 which

is the marginal rate evaluated at the 99th percentile of income in the US in 2010. The 99th

percentile of income is calculated in Table 1 in section 3.3. The tax function, labeled T prog(e; τ),

is constructed by integrating the model marginal tax rate function.

3.3 Tax Formula Coefficients

The coefficients (a1, a2, a3) that enter the tax rate formula are calculated using US data. This

involves first decomposing an empirical measure Tax of aggregate taxes into the components

stated below, where (i) N1Tax1 + N1Tax3 are taxes paid by tax units with income beyond

a threshold y, (ii) N2Tax2 are total taxes paid by tax units below the threshold and (iii) N1

and N2 are the number of tax units above and below the threshold y. The total tax paid by

units beyond y is decomposed into a component N1Tax1 paid on one specific income source

and N1Tax3 which captures all other taxes paid by these top earners.

Tax = N1Tax1 +N1Tax3 +N2Tax2 and N = N1 +N2 = .01N + .99N

a1 =
N1ȳ

N1(ȳ − y)
=

ȳ

ȳ − y
, a2 =

N2Tax2

N1(ȳ − y)
= 99

Tax2

(ȳ − y)
and a3 =

N1Tax3

N1(ȳ − y)
=

Tax3

(ȳ − y)

8TAXSIM is a computer program that encodes the relationship between sources of income and statutory
federal and state income taxes, given household characteristics. See Feenberg and Coutts (1993).

9Averages are calculated using state employment as weights. Source: http://www.bls.gov/lau/rdscnp16.htm
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The coefficients (a1, a2, a3) are simple ratios of income received or taxes paid to a measure

of income above a threshold N1(ȳ − y), where ȳ denotes mean income per tax unit for all tax

units with income beyond y. Table 1 summarizes the results when the threshold is the 99th

percentile of income and the income measure is based on the income categories in Statistics of

Income (SOI) data.10

Table 1 - Tax Formula Coefficients: 2010 US Data

Panel (a) Tax = Personal Taxes + Social Insurance Taxes + Taxes on Production
Tax = 1239.3 + 844.0 + 1057.1 = 3140.4 billion dollars
N = 156.167 million tax units
N1 = 0.01×N and N2 = 0.99×N

Panel (b) N1Tax1 +N1Tax3 = (1) + (2) + (3) = 548.44 billion dollars
(1) personal taxes = 453.73
(2) social insurance taxes = 47.24
(3) taxes on production = 47.47
N2Tax2 = Tax− (N1Tax1 +N1Tax3) = 2591.96

Panel (c) N1Tax1 = (1) + (2) - capital income tax = 434.91 billion dollars
N1Tax3 = (3) + capital income tax = 113.52
capital income tax = 66.05

Panel (d) a1 = ȳ
ȳ−y = 1.70, a2 = 99 Tax2

(ȳ−y)
= 3.64 and a3 = Tax3

(ȳ−y)
= 0.16

(y, ȳ) = (319.5, 775.8) and (Tax1, Tax2, Tax3) = (278.5, 16.8, 72.7)
[income and taxes are in thousand dollar units]

Notes: Appendix A describes the data sources and the details of all the calculations in Table 1.

To understand the logic behind these calculations, start with Panel (a) of Table 1. Tax is the

sum of personal taxes, social insurance taxes and taxes on production.11 Personal taxes equal

federal, state and local income taxes. Social insurance taxes equal social security and medicare

taxes. Taxes on production include sales, excise and property taxes.

Panel (b) calculates the part of each aggregate tax measure paid by the top 1 percent based

on SOI data. This involves first calculating y, the 99th percentile of our income measure. The

value N2Tax2 is calculated as a residual based on Tax and the part of these taxes paid by the

top 1 percent.

Panel (c) divides the taxes paid by the top 1 percent into two parts. N1Tax3 equals the sum

of taxes on production paid by the top 1 percent plus a measure of capital income taxes paid

10Our measure is the sum of (i) wages and salaries, (ii) interest, (iii) non-qualified dividends, (iv) business
income, (v) IRA distributions, (vi) pensions and annuities, (vii) total rent and royalty, (viii) partnership and
S-corporation income and (ix) estate and trust income. It excludes qualified dividends and capital gains.

11Our economic model and our empirical analysis abstracts from corporate income taxes.
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by the top 1 percent, whereas N1Tax1 equals personal taxes and social insurance taxes paid by

the top 1 percent less these capital income taxes. The quantity capital income tax equals the

sum of all the qualified dividends and capital gains received by tax units with income beyond y

multiplied by the tax rate τk = 0.20 calculated in section 4 based on federal and state tax rates

in 2010. Capital income taxes are subtracted from personal taxes because, for tax units with

high income, qualified dividends and long-term capital gains are taxed at a 15 percent federal

tax rate as compared to the top federal rate of 35 percent in 2010 on ordinary income. We

do so because the goal is to determine the revenue consequences of increasing the top tax rate

without changing other aspects of the tax system, including the preferential rate on sources of

capital income.

The Pareto statistic a1 = ȳ/(ȳ − y) is 1.70 in Table 1 at the 99th percentile of our income

measure. Diamond and Saez (2010) present evidence that a1 = 1.5 for the US in 2005 for a

range of top income thresholds, including the 99th percentile, based on using adjusted gross

income (AGI) as an income measure. AGI includes capital gains and qualified dividends that are

taxed at preferential rates. Our income measure excludes capital gains and qualified dividends.

If one wants to determine the top tax rate on ordinary income that is revenue maximizing,

holding other tax rates fixed, then a1 needs to be calculated excluding income sources taxed at

preferential rates.

4 Model Calibration and Validation

We calibrate the model and then analyze its validity.

4.1 Calibration

The functional forms for the utility function u, production function F and human capital law

of motion H are widely used in the literature and are stated below. The bivariate distribution

ψ of initial conditions is characterized by 6 parameters. Marginal distributions for learning

ability and initial human capital are both Pareto-Log-Normal (PLN) distributions.12

Benchmark Model Functional Forms:

Utility: u(c, l + s) = log(c)− φ (l+s)(1+
1
ν )

1+ 1
ν

Production: Y = F (K,L) = AKγL1−γ

12Initial human capital, thus, has a Pareto tail. Appendix B presents basic properties of PLN distributions.
The random variable ε used in the construction is independent of learning ability.
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Human Capital: H(h, s, z, a) = exp(z)[h+ a(hs)α] and z ∼ N(µz, σ
2
z)

Initial Conditions: a ∼ PLN(µa, σ
2
a, λa), log h1 = β0 + β1 log a+ log ε and ε ∼ LN(0, σ2

ε )

Some parameters are set to fixed values without computing equilibria to the model economy.

Parameters governing demographics, technology and the tax system are set in this way. The

parameter governing the standard deviation of human capital shocks is set to an estimate

from Huggett, Ventura and Yaron (HVY) (2011). The remaining parameters are set so that

equilibrium properties of the model best match empirical targets. Appendix B describes the

computation of an equilibrium and the objective that is minimized.

Demographics An agent enters the model at a real-life age of 23, retires at age 65 and lives

up to age 85. These three ages correspond to j = 1, 43 and 63. The population growth rate

n = 0.01 is set to the geometric average growth rate of the U.S. population over the period

1960-2015. Population fractions µj sum to 1 and decline with age by the factor (1 + n).

Technology US national accounts data imply that capital’s share, the investment-output

ratio and capital-output ratio averaged (0.352, 0.174, 3.22) over the period 1960-2015. Set γ

to match capital’s share. Set δ to be consistent with the investment-output ratio and the

capital-output ratio, given n. Normalize A so that the wage is 1 when the model produces the

capital-output ratio measured in the data.

Table 2 - Benchmark Model Parameter Values
Category Functional Forms Parameter Values
Demographics µj+1 = µj/(1 + n) Retire = 43, n = 0.01

j = 1, ..., 63 (ages 23-85)
Technology Y = F (K,L) = AKγL1−γ and δ (A, γ, δ) = (0.878, 0.352, 0.044)
Tax System Tj = T prog(e; τ) + τcc+ τkkr for j < Retire T prog see Figure 2

Tj = τcc+ τkkr − transfer for j ≥ Retire τc = 0.10 and τk = 0.20
transfer = 18115

Preferences u(c, l + s) = log c− φ (l+s)1+
1
ν

1+ 1
ν

φ = 12.4, β = 0.962, ν = 0.614

Human Capital H(h, s, z, a) = exp(z) [h+ a(hs)α] α = 0.543
and z ∼ N(µz, σ

2
z) (µz, σz) = (−0.047, 0.111)

σz follows HVY (2011)
Initial Conditions a ∼ PLN(µa, σ

2
a, λa) and ε ∼ LN(0, σ2

ε ) (µa, σ
2
a, λa) = (0.383, 3.0E − 8, 3.58)

log h1 = β0 + β1 log a+ log ε (β0, β1, σ
2
ε ) = (3.60, 1.01, 0.211)

Note: Demographic, Technology and Tax System parameters and σz are set without solving for equilibrium.
All remaining model parameters are set so that equilibrium values best match targeted moments. Parameters
are typically rounded to display 3 significant digits.
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Tax System Taxes in the model are Tj(ej, cj, kjr) = T prog(ej) + τccj + τkkjr for j < Retire

and Tj(ej, cj, kjr) = τccj + τkkjr− transfer for j ≥ Retire. The function T prog was calculated

in section 3. The consumption tax rate τc = 0.10 is the ratio of taxes on production in 2010

to total consumption expenditures from BEA Table 3.1 and Table 1.1.5. The common social

security transfer equals 18115 dollars. This is the yearly old-age benefit for a worker retiring

in 2010 based on an earnings history equal to average earnings.13

We calculate a marginal tax rate τk on capital as follows. For each state, input long-term

capital gains in thousand dollar increments into TAXSIM for a couple filing jointly with earnings

equal to 160 thousand dollars in 2010. The marginal tax rate equals the change in total taxes

divided by the change in income. The US schedule is the employment-weighted average of the

state marginal rate schedules and is flat beyond 280 thousand dollars of capital gains. Set

τk = 0.20 which is the US marginal rate calculated at this level. The federal marginal rate on

long-term capital gains was 15 percent in 2010.

Preferences The period utility function over consumption is log utility. This choice con-

trols the strength of the income effect of a tax reform. Chetty (2006, p.1830) states “A large

literature on labor supply has found that the uncompensated wage elasticity of labor supply is

not very negative. This observation places a bound on the rate at which the marginal utility

of consumption diminishes, and thus bounds risk aversion in an expected utility model. The

central estimate of the coefficient of relative risk aversion implied by labor supply studies is 1

(log utility) and an upper bound is 2 ... .”

Remaining Parameters All remaining model parameters are set to minimize the sum of

squared differences between model moments and data moments.14 We use the following data

moments as targets: (i) the age profiles documented in Figure 1, (ii) the cross-sectional Pareto

statistic a1 = 1.7 and income threshold calculated in Panel (d) of Table 1, (iii) the US capital-

output ratio K/Y = 3.22 and (iv) the regression coefficient estimated by MaCurdy (1981).

Remaining parameters are those governing (i) initial conditions, (ii) the elasticity of the human

capital production function α and the mean of the human capital shock µz and (iii) the utility

function parameters (β, φ, ν).

The last target mentioned above is based on evidence from the literature on the Frisch

elasticity of labor supply. The regression equation used by MaCurdy (1981) is stated below.

The target value for θ1 is 0.125.15

13See Table 2.A26 in the 2010 Annual Statistical Supplement of the Social Security Bulletin available at
https://www.ssa.gov/policy/docs/statcomps/supplement/2010/2a20-2a28.pdf

14Appendix B5 specifies the objective that is minimized and the minimization procedure.
15This is the average from MaCurdy (1981, Table 1 row 5-6) who uses data for white males age 25-55. Altonji
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∆ log hoursj = θ0 + θ1∆ logwagej + ε

To connect to this evidence, calculate model wages as earnings divided by model hours and es-

timate the coefficients in the linear regression based on agents age 25-55. Appendix B discusses

the results of the estimation of this regression, the instrumental variable methods employed

and reasons why the model regression coefficient is below the model value of ν. Disciplining

the model to match the empirical regression coefficient θ1 would seem to be important. This

evidence is behind the view that labor hours are not very elastically supplied by prime-age

males and has been used to support the view (see Keane (2011) and Saez, Slemrod and Giertz

(2012 p. 3-4)) that a very high top tax rate may be revenue maximizing.

Figure 3 graphs the age profiles in US data and in the model using the model parameters

which best match these targets. The model exactly reproduces (up to three digits) the Pareto

statistic a1 = 1.70, the 99th income threshold, the capital-output ratio K/Y = 3.22. The

regression coefficient is θ1 = 0.125 from US data while it is θ1 = 0.124 in the model. The model

parameters that produce these results are stated in Table 2.

Figure 3 shows that the 99-50 earnings ratio increases with age and that the Pareto statistic

(ȳj/(ȳj − yj) at the 99th percentile of the earnings distribution decreases with age. The model

economy has two forces that can produce these properties: shocks and learning ability differ-

ences. Shocks lead ex-ante identical agents to have different earnings ex-post, whereas learning

ability differences rotate age-earnings profiles. Good learners have steep mean age-earnings

profiles as a result of human capital investment. The standard deviation of shocks σz = 0.111

is set to an estimate from Huggett, Ventura and Yaron (2011), who estimate this parameter

using specific moments of log wage rate changes for older workers in panel data. Given this

estimate, the parameters of the distribution of initial conditions are set to match the earnings

facts. Table 2 shows that learning ability dispersion is needed to match the facts. Thus, the

growing earnings dispersion at the top with age in the data dictates a role for learning ability

differences beyond that due to shocks impacting earnings.

4.2 Validation

We conduct three validation exercises by examining the degree to which the model matches

data properties that were not used to calibrate the model.

(1986) finds similar results. Domeij and Floden (2006, Table 5) estimate θ1 = 0.16 for male household heads
age 25-60 using 1984-94 PSID data. Keane (2011) and Keane and Rogerson (2012) review this literature.
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4.2.1 Short-term Income Elasticities

Evidence on the response of income measures to a change in the net-of-tax rate comes from

the elasticity literature. Saez, Slemrod and Giertz (SSG) (2012) review this literature. They

highlight the panel regression framework as the framework that most convincingly identifies a

short-term income response to a change in the net-of-tax rate arising from a tax reform. The

panel approach regresses the growth in income of tax unit i on the growth of the marginal

net-of-tax rate for unit i, an income control f(z) and time dummies αt.

log

(
zit+1

zit

)
= ε log

(
1− τt+1(zit+1)

1− τt(zit)

)
+ βf(zit) + αt + νit+1

We apply this regression framework to a tax reform in the model and compare model re-

gression results to those from US data. We compute a transition path for the model economy

due to a tax reform in model period 3 that permanently increases the tax rate at the 99th

percentile in Figure 2 from τ = 0.422 to τ = 0.49. Figure 4 plots the transition path arising

from the reform. Aggregate capital and labor input per agent fall by a similar percentage.16

The aggregate labor input falls immediately in the reform year by an adjustment in work time

and adjusts slowly afterwards due to skill change.

We construct 100 randomly-drawn, balanced panels each with 30 thousand agents with earn-

ings in the top 10 percent in model period 1 and follow these agents from period 1 to period

7. This mimics the structure of the US 1991-1997 panel used by SSG (2012, Table 2). The key

point for US data is that in 1993 a tax reform increased the marginal tax rate on the top 1

percent without a substantial tax rate change at lower income levels.

Table 3 - Panel Regression Based on Model Data
(1) (2) (3) (4) (5) (6)

Mean Elasticity ε 0.236 0.214 0.379 0.475 0.379 0.475
S.D. (0.048) (0.089) (0.032) (0.031) (0.032) (0.031)
Income Control f(z) = log z No Yes No Yes No Yes
Time Effects αt No No Yes Yes Yes Yes
Instrument 1: 1{i∈T2} Yes Yes
Instrument 2: 1{i∈T2}1{t=2} Yes Yes

Instrument 3: log( 1−τt+1(zit)
1−τt(zit) ) Yes Yes

Use data for time periods t = 2, 3 t = 2, 3 All All All All

Note: Means and standard deviations of the point estimates of ε are based on 100 randomly drawn balanced
panels. We employ the same instrument definitions and estimation technique (i.e. two-stage-least squares) as
were employed in Saez et al. (2012, Table 2 Panel B2). Instrument 1 is 1{i∈T2}, where T2 is the set of agents in
the top 1 percent at t = 2. Instrument 2 is the interaction of being in the top 1 percent in year 2 and the year
being t = 2. Instrument 3 is the predicted log marginal net-of-tax rate change.

16Along the transition path, any extra tax revenue collected beyond that needed to fund government purchases
is returned as a lump-sum transfer each period.
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Table 3 reports means and standard deviations of the point estimate of the model regression

coefficient ε across the 100 panels. The instruments and income controls used in Table 3 were

employed in SSG (2012, Table 2, Panel B1) who find that point estimates based on US data

vary widely using only two years of data and depend sensitively on controls. For example, using

1992 and 1993, they find that point estimates range from −0.721 to 1.395. SSG (2012, Table 2,

Panel B2) find that, based on using all years of the 1991-1997 data and using income controls,

point estimates range from 0.143 to 0.564 depending on the precise instruments employed.

This is the type of evidence that underlies the view that ε = 0.25 is a relevant US (short term)

estimate to input into the widely-used formula τ ∗ = 1/(1 + aε). Table 3 shows that, using

model data for all seven time periods, the mean of the model point estimates range from a low

of 0.379 to a high of 0.475.17 Broadly, the model regression coefficients are consistent with the

range of estimation results documented by SSG.18

4.2.2 Earnings Growth By Lifetime Earnings Group

We examine the relationship between lifetime earnings for individual males in Social Security

Administration panel data and the growth rate of earnings over the lifetime. Guvenen, Karahan,

Ozkan and Song (2015) divide males into 100 equal-sized bins based on percentiles of lifetime

earnings. Figure 5 plots the ratio of mean real bin earnings at age 55 to mean real bin earnings

at age 25 and at age 30. Mean earnings grow dramatically over the working lifetime for the top

several bins of lifetime earnings. For example, real earnings increase in the top bin by a factor

of 15 between age 25 and 55 and by a factor of 7 between age 30 and 55.

Figure 5 shows that the human capital model displays the qualitative patterns observed in US

data for top lifetime earners when model agents are put into 100 bins following the procedure

used on US data. The key model feature that produces the data patterns is that agents

differ in learning ability and better learners optimally choose steeper mean earnings profiles via

time investments in skill formation. Top lifetime earners are disproportionally those entering

the model with high learning ability.19 Some existing quantitative-theoretical models of top

earners that rely on shocks with a transitory impact on earnings (e.g. Kaymak and Poschke

(2016) and Heathcote, Storesletten and Violante (2017)) do not produce the strikingly large

earnings growth rates documented for US top lifetime earners.

Badel, Daly, Huggett and Nybom (2018) use administrative earnings data for males from

Canada, Denmark and Sweden and apply the same data construction procedure used on US

17As the model tax reform occurs at exactly the 99th percentile, Instrument 2 and 3 are perfectly (negatively)
correlated.

18Appendix B examines US long-run response estimates and runs the same regressions on model data.
19Table 2 shows that (log) learning ability and (log) initial human capital are positively correlated in the

model.
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data. Figure 5 shows that earnings ratios over the working lifetime are strikingly large for the

top several bins of lifetime earnings in all countries.20 Thus, theories of top earners will broadly

need to account for this empirical regularity.

4.2.3 Distribution of Taxes

Table 4 describes the distribution of US federal income taxes and model taxes by income group.

US federal income taxes are largely paid by the top of the income distribution. In 2010, the

top 1 and top 10 percent of taxpayers by AGI paid roughly 37 and 71 percent of total federal

income taxes. A comparison of this tax with model taxes cannot be made directly as model

taxes combine federal and state income taxes and payroll taxes. Nevertheless, the second

column labeled “Model Federal Income Tax” is an attempt to arrive at such an apples-to-

apples comparison. Model federal income taxes are very concentrated at the top but are less

concentrated than in US data. Total model income taxes plus payroll taxes are less concentrated

at the top compared to model federal income taxes because payroll taxes are capped and because

state income taxes are roughly a flat tax.

Table 4 - Distribution of Taxes: Model vs. Data

Income Group US Data: Federal Model Federal Model Income Tax
Income Tax 2010 Income Tax plus Payroll Tax

Top 50 percent 97.6 97.0 91.7
Top 20 percent 83.0 81.0 71.2
Top 10 percent 70.6 67.0 55.4
Top 1 percent 37.4 31.0 22.0

Note: US Data is http://www.irs.gov/uac/SOI-Tax-Stats-Individual-Income-Tax-Rates-and-Tax-Shares. Model

income is earnings plus interest income. Model Federal Income Tax is based on adding earnings taxes and interest

income taxes, where earnings taxes are based on applying TAXSIM to model earnings and where interest income

taxes are based on mutiplying model interest income by 15 percent - the federal capital gains tax rate in 2010.

Model Income Tax plus Payroll Tax are total model taxes less model consumption taxes.

5 Analyzing the Tax Reform

5.1 Laffer Curve and Welfare

We analyze a reform that permanently alters the top tax rate on earnings but leaves all other

tax rates and government spending unchanged. The top tax rate is increased at the earnings

20Results for Canada are not graphed to allow a clear visualization, but are very similar to the US profile.
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threshold for the top tax rate. If more revenue is collected under the new tax system, then the

extra revenue is returned in equal, lump-sum transfers to all agents.

Figure 6 displays the Laffer curve in the benchmark model. The horizontal axis measures the

top tax rate and the vertical axis measures the aggregate lump-sum transfer as a percentage

of pre-reform output. The Laffer curve peaks at a 49 percent tax rate. The transfer is below a

tenth of one percent of the pre-reform, steady-state output level. Thus, the Laffer curve in the

benchmark model is flat in that little additional revenue is raised.

Figure 6 also presents Laffer curves when the target value for θ1, governing the Frisch hours

elasticity with respect to wage rate, is altered from the empirical benchmark value of θ1 =

0.125. The target value is varied by multiples of MaCurdy’s estimate of the standard error

SE(θ1) = 0.139. The peak of the model Laffer curves occur at larger top tax rates when the

target value for θ1 decreases and at smaller top tax rates when the target value for θ1 increases.

We display the resulting Laffer curves only for the cases when the target values are decreased.

The Laffer curve peaks at τ ∗ = 0.55 when the target value is θ1 = 0.056 and at τ ∗ = 0.63

when the target value is θ1 = −0.014. When the target value for θ1 decreases then the utility

function parameter ν decreases.21

The steady state welfare consequences of increasing the top tax rate are measured as the

percentage change in consumption at all ages in the benchmark model that is equivalent in

ex-ante expected utility terms for age j = 1 agents (age 23 in real life) to the ex-ante expected

utility achieved at alternative values of the top tax rate. Figure 6 shows that there is a small

welfare loss of 0.037 percent of consumption in the benchmark model from increasing the top tax

rate to the revenue-maximizing level. While there is a redistributional and insurance benefit

arising from the lump-sum transfer, there is also a small fall in the wage w. Factor prices

change very little across steady states as aggregate capital and labor input fall by nearly the

same percentage when the top tax rate increases.

The small equivalent consumption change in Figure 6 for all age 1 agents masks larger changes,

conditional on initial conditions. Moving to the revenue maximizing top tax rate of τ = 0.49

is equivalent to a decrease in consumption of 3 percent at each age over the lifetime for agents

in the top 1 percent of learning ability and a small increase in consumption for agents in the

bottom 99 percent of learning ability. Good learners will be directly impacted later in life if

they cross the top tax rate threshold.

While the steady-state comparison in Figure 6 does not produce a large welfare gain, the

reform is quite popular. Specifically, we compute the transition path associated with the reform

21When the one target is changed then we reestimate all model parameters to minimize the same distance
measure between model and data moments used in Table 2. The value of the utility function parameter ν is
0.614, 0.489, 0.427 when the target value of θ1 is 0.125, 0.056,−0.014.
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that immediately increases the top tax rate to τ = 0.49 and calculate that 95 percent of the

agents increase their discounted expected utility, among those who are alive at the time that

the reform begins. While not a single top earner (i.e. those in the top 1 percent of the earnings

distribution before the reform) prefers the reform, almost all of the retired agents prefer the

reform. The lump-sum transfer that they receive more than compensates for the small initial

fall in the interest rate. This transfer declines over time as the economy converges to the new

steady state.

5.2 Understanding the Role of Human Capital Accumulation

What role does skill change play in accounting for the shape of the model Laffer curve? To

answer this question, we construct an exogenous human capital model with the same prefer-

ences, technology, initial conditions and tax system as the benchmark model. Both models

are observationally equivalent in that they produce the same joint distribution of consumption,

wealth, earnings and income by age and in that they have the same dynamics of these variables

over time for individual agents under the benchmark tax system. The key difference is that

when the tax system changes then human capital investments change in the human capital

model but remain unchanged in the exogenous human capital model.22

Figure 7 plots the Laffer curve in both models. The top of the Laffer curve for the exogenous

human capital model raises additional tax revenue of roughly two-tenths of one percent of

output in the benchmark model steady state. Thus, endogenous skill change flattens out the

Laffer curve compared to an otherwise similar model that ignores the possibility of skill change

in response to changes in the tax system. The top of the Laffer curve in the exogenous human

capital model occurs at a top tax rate of 59 percent.

Intuitively, the Laffer curves differ because labor input is more elastic with respect to a change

in the top rate in the human capital model. We decompose the change in the aggregate labor

input across steady states and find that slightly more than half of the fall in the aggregate

labor input from the original steady state to the steady state with top rate set to 49 percent

is due to skill change at fixed work time levels as opposed to changes in work time at fixed

skill levels.23 The largest percentage fall in skills occurs at the end of the working lifetime from

agents endowed with high learning ability.24

22In the exogenous human capital model all decisions, other than the time investment decision, are allowed
to be adjusted to maximize expected utility when the tax system changes. Appendix B describes computation.

23The decomposition is ∆L =
∑
j µj

∫
E[ĥj lj − hj lj |x̂]dψ +

∑
j µj

∫
E[ĥj l̂j − ĥj lj |x̂]dψ, where hat variables

are calculated at the new tax rate.
24Skills early in life (i.e. at age j = 1 in the model) are assumed to be invariant to the top tax rate.
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whj(1− τ ′j) =
Retire−1∑
k=j+1

(
1

1 + r̂
)k−j

dhk
dsj

wlk(1− τ ′k)

The mechanism behind the fall in skill is easily grasped from the Euler equation governing

skill investment above, where we abstract from idiosyncratic risk for simplicity. At a best choice

an agent equates the marginal cost whj(1−τ ′j) of an extra unit of time spent in skill production

at age j to the discounted marginal benefit of the extra skill production dhk
dsj

in future periods,

where r̂ is the after-tax real interest rate. Now consider an increase in the top tax rate. Absent

any adjustment, the left-hand side of the Euler equation does not change for an agent with

earnings below the top tax rate but some of the marginal net-of-tax-rate terms (1−τ ′k) decrease

for an agent that will be above the threshold in the future. Thus, some adjustment must occur.

A decrease in time investment in skill production increases the future marginal product terms
dhk
dsj

. If future labor hours lk decrease in response to the increase in the top tax rate, consistent

with model behavior for many agents with high learning ability, then an even larger fall in

skill investment occurs at age j. In summary, an increase in the top tax rate decreases the

marginal benefit of skill investment without changing the marginal cost for agents who become

top earners later in life.

5.3 Applying the Tax Rate Formula

The goal of this section is to apply the formula in Badel and Huggett (2017, Theorem 1) to

the model to understand the quantitative role of the three proximate forces that determine the

tax rate at the top of the model Laffer curve. The formula is based on three elements: (i) a

probability space of agent types (X,X ,P), (ii) functions (y1, ..., yn) that map agent type x ∈ X
and a top tax rate τ into income and expenditure decisions and (iii) a class of tax functions T

indexed by τ . T is separable (i.e. T (y1, ..., yn; τ) = T1(y1; τ) +T2(y2, ..., yn)) and has a constant

top tax rate τ beyond a threshold (i.e. T1(y1; τ)− T1(y; τ) = τ [y1 − y],∀y1 > y) .

The formula is stated below. The variables entering the formula are integrals over the sets

X1 ≡ {x ∈ X : y1(x, τ ∗) > y} and X2 ≡ {x ∈ X : y1(x, τ ∗) ≤ y}. These are the sets of agent

types that have “income” y1 above and below the threshold y.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

(a1, a2, a3) =

( ∫
X1
y1dP∫

X1

[
y1 − y

]
dP

,

∫
X2
T (y1, ..., yn; τ ∗)dP∫
X1

[
y1 − y

]
dP

,

∫
X1
T2(y2, ..., yn)dP∫
X1

[
y1 − y

]
dP

)
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(ε1, ε2, ε3) =

(
d log(

∫
X1
y1dP )

d log(1− τ)
,
d log(

∫
X2
T (y1, ..., yn; τ ∗)dP )

d log(1− τ)
,
d log(

∫
X1
T2(y2, ..., yn)dP )

d log(1− τ)

)

Why are there three elasticities (ε1, ε2, ε3) in the formula above but only a single elasticity

in the widely-used formula? To see why, write aggregate tax revenue below, restate it in three

useful parts and note that τ ∗ maximizing revenue is equivalent to τ ∗ maximizing an objective

with three terms.25 When the top tax rate τ changes there are exactly three broad reasons

why aggregate taxes change: (1) taxes from “top earners” based on income source y1 change,

(2) other taxes collected from “top earners” change and (3) taxes on agent types who are not

“top earners” change. The widely-used formula accounts for only the first source of tax revenue

variation whereas the Badel-Huggett formula accounts for all three.

∫
X

T (y1, ..., yn; τ)dP =

∫
X1

T1(y1; τ)dP +

∫
X1

T2(y2, ..., yn)dP +

∫
X2

T (y1, ..., yn; τ)dP

τ ∗ ∈ argmax
∫
X

TdP ⇔ τ ∗ ∈ argmax
∫
X1

T1dP +

∫
X1

T2dP +

∫
X2

TdP

To apply the formula to the model, define an agent type x = (h1, a, j, z
j) to be a quadruple of

initial skill h1, learning ability a, age j and (partial) shock history zj and set (y1, y2, y3) to be la-

bor income, consumption and capital income. For example, y1(x, τ) ≡ w(τ)hj(h1, a, z
j; τ)lj(h1, a, z

j; τ)

for j < Retire and 0 otherwise, where τ is the top tax rate, w(τ) is the equilibrium wage and

the functions (hj, lj) describe human capital and labor input. Lastly, set T (y1, y2, y3; τ) to equal

the sum of the earnings, consumption and capital income taxes in the model.

Table 5 - Revenue Maximizing Top Tax Rate Formula

Terms endogenous human capital model exogenous human capital model
a1 × ε1 1.700× .317 = .539 1.700× .222 = .377
a2 × ε2 4.508× .040 = .180 4.508× .020 = .090
a3 × ε3 0.120× .739 = .089 0.120× .633 = .076

τ ∗ = 1−a2ε2−a3ε3
1+a1ε1

.476 .604

τ at peak of .49 .59
Laffer curve

Note: Coefficients (a1, a2, a3) are calculated at the original steady state with τ = 0.422. Calculate the set X1 of

top earner types using the earnings threshold for the top tax rate. Calculate elasticities (ε1, ε2, ε3) as a difference

quotient using τ = 0.422 and the tax rate at the top of the Laffer curve.

25We suppress the arguments of the functions being integrated to allow for a compact presentation.
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Table 5 calculates the model coefficients and elasticities in the human capital model and the

exogenous human capital model from the last section. The coefficients (a1, a2, a3) are the same

in both models because the distribution of incomes, expenditures and taxes at the initial steady

state is exactly the same in both models. The model economy value a1 = 1.70 exactly equals

the Pareto statistic a1 = 1.70 calculated in US data in Table 1 as this was a calibration target.

The model coefficient a2 = 4.508 is above the US data value of a2 = 3.64 from Table 1, whereas

the model coefficient a3 = 0.12 is below the US value of a3 = 0.16 from Table 1.26

Table 5 shows that the two models have different revenue maximizing top tax rates because

the exogenous human capital lowers all three elasticities compared to the human capital model.

The economic mechanism behind the lower elasticity for ε1 was articulated in section 5.2. This

mechanism also reduces (ε2, ε3). For example, ε3 is lower because the consumption and wealth

accumulation of top earners are reduced to a lesser degree in the exogenous human capital

model by an increase in the top tax rate and, thus, taxes paid on consumption and capital

income are reduced to a lesser degree.27 Factor price changes play little role in determining the

three elasticities in the human capital model because aggregate capital and labor decrease by

about the same percent when the top tax rate increases.

Why does the Laffer curve for the human capital model peak at a lower tax rate than the 73

percent rate suggested by the established view? Table 4 gives a concise answer. There are two

new forces, captured by the terms a2ε2 and a3ε3, that in general need to be considered that are

not accounted for in the formula τ ∗ = 1/(1 + aε). These new forces are positive in the human

capital model and depress the revenue maximizing top tax rate.

How important are the two new forces? This question is answered by plugging into the

formula the model values for ε1 = .317 but the counterfactual values ε2 = ε3 = 0. The revenue

maximizing tax rate implied by the formula is then τ ∗ = 1/(1 + 1.70× .317) = .65. Thus, the

new forces reduce the top rate from 65 percent to 49 percent in this decomposition.

Although the two new forces account for the bulk of the reduction in the revenue maximizing

top rate relative to an established view, it is still useful to explain what accounts for why

model parameters are set so that the model Pareto statistic is a1 = 1.70 rather than a1 = 1.5.

Diamond and Saez (2011) calculate that a1 is approximately 1.5 in 2005 for a wide range of

income thresholds in the upper tail when income is measured by adjusted gross income (AGI).

26One reason why the model value a2 is above the data value is that the data value for the denominator
includes earnings and some capital income (e.g. interest income and non-qualified dividends) that are taxed at
the ordinary income tax rate, whereas for tractability reasons the model value of the denominator covers only
labor market earnings of top earners.

27The elasticity ε2 is lower in the exogenous human capital model: (i) earnings, income and wealth fall less
and thus taxes on these sources fall less for agents before they become top earners, (ii) retirees’ consumption
taxes and capital income taxes fall less for agents who were top earners before retirement but who fall below
the threshold during retirement.
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However, the use of AGI in computing the coefficient a1 is not consistent with our goal of

determining the revenue maximizing top tax rate when changing only the tax rate on ordinary

income. This is because AGI includes income sources, qualified dividends and long-term capital

gains, that are taxed at a lower rate. Based on 2010 Statistics of Income (SOI) data, we calculate

that a1 = 1.70 when income excludes qualified dividends and capital gains and that a1 = 1.50

using AGI as an income measure. Thus, a key reason why we calculate that a1 = 1.70 in 2010,

whereas Diamond and Saez (2011) calculate that a1 = 1.5 in 2005, is not that the upper tail

differs significantly across years. Instead, it is that the upper tail is thinner after excluding

capital income sources that are taxed at a preferential rate.

5.4 Cross Elasticities: US Evidence

The previous section concluded that the key reason that the human capital model has a revenue

maximizing top tax rate of 49 percent when the established view suggests that 73 is revenue

maximizing is due to two forces not analyzed in the established view. This section presents

reduced-form regression evidence for the magnitude of the two new elaticities based on US data

that focuses on the long-term response. Saez, Slemrod and Giertz (2012, Table 1) present some

US long-term response evidence for ε1 based on time series regressions.

The elasticities (ε1, ε2, ε3) in the tax rate formula involve how aggregate income and tax

revenue measures for different groups change when (1 − τ) changes. These elasticities can be

calculated as the ratio of the vertical shift in the balanced-growth path of log aggregate income

and tax revenues to a permanent change in log(1 − τ) within any model with a balanced-

growth path. This section estimates the two new (cross) elasticities (ε2, ε3) using a statistical

model that allows for a permanent shift in the net-of-tax rate and that captures a shift in a

balanced-growth path.

We construct an aggregate measure of US taxes, labeled Taxt, that consists of federal, state

and local personal income taxes, social insurance taxes and taxes on production. This is the

aggregate tax measure used previously in Table 1. Aggregate taxes are decomposed following

the logic of the formula: Taxt = Rev1t +Rev2t +Rev3t.
28 Taxes paid by tax units with income

above the top 1 percent equal Rev1t +Rev3t, whereas Rev2t is the part paid by tax units below

the top 1 percent. Rev3t equals taxes on production plus capital income taxes paid by the top

1 percent on sources of capital income that have preferential tax rates (e.g. capital gains and

qualified dividends). Top 1 percent income is measured without capital gains as described in

Appendix B.

28Using the notation from Table 1, Rev1t = N1tTax1t, Rev2t = N2tTax2t and Rev3t = N1tTax3t, where
(N1t, N2t) are the number of tax units with income above and below the 99th percentile at time t and
Tax1t, Tax2t and Tax3t are tax revenues per tax unit in the relevant income group.
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Figure 8 plots the tax revenue series we calculate and the average marginal tax rate for the top

1 percent of tax units calculated by Mertens and Montiel-Olea (2017).29 Much of the tax rate

variation appears to be transitory; however, the tax rate declined in a dramatic and roughly

permanent fashion in the mid 1980s.30

log(1− τt)
logRev2t

logRev3t

 =

α1 α2 0

γ1 γ2 γ3

η1 η2 η3


 1

1{t≥T}

t

+

δ1t

δ2t

δ3t

 (1)

We posit a reduced-form relationship whereby the log net-of-tax rate log(1− τt) on the top 1

percent is the sum of an intercept α1, a regime-switch component α21{t≥T} and a residual δ1t.

The regime-switch component permanently alters the top rate after period T . We set T = 1987

so that the regime switch is associated with the Tax Reform Act of 1986.

Log revenue in the statistical model can shift in response to such a permanent tax rate

change. logRev2t depends on an intercept γ1, a regime-switch component γ21{t≥T}, a time

trend γ3t and on unmeasured sources of variation. The statistical model for logRev3t follows

the same formulation. Ratios of the estimated parameters (ε2, ε3) = (γ2/α2, η2/α2) are our

estimates of the elasticities that enter the tax rate formula.

Table 6 - Revenue Elasticities: US Data 1964-2012

EQUATION PARAMETER (1) (2) (3)
log(1− τ) α2 0.236 0.243 0.225

(0.028) (0.028) (0.026)
logRev2 γ2 0.068 0.075 0.048

(0.046) (0.053) (0.067)
logRev3 η2 -0.090 0.020 0.050

(0.157) (0.148) (0.195)
Elasticity ε2 = γ2/α2 0.288 0.307 0.212

(0.191) (0.215) (0.297)
Elasticity ε3 = η2/α2 -0.380 0.081 0.223

(0.673) (0.609) (0.865)
Time Dummies None 1986-87 1986-90

N. Obs. 41 41 41

Note: Parameters are estimated using the exactly-identified GMM estimator. Standard errors (in parentheses)

are computed using the Newey-West method with 1 lag and, for the elasticities, the delta method. Appendix

B describes data sources and data construction.

29Mertens and Montiel-Olea calculate the income-weighted average, marginal tax rate based on federal income
taxes and social security and medicare taxes. We use this measure because standard tax calculators (e.g.
TAXSIM) encode state tax rules starting from the late 1970’s.

30The central policy question that the literature tries to answer is how much to permanently change the top
tax rate. To address this question using reduced-form methods, it is important to have tax rate variation in the
data that roughly corresponds to such a permanent change.
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While this statistical model captures in a simple and transparent way a shift in balanced-

growth paths and a permanent shift in the top tax rate, there are several ways in which it is too

simple. First, many tax reforms are announced before they come into force and there are very

large anticipatory responses. For example, the Tax Reform Act of 1986 increased the capital

gains tax rate in 1987 while decreasing the top ordinary income tax rate in 1987. This led

to a dramatic surge in capital gains realizations in 1986 and a corresponding surge in capital

gains taxes in 1986 and a collapse in 1987.31 Second, the statistical model does not allow for

transitional dynamics that occur in the human capital model. Both of these issues can be

addressed in a simple way by adding time dummines to the system of equations.32

Table 6 presents estimation results. Column (1) presents estimates based on the system in

equation (1), whereas column (2) and (3) add time dummies to the system. Observations for

the years around the Tax Reform Act of 1986 are “dummied out” in column (2) and the years

from 1986 to 1990 are dummied out in column (3). The estimate for α2, governing the shift

in the net-of-tax rate, is always positive in Table 6. This accounts for the dramatic drop in

the top tax rate in Figure 8. The estimate for the elasticity ε2 is positive in all columns. The

estimate for ε3 is negative in column (1) but is positive in columns (2) and (3).

Our view is that the elasticity estimates in columns (2)-(3) of Table 6 are the most relevant.

Some means of controlling for the dramatic variation in capital gains that occured in 1986 and

1987 is needed as the leading explanation is that this is due to (preannounced) changes in the

capital gains tax rate. Point estimates for ε2 and ε3 are positive based on these columns. Of

course, the standard errors are large so that there is no strong evidence for positive elasticities.33

The elasticity ε3 can in theory be restated as the revenue-weighted average of the elasticities

of its two components: taxes on production paid by the top 1 percent and capital income taxes

paid by the top 1 percent. Figure 9 shows that in 1986 capital income taxes paid by the top 1

percent are more than double the 1985 value and that the 1987 value collapses below the 1985

value. Taxes on production paid by the top 1 percent do not display similar fluctuations, even

qualitatively, over this time period.

We estimate the elasticity of each of these two components to a movement in the net-of-tax

rate. The estimate for the elasticity of taxes on production paid by the top 1 percent to the

31Burman, Clausing and O’Hare (1994) document the behavior of capital gains realizations.
32Appendix B shows that with short time series of 49 observation, all three model elasticities are underesti-

mated in the statistical model based on the transitional path calculated for the human capital model. Adding
time dummies for 1986-1990 (1 year before and 4 years after the reform) and estimating the resulting statistical
model reduced the underestimation of elasticities (ε2, ε3) compared to the case of no time dummies or just time
dummies for 1986-7.

33A more comprehensive empirical analysis would investigate the importance of adding a list of plausible
controls or modeling a shift of a balanced growth path differently. The results in this paper are a first step in
such an analysis.
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net-of-tax rate range from a low of 0.205 to a high of 0.447 as is documented in Table B2 in

Appendix B. Thus, the negative point estimate for the elasticity ε3 in Table 6, for the case

without time dummies, is entirely driven by a negative point estimate for the elasticity of

capital income taxes paid by the top 1 percent.

Piketty and Saez (2003) and Saez and Zucman (2016) provide a narrative argument for a

positive value for ε3.34 They document a strong U-shaped pattern for the top 1 percent income

and wealth shares in the US over the last hundred years. The narrative is that the decrease in

income tax rates for the top 1 percent since the 1980s has fostered growing capital income and

wealth concentration. If valid, then the lower top tax rate would seem to be a force behind an

increase in consumption taxes and capital income taxes from top earners leading to a positive

value for ε3.35

6 Conclusion

From a human capital perspective, we argue that the revenue maximizing top tax rate in the

US is approximately 49 percent. Two new forces are the main quantitative drivers for why

the model’s top rate is well below the 73 percent top tax rate from the established view. The

widely-used tax rate formula, which underlies the established view, does not allow for these

two new forces. Reduced-form evidence supports positive point estimates for the elasticities

underlying these new forces, but standard errors are large so that this evidence is weak.

The human capital model is consistent with a number of facts that theory and the literature

view as being relevant for determining the revenue maximizing top tax rate. For example,

the model exactly matches the US Pareto statistic a1 = 1.70 that enters the tax rate formula.

The model approximates the Frisch labor hours elasticity for males. The small empirical value

for this elasticity has been viewed (e.g. Keane (2011) and Saez et al. (2012)) as suggesting

that the revenue maximizing top tax rate will be large. The model is also consistent with a

number of non-targeted, data properties. For example, the model produces a short-term income

elasticity to the net-of-tax rate within the range of the estimated values in the literature. This

is the main evidence underlying the established view. The model produces strikingly large

earnings growth rates for top lifetime earners just as in US data. The human capital model

34Piketty and Saez (2003, p. 37) state “In the United States, due to the very large rise of top wages since the
1970s, the coupon-clipping rentiers have been overtaken by the working rich. Such a pattern might not last for
very long because our proposed interpretation also suggests that the decline of progressive taxation observed
since the early 1980s in the United States could very well spur a revival of high wealth concentration and top
capital incomes during the next few decades.”

35Kaymak and Poschke (2016) and Hubmer, Krusell and Smith (2016) employ quantitative-theoretical models
to argue that lower top income tax rates since the 1980s account for an important part of the rise in the top 1
percent wealth share since 1980 in the US.
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produces large growth rates because top lifetime earners are disproportionally good learners

whose investments produce steep age-earnings profiles.
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A Appendix

A.1 Earnings and Hours Data

SSA Data: We use Social Security Administration (SSA) earnings data from Guvenen, Ozkan and Song

(2014). We use age-year tabulations of the 10, 25, 50, 75, 90, 95 and 99th earnings percentile for males age

j ∈ {25, 35, 45, 55} in year t ∈ {1978, 1979, ..., 2011}. These tabulations are based on a 10 percent random

sample of males from the Master Earnings File (MEF). The MEF contains all earnings data collected by SSA

based on W-2 forms. Earnings data are not top coded and include wages and salaries, bonuses and exercised

stock options as reported on the W-2 form (Box 1). The earnings data is converted into real units. See Guvenen

et al. (2014) for details.

We construct the Pareto statistic at the 99th earnings percentile for age j and year t as follows. We assume

that the earnings distribution follows a Pareto distribution beyond the 99th percentile for age j and year t.

We construct the parameters describing this distribution via the method of moments and the data values for

the 95th and 99th earnings percentiles (e95, e99) for a given age and year. The c.d.f. of a Pareto distribution

is F (e;α, λ) = 1 − ( eα )−λ. We solve the system .95 = F (e95;α, λ) and .99 = F (e99;α, λ). This implies

λ = log .05−log .01
log e99−log e95

. To construct the Pareto statistic at the 99th percentile for age j and year t, it remains to

calculate the conditional mean E[e|e ≥ e99] = λe99
λ−1 that is implied by the Pareto distribution.

PSID Data: We use Panel Study of Income Dynamics (PSID) data provided by Heathcote, Perri and

Violante (2010), HPV hereafter. The data comes from the PSID 1967 to 1996 annual surveys and from the

1999 to 2003 biennial surveys.

Sample Selection: We keep only data on male heads of household reporting to have worked at least 260

hours during the last year with non-missing records for labor earnings. In order to minimize measurement error,

we delete records with positive labor income and zero hours of work or an hourly wage less than half of the

federal minimum in the reporting year.

Variable Definitions: The annual earnings variable provided by HPV includes all income from wages,

salaries, commissions, bonuses, overtime and the labor part of self-employment income. Annual hours of work is

defined as the sum total of hours worked during the previous year on the main job, on extra jobs and overtime

hours. This variable is computed using information on usual hours worked per week times the number of actual

weeks worked in the last year.

Age-Year Cells: We split the dataset into age-year cells, compute the relevant moment within each cell.

We put a PSID observation in the (a, y) cell if the interview was conducted during year y and the head of

household’s age in year y was in the interval [a − 2, a + 2], where ages range from a = 23 to a = 62. The

life-cycle profiles we calculate correspond to (β23 +d, β24 +d, β25 +d, ..., β62 +d), where the βa are the estimated

age coefficients and d is a vertical displacement selected in the manner described in section 3.

A.2 Tax Formula Coefficients

Step 1: Calculate (y, ȳ) in Panel (d) of Table 1, using the income measure in section 3.3.

1. SOI Table 1.4 tabulates income, by type of income, for tax units sorted by adjusted gross income (AGI)
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bins.36 In 2010, 250 and 500 thousand dollars are the p1 = .9823 and p2 = .9947 percentiles of AGI based

on the number of potential tax units in 2010 reported in Piketty and Saez (2003 update, Table A0).

2. Assume that tax units in the [250, 500) and [500,∞) AGI bins (in thousands of dollars) are also the tax

units that would fall in the two corresponding bins based on the same percentiles for our definition of

income. Assume that income is distributed Pareto beyond the p1 percentile of income. The Pareto cdf

is F (y) = 1− (α/y)λ. Conditional means satisfy E[y|y > yi] = yi(λ/(λ− 1)).

3. Denote (y1, y2) the (p1, p2) percentiles of our income measure and (ȳ1, ȳ2) the respective means, condi-

tional on income exceeding (y1, y2). Calculate (ȳ1, ȳ2) based on tabulated income types in the [250,∞)

and [500,∞) AGI bins. Solve the equations below to get (α, λ, y1, y2):

1− p1 = (α/y1)λ, 1− p2 = (α/y2)λ, ȳ1 = y1(λ/(λ− 1)), ȳ2 = y2(λ/(λ− 1))

4. Solve (y, ȳ) using: .99 = 1− (α/y)λ and ȳ = y(λ/(λ− 1)).

Step 2: Calculate capital income tax in Panel (c) of Table 1.

1. capital income tax = τk × Capital Income. We calculate τk = 0.20 in section 4.

2. Capital Income equals qualified dividends plus capital gains for tax units in the top percentile. Capital

gains equal the measure for the top percentile in Piketty and Saez (2003, update) based on Table A0,

A4 and A6. Qualified dividends equal those in the [500,∞) AGI bin from SOI Table 1.4 and a fraction

φ of those in the [250, 500) AGI bin. φ is the fraction of income in the [250, 500) bin due to units with

income above the 99th percentile.

φ =
(1− .99)ȳ − (1− p2)ȳ2

(1− p1)ȳ1 − (1− p2)ȳ2

Step 3: Calculate entries (1)-(3) in Panel (b) of Table 1.

1. Personal taxes are the sum of federal, state and local income taxes. Federal taxes equal the federal

income tax in the [500,∞) bin in SOI Table 3.3 plus a fraction φ of this tax in the [250, 500) bin. State

and local taxes equal the state and local taxes in the [500,∞) bin in SOI Table 2.1 plus a fraction φ

of the tax in the [250, 500) bin. State and local income taxes are based on tax units that use itemized

deductions. A high fraction of the tax units in the [250,∞) bin are itemizers.

2. Social insurance taxes are the sum of self-employment taxes and the taxes on the employed. Self-

employment taxes are the sum of self-employment taxes in the [500,∞) bin in SOI Table 3.3 plus a

fraction φ of this tax in the [250, 500) bin. Taxes on the employed are in two parts. First, for units in

the [500,∞) bin taxes equal number × 13243 + 0.029× wages, where number is the number of units in

the bin with wage and salary income from SOI Table 1.4, 13243 is the maximum OASDI tax, 0.029 is

the combined medicare tax rate and wages is the bin total of reported wage and salary income from SOI

Table 1.4. Second, we make the same calculation for the [250, 500) bin and multiply by φ.

36SOI Tables: https://www.irs.gov/uac/soi-tax-stats-individual-income-tax-returns-publication-1304-
complete-report

31



3. Taxes on production paid by the top 1 percent equal real estate taxes paid by the top 1 percent plus an

imputed measure of residual taxes paid by the top 1 percent. Real estate taxes equal the real estate tax

in the [500,∞) bin in SOI Table 2.1 plus a fraction φ of this tax in the [250, 500) bin. Residual taxes

paid by the top 1 percent in t = 2010 equal Residualt × Consumption Sharet.

Residual taxes at time t = 2010 are: Residualt = Taxes on Productiont−Residential Real Estate Taxt.
Residential Real Estate Tax equals property taxes, from BEA Table 3.5 line 30, times the average share of

residential structures investment in private structures investment from BEA Table 5.4.5. Consumption Sharet
equals non-housing, consumption expenditures of households with income in the top 1 percent as a ratio

to non-housing consumption expenditures of all households. We use CEX data in 2010 to make this

calculation.

Step 4: Compute the entries in Panel (a) of Table 1. Personal Taxes are BEA Table 3.1 line 3. Social

Insurance Taxes are BEA Table 3.6 line 4 plus line 22. Social insurance taxes are based only on the employer

and employee parts of social security and medicare taxes. Taxes on Production are BEA Table 3.1 line 4. The

number N is the number of potential tax units in 2010 from Piketty and Saez (2003 Update, Table A0).
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Figure 1: Life-Cycle Profiles: Earnings and Hours
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Note: Earnings profiles are based on SSA data. Hours profiles are based on PSID data.

Figure 2: Model Tax System
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Figure 3: Life-Cycle Profiles: Data and Model
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Figure 4: Model Transition Path
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Note: All variables are normalized to 100 in period 1. The tax reform occurs in model period 3 and permanently
changes the tax rate from τ = 0.422 to τ = 0.49. Capital and labor are per agent.
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Figure 5: Earnings Ratios By Lifetime Earnings Percentiles
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Note: The figure plots mean earnings ratios for each bin of lifetime earnings. US facts are from Guvenen et al.
(2015). Facts for Denmark and Sweden are from Badel, Daly, Huggett and Nybom (2018).

36



Figure 6: Laffer Curves and Equivalent Consumption Variation

(a) Laffer Curves (b) Equivalent Consumption Variation
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Note: The Laffer curve plots the lump-sum transfer per agent stated as a percent of initial output per agent.
The Laffer curve is plotted for the benchmark model and for models with different targeted values for the
regression coefficient θ1. Consumption equivalents are calculated for age 1 agents in the benchmark model.

Figure 7: Laffer Curves
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Figure 8: Top 1 Percent Tax Rate, Income and Tax Revenue
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Note: Tax rate is the average marginal tax rate on the top 1 percent from Mertens and Montiel-Olea (2017).
Revenue2 is based on all the enumerated taxes paid by tax units below the 99th percentile. Revenue3 is based
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methods are described in Appendix B.

Figure 9: Log Tax Revenues from the Top 1 Percent
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Note: Revenue3 is decomposed into Tax on Production and Tax on Capital Income. Data and methods for
constructing these series are described in Appendix B.
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B ONLINE APPENDIX - NOT FOR PUBLICATION

This appendix provides detailed information on (1) construction of the data series graphed in Figure 8 and 9,

(2) Pareto statistics in US data, (3) robustness excercises related to Figure 1, (4) the construction of Pareto-

Lognormal distributions, (5) computation of model equilibrium, (6) the labor hours regressions from section

4, (7) estimation of the three elasticities (ε1, ε2, ε3) based on US data and on model data, (8) training time in

model and NLSY data. References related to these calculations are provided at the end of the appendix.

B.1 Decomposing Aggregate Taxes: Data Construction

Construct a time series for aggregate taxes, labeled Taxt, over 1964-2014. Use the data and methods described

in Step 4 of Appendix A.2. Decompose Taxt = (Rev1t +Rev3t) +Rev2t into three components. Rev1t +Rev3t

are all the taxes in Taxt paid by the top 1 percent of tax units, whereas Rev2t are taxes paid by tax units below

the top 1 percent. Using the notation from section 3, Rev1t = N1tTax1t, Rev2t = N2tTax2t, Rev3t = N1tTax3t.

The decomposition is calculated in three steps.

Step 1: Calculate (1) federal income taxes, (2) state and local income taxes, (3) social insurance taxes and

(4) taxes on production paid by the top 1 percent tax units. Calculate Rev1t + Rev3t for a given year over

1964-2014 as the sum of these four measures by applying step 1.1 to 1.8.

1.1 Define income as the sum of the following Statistics of Income (SOI) categories: (i) wages and salaries,

(ii) interest, (iii) dividends, (iv) business income, (v) IRA distributions, (vi) pensions and annuities, (vii)

total rent and royalty, (viii) partnership and S-corporation income and (ix) estate and trust income.

1.2 Find the AGI bin in SOI Table 1.4 that brackets the top 1 percent of tax units based on AGI. Calculate

mean income per tax unit ȳ1 among tax units within this AGI bin and higher AGI bins using the income

definition in step 1.1. Calculate mean income per tax unit ȳ2 based on the income information in next

highest AGI bin and higher bins. Calculate (p1, p2) as the percentile threshold for the two AGI bins

among potential tax units. For example, in 2010 the [250, 500k] AGI bin brackets the top 1 percent of

AGI among all potential tax units and (p1, p2) = (.9823, .9947). This is the procedure in Step 1 from

Appendix A.2.

1.3 Infer (y, ȳ), the 99th percentile of income and the mean income per tax unit beyond this percentile. Use

the assumption that income is distributed Pareto and use (ȳ1, ȳ2, p1, p2). Follow Step 1 in Appendix A.2.

1.4 Calculate the fraction φ of income, defined in step 1.1, in the bracketing AGI bin that is due to tax units

with income beyond the 99th percentile y. Follow Step 2 in Appendix A.2 and use (ȳ1, ȳ2, ȳ, p1, p2).

1.5 Calculate federal income taxes paid by tax units with income in the top 1 percent as the sum of all the

federal income taxes paid by tax units above the bracketing AGI bin plus φ times the federal income

taxes paid by tax units in the bracketing AGI bin. Use SOI Table 3.3 to calculate federal taxes.

1.6 Calculate state and local income taxes paid by the top 1 percent of tax units by repeating the procedure

in step 1.5. Use SOI Table 2.1 to do this.

1.7 Social insurance taxes paid by the top 1 percent of tax units are calculated as self-employment taxes plus

imputed social insurance taxes from the employed. Calculate self-employment taxes directly from those

reported in SOI Table 3.3 following the procedure in step 1.5. Social insurance taxes from the employed
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are calculated in two parts. First, for all AGI bins above the bracketing bin, social insurance taxes are

the number of tax units in these AGI bins times the maximum taxable earnings for OASDI taxes times

the combined employee-employer OASDI tax rate plus the same calculation for HI taxes. Second, make

the same calculation for the bracketing bin and multiply by the fraction φ. In years without a maximum

taxable earnings for HI taxes, follow the calculation in Step 3 of Appendix A.2. Tax rates and maximum

taxable earnings in different years are taken from Tax Policy Center.37

1.8 Taxes on production paid by the top 1 percent equal the sum of two components. First, calculate

residential real estate taxes paid by the top 1 percent directly by repeating the procedure in step 1.5. Use

SOI Table 2.1 for real estate taxes paid by itemizers. Second, calculate residual taxes on production paid

by the top 1 percent at time t as Residualt×Consumption Sharet. Step 3 from Appendix A.2 explains

the construction of (Residualt, Consumption Sharet). We calculate the top 1 percent consumption

share directly from CEX data for the period 1980-2012. We set Consumption Sharet to the 1980 value

before 1980 and to the 2012 value after 2012. As a check, we also calculate Consumption Sharet using

household income and imputed consumption from the 1967-2010 PSID data constructed by Attanasio

and Pistaferri (2014). The consumption share is quite flat in this data set from 1967 to 1980 and is

always below the value we calculate in CEX data in 1980.

Step 2: Calculate Rev2t = Taxt − (Rev1t + Rev3t) using Step 1. Calculate Rev3t as taxes on production

paid by the top 1 percent tax units from Step 1 plus a measure of the capital income taxes paid by the top 1

percent tax units: capital income taxest = Capital Incomet × capital tax ratet. Calculate Rev1t as federal,

state and local income taxes and social insurance taxes from Step 1 less capital income taxes.

Capital income is measured as capital gains plus qualified dividends. Capital gains is the measure in the

top income percentile from Piketty and Saez (2003, update), based on the information in their Tables A0, A4

and A6. Qualified dividends are calculated based on the method in step 1.5 using SOI Table 1.4. The capital

income tax rate series used is the maximum federal tax rate on capital gains for 1954-2014 calculated by the

US Treasury.38

Step 3: Express (Rev1t, Rev2t, Rev3t) in 2014 dollars using the CPI-U series. Express aggregate top 1 percent

income Incomet in 2014 dollars using the CPI-U series, the top 1 percent income from step 1.3 and the number

of top 1 percent tax units.

Notes on Step 1-3: First, the definition of income used in step 1 above differs slightly from that in Table 1

as dividends are total dividends rather than non-qualified dividends. Second, SOI table numbering is systematic

after roughly 1996. Table numbering above refers to these later years.39 Third, some of the information needed

to carry out steps 1.1 to 1.8 is not available in some years. Real estate tax and state and local income tax

information is not present in SOI tables in 1965, 1967, 1969, 1971, 1974, 1976, 1978 and self-employment tax

is not present in 1982. The decomposition (Rev1t, Rev2t, Rev3t) is not calculated in those years. Fourth, Table

1 Panel (c) calculates capital income taxes paid by the top 1 percent in 2010 using the combined federal and

state capital gains tax rate calculated using TAXSIM. The calculation above is based only on the maximum

federal capital gains tax rate series as TAXSIM only incorporates state taxes from the late 1970s.

37http://www.taxpolicycenter.org/statistics/payroll-tax-rates.
38https://www.treasury.gov/resource-center/tax-policy/tax-analysis/Documents/Taxes-Paid-on-Capital-

Gains-for-Returns-with-Positive-Net-Capital-Gains.pdf
39SOI Tables prior to 1996 are available at https://www.irs.gov/uac/soi-tax-stats-archive-1954-to-1999-

individual-income-tax-return-reports
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Figure 10: Pareto Statistic at 99th Percentile: US Measures
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Note: Income measure is without capital gains and comes from the World Top Incomes Data Base. The wage
and salary measure is for tax units using data from Piketty and Saez (2003, Update). The earnings measure is
for males based on data from Guvenen, Ozkan and Song (2014).

B.2 Pareto Statistic in US Data

Figure 10 plots the Pareto statistic at the 99th percentile in US data. We plot the statistic based on (1) an

income definition that excludes capital gains, (2) wage and salary income and (3) earnings for males age 25-60.

The measures in (1)-(2) are based on tax units whereas (3) is based on individual males. Measure (1) comes

from The World Top Incomes Database, measure (2) comes from Piketty and Saez (2003, update). Measure (3)

is based on SSA data tabulated by Guvenen et al. (2014) and is constructed by assuming that earnings beyond

the 99-th percentile is distributed Pareto and by using the reported 99-th and 99.999-th percentiles of earnings

to infer the Pareto coefficient beyond the 99-th percentile.

The Pareto statistic for income is below that for wage and salary income in all years of the data sets. The

Pareto statistic for male earnings is close to the Pareto statistic for wage and salary income in all years for

which both statistics can be calculated. In the year 2010, the statistic is 1.64 for income excluding capital gains,

1.79 for male earnings and 1.85 for wage and salary. The Pareto statistic at the 99th percentile is 1.70 in 2010

in Table 1 for an income measure that excludes capital gains and qualified dividends, whereas it is 1.50 in 2010

using AGI as an income measure. The AGI calculation uses SOI Table 1.4, uses the [250k,∞) and [500k,∞)

AGI bins to calculate average AGI within these bins and uses an interpolation based on the Pareto distribution.

Intuitively, the AGI-based Pareto statistic is lower in 2010 than the measures that exclude capital gains or that

exclude capital gains and qualified dividends because AGI includes capital gains and qualified dividends and
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Figure 11: Life-Cycle Profiles: Time and Cohort Effects
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Note: Earnings profiles are based on SSA data. Hours profiles are based on PSID data.

these capital income sources are quite concentrated in the upper tail.

B.3 US Profiles: Time Effects vs. Cohort Effects

Figure 11 plots the results of regressing various earnings and work time statistics on a third-order polynomial

in age and either time dummy variables or cohort dummy variables. It shows that the results based on time

and cohort effects are qualitatively similar. Cohort effects regressions imply a greater growth rate of the 99-50

ratio over the working lifetime. Figure 1 from section 3 of the paper plotted the time effects results. Figure 12

plots model properties for the economies considered in Figure 6.

B.4 Initial Conditions

We construct a bivariate distribution based on assumptions A1-2 below. Theorem 1 implies that initial human

capital follows a Pareto-Lognormal distribution and, thus, has a Pareto tail.

A1: Let learning ability a be distributed according to a Right-Tail Pareto-Lognormal distribution PLN(µa, σ
2
a, λa).

Let ε be independently distributed and lognormal LN(0, σ2
ε).

A2: log h1 = β0 + β1 log a+ log ε and β1 > 0.

Theorem 1: Assume A1-2. Then h1 is distributed PLN(β0 + β1µa, β
2
1σ

2
a + σ2

ε , λa/β1).
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Figure 12: Model and Data: Different Frisch Elasticity Targets

25 30 35 40 45 50 55 60

Age

0

0.5

1

1.5

2

2.5

3
Median Earnings

25 30 35 40 45 50 55 60

Age

0

2

4

6

8

10

12

14
Earnings Percentile Ratios

e99/e50

e90/e50

e10/e50

25 30 35 40 45 50 55 60

Age

1.5

2

2.5

3

3.5

4

4.5
Pareto Coefficient at 99th percentile

25 30 35 40 45 50 55 60

Age

0

0.2

0.4

0.6

0.8
Mean Hours

43



Proof: By definition of the PLN distribution, a ∼ PLN(µa, σ
2
a, λa) can be expressed as a = xy, where

x ∼ LN(µa, σ
2
a) and y is distributed Type-1 Pareto(1, λa). Substitute this identity into assumption A2 and

rearrange.

log h1 = β0 + β1 log x+ log ε+ β1 log y

h1 = exp(β0 + β1 log x+ log ε)yβ1

The first term on the right hand side is distributed LN(β0 + β1µa, β
2
1σ

2
a + σ2

ε). By definition of the Type-1

Pareto distribution, for y0 ≥ 1 we have Prob(y ≤ y0) = 1− y−λa0 . Let z ≡ yβ1 .

Prob(z ≤ z0) = Prob(yβ1 ≤ z0) = Prob(y ≤ z
1
β1
0 ) = 1− z

−λaβ1
0

The second term on the right hand side is distributed Type-1 Pareto with scale parameter 1 and shape

parameter λa/β1. ‖

We discretize this bivariate distribution. Let ψ(x̂ij) = ProbiProbij denote the probability of x̂ij ∈ Xgrid
1 .

Probi and Probij are the probabilities of learning ability ai and human capital hij , conditional on ability ai.

1. Xgrid
1 = {(ai, hij) : ai ∈ {a1, ..., aI}, log hij = β1 + β1 log ai + εj , εj ∈ {ε1, ..., εJ}}

2. {ε1, ..., εJ} is an equi-spaced J = 21 point Tauchen discretization going from −3 to 3 standard deviations

σε. Probij are probabilities induced by this discretization and by ai ∈ {a1, ..., aI}.

3. {a1, ..., aI} is an I = 9 point ability grid, where ai = E[a|aPi ≤ a < aPi+1 ], Pi are percentiles and aPi is

the Pi-th percentile of the ability distribution. Expectation is taken using PLN(µa, σ
2
a, λa). Percentiles

are chosen to be (0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 0.995, 0.999, 1.0).

B.5 Computation

The algorithm to compute a steady-state equilibrium for the model with top tax rate τ̄ , given all model

parameters, is outlined below.

Main Algorithm:

1. Given τ̄ , guess (K/L, Tr). Calculate w = F2(K/L, 1) and r = F1(K/L, 1)− δ.

2. Solve problem DP-1 at grid points x = (k, h) ∈ Xgrid
j (a).

(DP-1) vj(x, a) = max(c,l,s,k′) u(c, l + s) + βE[vj+1(k′, h′, a)] subject to

i. c+ k′ ≤ whl + k(1 + r)− Tj(whl, c, kr; τ̄) + Tr and k′ ≥ 0

ii. h′ = H(h, s, z′, a) and 0 ≤ l + s ≤ 1

3. Compute (K ′, L′, T r′) implied by the optimal decision rules in step 2.

4. If K ′/L′ = K/L and Tr′ = Tr up to a tolerance, then stop. Otherwise, update the guess and repeat 1-3.
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Comments:

Step 1: A guess for the lump-sum transfer Tr, corresponding to the top rate τ̄ , is needed as Tr is endogenous.

Step 2: Solve DP-1 at age and ability specific grid points in Xgrid
j (a). This involves interpolating vj+1. We use

bi-cubic interpolation on (k′, h′). To compute expectations, discretize the distribution of the shock variable z′

with 7 equi-spaced log shocks lying 3 standard deviations on each side of the mean.

Step 3: Compute aggregates (K ′, L′) as follows. First, for each initial conditions x̂ = (h, a) ∈ Xgrid
1 draw N =

1000 random histories zJ . Use the decision rules from step 2 to compute lifetime histories. Set E[kj(x̂, z
j)|x̂] =

1
N

∑N
n=1 kj(x̂, z

j
n) and E[hj(x̂, z

j)lj(x̂, z
j)|x̂] = 1

N

∑N
n=1 hj(x̂, z

j
n)lj(x̂, z

j
n), where zjn is the n-th draw of the

shock history. Compute aggregates as indicated below, where ψ(x̂) is the probability of x̂ ∈ Xgrid
1 . Shock

histories are fixed across all iterations in the Main Algorithm. The lump-sum transfer condition Tr′ = Tr holds

when aggregate taxes T ′ implied from the computed decision rules equal G+Tr computed from the benchmark

model.

K ′ =
∑

x̂∈Xgrid1

J∑
j=1

µjE[kj(x̂, z
j)|x̂]ψ(x̂)

L′ =
∑

x̂∈Xgrid1

J∑
j=1

µjE[hj(x̂, z
j)lj(x̂, z

j)|x̂]ψ(x̂)

T ′ =
∑

x̂∈Xgrid1

J∑
j=1

µjE[Tj(whj(x̂, z
j)lj(x̂, z

j), cj(x̂, z
j), rkj(x̂, z

j); τ̄)|x̂]ψ(x̂)

Setting Model Parameters:

Following the discussion in section 4, some model parameters are fixed and the remaining model parameters

are calibrated to minimize the sum of squares of distances between equilibrium model values and data values,

subject to the equality constraints for three scalar moments that we want to match perfectly. In particular, the

distances include those of the four age profiles presented in Figure 3, and of 10 × MaCurdy coefficient and 10

× mean hours. The equality constraints impose the following model values equal to data values: K/Y , Pareto

statistic of earnings at the 99th percentile among all earners, and earnings level at the 99th percentile among

all earners. The constrained minimization problem is first solved using a global algorithm (genetic algorithm),

and then refined using several local methods (the interior-point and the active-set methods by Knitro).

The algorithm specified above is used to compute equilibria under tax reforms when all model parameters

are determined. A closely-related algorithm is used to compute equilibria for given model parameters when the

lump-sum transfer is zero.

The algorithm to compute the Laffer curve for the exogenous human capital model is given below. The

skills process is by construction exactly the same as in the original benchmark steady-state equilibrium. An

equilibrium in this model is defined in the same way as in the benchmark model with the exception that the

decision problem differs.

Algorithm for Computing Equilibria in the Model with Exogenous Human Capital:

1. Given top tax rate τ̄ , guess (K/L, Tr). Calculate w = F2(K/L, 1) and r = F1(K/L, 1)− δ.

2. Solve problem DP-2 at grid points x = (k; k̄, h̄) for fixed values of ability a.
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(DP-2) vj(k; k̄, h̄, a) = max(c,l,k′) u(c, l + s̄) + βE[vj+1(k′; k̄′, h̄′, a)] subject to

i. c+ k′ ≤ wh̄l + k(1 + r)− Tj(wh̄l, c, kr; τ̄) + Tr and k′ ≥ 0

ii. (h̄′, k̄′) = (H(h̄, s̄, z′, a), k∗j (k̄, h̄, a)) and s̄ = s∗j (k̄, h̄, a).

iii. s∗j (k̄, h̄, a) and k∗j (k̄, h̄, a) are optimal decision rules solving DP-1 from the benchmark model.

iv. 0 ≤ l + s̄ ≤ 1 and s̄ = s∗j (k̄, h̄, a).

3. Compute (K ′, L′, T r′) implied by the optimal decision rules in step 2.

4. If K ′/L′ = K/L and Tr′ = Tr, then stop. Otherwise, update the guesses and repeat 1-3.

B.6 Labor Hours Regressions

We first describe the construction of the data sets underlying the results in section 4 for the regressions of the

change in log hours on the change in log wages.

∆ log hoursj = θ0 + θ1∆ logwagej + εj

We create a data set of pairs (∆ log hoursj ,∆ logwagej) in two steps. Step 1: For each initial condition

x̂ = (a, h) ∈ Xgrid
1 , draw N = 1000 lifetime shock histories. Step 2: For each x̂ ∈ Xgrid

1 , shock history and age

j in the age range, calculate (∆ log hoursj ,∆ logwagej). We run IV regressions using a two-stage-weighted-

least-squares estimator. The instruments in the first stage are cubic polynomials in age and learning ability and

their interactions. We use the weighted-least-squares estimator with weight 1
N µjψ(x̂) on an observation, where

N = 1000, µj are age shares and ψ(x̂) are probabilities of initial conditions. The results are contained in Table

B1 for a number of choices of the age range and the measurement of wages.

Table B1 - Model Regression Coefficient θ1

Panel (a) Wage Measure Age 25-55 Age 30-60 Age 50-60
wagej = ej/(lj + sj) 0.124 0.296 0.378
wagej = ej/lj 0.117 0.274 0.479
wagej = ej(1− τ ′j)/lj 0.130 0.303 0.567

Panel (b) Wage Measure Age 25-55 Age 30-60 Age 50-60
wagej = ej/(lj + sj) 0.360 0.458 0.377
wagej = ej/lj 0.482 0.503 0.489
wagej = ej(1− τ ′j)/lj 0.561 0.580 0.570

Note: Panel (a) puts no sample restrictions beyond those stated. Panel (b) puts the additional sample

restriction that agents hold more than one quarter of mean earnings in assets. Model hours are hoursj = lj+sj .

The symbol τ ′j denotes the marginal earnings tax rate.

To interpret the results in Table B1, we state a necessary condition for an interior solution to Problem P1

from section 2 and follow an analogous derivation to that in MaCurdy (1981). The intratemporal necessary

condition below states that the period marginal disutility of extra time working equals the after-tax marginal

compensation to work multiplied by the Lagrange multiplier on the period budget constraint. We restated this

necessary condition using the functional form assumption on the period utility function from section 2. The
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second equation takes first differences of the log of the first equation. The third equation uses the Euler equation

for asset holding to replace the change in the Lagrange multiplier with model variables and parameters.

u2,j(cj , lj + sj) + λj
[
whj(1− τ ′j)

]
= 0 implies lj + sj =

[
λj
(
whj(1− τ ′j)

)
φ

]ν
∆ log(lj + sj) = ν [∆ log λj ] + ν∆ logwhj(1− τ ′j)

∆ log(lj + sj) = ν [− log β(1 + r(1− τk))] + ν∆ logwhj(1− τ ′j)

The last step assumes that the agent is off the corner of the borrowing constraint (i.e. kj+1 > 0) and that

there is no risk. We do so for transparency. An extra Lagrange multiplier term enters the last equation when

the agent is at a corner (see Domeij and Floden (2006)). When there is risk, the last equation is modified by

an additive “forecast error” term (see Keane (2011) or Keane and Rogerson (2012)) where the additive term is

based on a linear approximation.

The last equation above suggests that the human capital model is similar to the exogenous wage model,

considered by MaCurdy (1981) and many others, in that the regression coefficient that comes from regressing

a particular measure of “hours” growth on a very specific measure of “wage” growth is, at least in principle,

a way of estimating the model parameter ν. This holds within the model only when the hours measure is

the sum of model work time and model learning time (hoursj = lj + sj) and only when the wage measure is

wagej = ej(1 − τ ′j)/lj = whj(1 − τ ′j). Thus, the hours measure lj + sj on the left-hand side of the equation

must differ from the hours measure lj used to calculate the “wage” measure used on the right-hand side.

Clearly, this is not consistent with the practice in the empirical literature. Thus, even if borrowing constraints,

idiosyncratic risk and progressive taxation were not present, the standard regression approach in the literature

does not produce an unbiased estimate of the model parameter ν when the theoretical model is the human

capital model.40

Table B1 shows a number of regularities. First, the regression coefficient for the 25-55 age group in the first

row is positive but below the value of ν = 0.614 from Table 2. Second, even in row 3, where the measures for

log hours and log wage changes used are the relevant ones from the perspective of theory and IV techniques

are applied, the regression coefficient is still less than the value of ν. Domeij and Floden (2006) argue that in

exogenous-wage models standard estimation procedures are biased downward. They demonstrate a downward

bias due to borrowing constraints and approximation error of the intertemporal Euler equation.

When we include in the estimation only agents with substantial assets (more than one quarter of mean

earnings), then all regression coefficients in Table B1 increase but remain below the value of ν. For example,

for the 25-55 age group the estimate moves from θ1 = 0.124 to θ1 = 0.360 by restricting the sample in this way.

Domeij and Floden (2006, Table 5) estimate in 1984-94 PSID data that θ1 = 0.16 with a standard error of 0.13.

Their point estimate increases when the sample is restricted to include only individuals with larger liquid assets

or larger total wealth. They estimate that θ1 = 0.41 when the sample includes only PSID observations with a

total wealth of at least one half of yearly income.

40Imai and Keane (2004) argue that an important elasticity is underestimated in a human capital model with
learning by doing.
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B.7 Elasticity Estimates (ε1, ε2, ε3): US Data and Model Data

We estimate the elasticity of the taxes on production of the top 1 percent and capital income taxes paid by

the top 1 percent, (ε3,1, ε3,2), using system (2). System (2) modifies system (1) from section 6 by removing

the series logRev3t while adding the series for taxes on production and capital income taxes paid by the top 1

percent. In theory, the elasticity ε3 in section 6.5 is a revenue-weighted average of these two sub elasticities.
log(1− τt)
logRev2t

log TaxProdt

logCapIncomeTaxt

 =


α1 α2 0

γ1 γ2 γ3

ζ1 ζ2 ζ3

µ1 µ2 µ3


 1

1{t≥T}

t

+


δ1t

δ2t

δ3t

δ4t

 (2)

Table B2 - Revenue Elasticities: US Data 1964-2012

EQUATION PARAMETER (1) (2) (3) (4) (5) (6)
log(1− τ) α2 0.236 0.243 0.225 0.236 0.243 0.225

(0.028) (0.028) (0.026) (0.028) (0.028) (0.026)
logRev2 γ2 0.068 0.075 0.048 0.052 0.055 0.047

(0.046) (0.053) (0.067) (0.036) (0.043) (0.058)
log TaxProd ζ2 0.056 0.050 0.101 0.040 0.030 0.100

(0.047) (0.053) (0.062) (0.057) (0.064) (0.072)
logCapIncTax µ2 -0.167 -0.016 -0.011 -0.183 -0.035 -0.012

(0.245) (0.240) (0.309) (0.244) (0.244) (0.318)
Elasticity ε2 = γ2/α2 0.288 0.307 0.212 0.219 0.227 0.207

(0.191) (0.215) (0.297) (0.156) (0.179) (0.260)
Elasticity ε3,1 = ζ2/α2 0.238 0.205 0.447 0.169 0.125 0.442

(0.199) (0.218) (0.261) (0.246) (0.266) (0.313)
Elasticity ε3,2 = µ2/α2 -0.706 -0.065 -0.047 -0.775 -0.145 -0.053

(1.053) (0.987) (1.371) (1.048) (1.003) (1.409)
Time Dummies None 1986-87 1986-90 None 1986-87 1986-90

N. Obs. 41 41 41 41 41 41

Note: Columns (1)-(3) measure the dependent variables as log revenue. Columns (4)-(6) measure the dependent

variables as log revenue per tax unit. Estimation and standard errors follow the methods in Table 5.

Table B2 estimates the elasticities (ε3,1, ε3,2). The point estimate for the elasticity ε3,1 is positive in all

specifications. The point estimate of the elasticity of capital income taxes ε3,2 is negative without time dummies,

but increases markedly after controlling for time dummies. Thus, the negative point estimate for ε3 in Table

5 in section 6.5, for the case without time dummies, is driven entirely by a large, negative elasticity of capital

income taxes paid by the top 1 percent.

Table B3 estimates all three elasticities, based on system (3) below, using the US data displayed in Figure 7

from section 6.5. 
log(1− τt)
log top1inct

logRev2t

logRev3t

 =


α1 α2 0

β1 β2 β3

γ1 γ2 γ3

η1 η2 η3


 1

1{t≥1987}

t

+


δ1t

δ2t

δ3t

δ4t

 (3)
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Table B3 - US Data 1964 - 2012

EQUATION PARAMETER (1) (2) (3) (4) (5) (6)

log(1− τ) α2 0.236 0.243 0.225 0.236 0.243 0.225

0.028 0.028 0.026 0.028 0.028 0.026

log top1inc β2 0.299 0.337 0.333 0.283 0.317 0.331

0.049 0.051 0.071 0.059 0.064 0.089

logRev2 γ2 0.068 0.075 0.048 0.052 0.055 0.047

0.046 0.053 0.067 0.036 0.043 0.058

logRev3 η2 -0.090 0.020 0.050 -0.106 0.000 0.049

0.157 0.148 0.195 0.157 0.154 0.204

Time Dummies None 1986-7 1986-90 None 1986-7 1986-90

Observations 41 41 41 41 41 41

ε1 = β2/α2 1.268 (.255) 1.386 (.274) 1.476 (.376) 1.198 (.304) 1.306 (.331) 1.47 (.457)

ε2 = γ2/α2 .288 (.191) .307 (.215) .212 (.297) .219 (.156) .227 (.179) .207 (.26)

ε3 = η2/α2 -.38 (.673) .081 (.609) .223 (.865) -.449 (.673) .001 (.633) .218 (.908)

Note: Dependent variables are measured as total income and revenue in columns (1)-(3), but are measured

per tax unit in columns (4)-(6). Elasticity point estimates are ratios of regression coefficients as in Table 5 from

section 6.5. Appendix B describes data construction. Estimation follows methods in Table 5.

What is new in Table B3 are the results for the income elasticity ε1. The top 1 percent income elasticity

estimates are larger than 1 in all specifications. The closest regression specification to that in Table B3 are the

level and share regressions in Saez (2004). Saez (2004, Table 3 and 6) estimates that ε1 = 0.71 for the level

regression and ε1 = 0.85 for the share regression when the time polynomial is a linear time trend for the time

period 1960-2000.41 The tax rate in Saez is the average marginal tax rate on the top 1 percent based on federal

income taxes. The Mertens and Montiel-Olea (2017) tax rate series that we use is the average marginal tax rate

based on federal income taxes and social security and medicare taxes. This implies that the (log) net-of-tax

rate increase from the early 1980s to the present is smaller than the Saez measure. This is one reason why the

estimates for ε1 in Table B3 are larger than those in Saez (2004).42 Saez, Slemrod and Giertz (2012, Table 1)

estimate ε1 = 0.82 based on the top income share regression with a linear time trend and US data 1960-2006.

log(top 1 incomet) = α+ ε log(1− τt) + poly(t) + νt

log(top 1 income sharet) = α+ ε log(1− τt) + poly(t) + νt

We apply the regression methods used in Table B3 to model data in Table B4. We use the model transition

path to a one-time tax reform from section 6 to construct time series for all aggregate variables and tax rates.

The first model period corresponds to 1964, the last period corresponds to 2012 and the model tax rate increases

permanently in 1987 from 0.422 to 0.49. Model aggregates are income and revenue per agent. Table B4 shows

that the true model elasticities (ε1, ε2, ε3) = (.317, .040, .739) are all underestimated. One reason for this is that

41The level regression in Saez (2004) and the regressions in Table B2 use the CPI-U series to deflate. The Saez
(2004) level regression is based on average top 1 percent income and thus is most comparable to the estimate
ε1 = 1.198 from column (4).

42Effective since 1994, the medicare tax applies to all earned income.
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with a short time series the trend term captures part of the fall in income and in tax revenue that is due to the

tax rate increase.

Table B4 - System Regression Based on Model Data

EQUATION PARAMETER (1) (2) (3)

log(1− τ) α2 -0.112 -0.112 -0.112

0.000 0.000 0.000

log top1inc β2 -0.032 -0.031 -0.030

0.001 0.001 0.001

logRev2 γ2 0.002 0.002 0.001

0.001 0.001 0.001

logRev3 η2 -0.052 -0.054 -0.065

0.007 0.006 0.004

Time Dummies None 1986-7 1986-90

Observations 49 49 49

ε1 = β2/α2 .285 (.008) .278 (.008) .27 (.008)

ε2 = γ2/α2 -.017 (.007) -.016 (.007) -.007 (.007)

ε3 = η2/α2 .46 (.06) .485 (.055) .583 (.041)

B.8 Training Time: Model and NLSY Data

Figure 13 plots the mean model time investment in learning. Time investments decline with age for agents

grouped by learning ability. Higher learning ability groups have larger time investments at any age. Figure

13 also plots the findings for males from National Longitudinal Survey of Youth (NLSY) data. The NLSY

records an individual’s Armed Forces Qualification Test (AFQT) score, based on tests conducted early in the

lifetime, and records training time in training programs that are not associated with formal schooling. We add

together the weekly training time in all such training programs. Undoubtedly, the training measure understates

time allocated to skill acquistion. Presumably, a part of what any assistant professor, resident heart surgeon,

professional musician or aspiring CEO picks up is not via time recorded in such programs. Nevertheless, training

time tends to decline with age and to be larger at any age for groups with higher AFQT scores.43

We describe sample selection based on the NLSY data on training time and AFQT scores for males.

Training time: We use NLSY79 data Round 1 (1979 survey year) to Round 25 (2012 survey year) directly

acquired from the BLS website. In each survey there was a series of questions following: I would now like to ask

you about OTHER TYPES of schooling and training you may have had, excluding regular schooling we have

already talked about... Then the respondent was asked about up to 4 training programs they enrolled since

the previous interview, with weekly hours spent on each training program provided. We define training time of

each respondent as the sum of weekly hours spent on all mentioned training programs.

Measure of learning ability: NLSY79 contains the AFQT (Armed Forces Qualification Test) Percentile

43Appendix B documents sample selection and how we create age-year-AFQT cells for males from NLSY data
and our methods for estimating age profiles for training hours. It is well known (e.g. Heckman, Lochner and
Taber (1998), Kaymak (2014) and Griffy (2017) among others) that male log earnings or log wage rate profiles
in NLSY data are steeper for groups with higher AFQT scores.
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Figure 13: Training Time: Model versus NLSY79 Data

(a) Model Training Time (b) NLSY79 Weekly Hours Trained
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Note: The estimated NLSY age profiles are vertically shifted to pass through the mean training time across
years for the different AFQT groups at age 45.

Score of each respondent. We use the AFQT Percentile Score as the measure of learning ability.44

Sample selection: We keep respondents who are male, have finished formal school education, report positive

earnings, and are employed. Respondents are defined as employed if their age ≤ 30 and their annual work hours

are between 260 and 5280, or if their age > 30 and their annual work hours are between 520 and 5280.

AFQT-age-year cells: We split the dataset into AFQT-age-year cells and compute the average training time

across samples within each cell. We put an NLSY observation in the (q, a, y) cell if the interview was conducted

during year y, the respondent’s AFQT Percentile Score was in the percentile range q, and the respondent’s age

in year y was in the interval [a− 2, a+ 2], where ages range from a = 23 to a = 50.45 For each percentile range

q, we regress average training time on the age and year dummies. The life-cycle profiles we calculate and plot

in Figure 9 from section 6.6 correspond to (βq,23 + dq, βq,24 + dq, βq,25 + dq, ..., βq,50 + dq), where βq,a are the

estimated age coefficients for the percentile range q, and dq is a vertical displacement for the percentile range q

selected such that the average training time at age 45 passes through the mean value across panel years at this

age.

44We use the NLSY79 AFQT Percentile Score revised in 2006 (variable AFQT-3). We use the percentile
defined for national population rather than within NLSY79 samples.

45We truncate our analysis at age 50 since NLSY79 drew samples aged between 14 and 22 in year 1979, and
the number of samples above age 50 are small even in recent surveys. For the same reason, for each percentile
range q, the data is an unbalanced panel in age and survey year. To minimize measurement error, we remove
any cell that has less than 10 observations. This leaves an average cell size of 284 for the AFQT quintile range,
and an average cell size of 59 for the top 10% AFQT range.
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